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Similarity of probability measures is considered in the multivari-

ate setting through a distance between trimmed probabilities. The
Wasserstein distance will be our choice, considering the best approxi-
mation between a fixed probability and trimmed versions of the other.
We allow the possibility of equal or different trimming patterns on
both probabilities. We show that trimmings of arbitrary probabilities
can be parameterized in terms of the trimmings of a fixed probability,
a fact we exploit through useful Skorohod representations.

Best trimmed approximations naturally lead to a Mass Trans-
portation Problem where a part of the mass could be not neces-
sarily transported. Since optimal transportation plans are not easily
computable, we provide theoretical support for Monte-Carlo approx-
imations, through a general consistency result. As a remarkable and
unexpected additional result, with important implications for future
work, we obtain uniqueness of the optimal solution.

1. Introduction. An analysis of similarity of distributions based on
the comparison of their trimmed versions has recently been introduced in
Álvarez-Esteban et al [1]. The novelty of such approach consists in consid-
ering that two distributions are similar at level α whenever suitable chosen
α-trimmed versions of such distributions coincide. Our proposal focused on
probability measures on the real line, using the L2-Wasserstein metric to
measure distances between probabilities, and the same trimming pattern on
both probabilities. In this work we will treat the problem in greater general-
ity, considering probabilities on Rk and different kinds of trimming schemes.

Trimming probabilities is a frequent practice in Statistics, involving the
sample or the population distributions in problems related to robust proce-
dures. In the general setting considered here its explicit use (through trim-
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2 P. C. ÁLVAREZ-ESTEBAN ET AL.

ming functions) is already present in Gordaliza [11], although it seems that
its analysis has not been considered until very recently. Cascos and López-
Dı́az [4] and [5] and our already cited work [1] contain some of this analysis.
The definition of trimming in these papers is the following: Given α ∈ [0, 1]
and a probability measure, P , on the Euclidean space Rk, an α-trimming of
P is any probability measure P ∗ such that P ∗(B) =

∫
B wdP, for some weight

function, w, satisfying 0 ≤ w ≤ 1/(1 − α) and
∫
wdP = 1. This obviously

generalizes the simplest version of trimming consisting in the conditional
probability given a set (of probability greater or equal than 1− α). A more
formal definition appears in Definition 2.1.

Assume that P1 and P2 are probabilities onRk and letRα(P1) andRα(P2)
be their corresponding sets of α-trimmed probabilities (see (2.1) below). If d
is a metric over the set of probabilities, there are several problems of interest
related to the trimmed versions of P1 and P2. By defining the measures of
dissimilarity between P1 and P2 at level α:

T1(P1, P2) := min
P ∗2 ∈Rα(P2)

d(P1, P
∗
2 ),

T2(P1, P2) := min
P ∗1 ∈Rα(P1),P ∗2 ∈Rα(P2)

d(P ∗1 , P
∗
2 ),

we would be interested in the best way of trimming one or both probabilities
to achieve the greatest similarity between the corresponding versions.

Note that P1 and P2 do not play symmetric roles in T1 in the applications.
For instance, if Pn is the sample distribution and P is a hypothesized dis-
tribution, then T1(Pn, P ) measures the similarity between our sample and a
trimmed version of the hypothesized model. On the other hand, T1(P, Pn)
measures the similarity between the main part of our sample and the model.
Thus, T1(Pn, P ) can be appropriate to explore if our sample can be consid-
ered as coming from a model with some kind of censoring, while T1(P, Pn)
can be appropriate to analyze if our sample comes from some contaminated
or distorted version of the model. The measure T2 is an appealing tool to
analyze two-sample problems, when our samples are obtained from nearly
similar populations, say because different small sub-populations merged into
the main similar populations. Notice that the problem analyzed in [1] in-
volves a problem related to T2, when it is assumed that the possible troubling
sub-populations share similar proportional size and location in their corre-
sponding populations (see Remark 2.9).

If d is the L2-Wasserstein distance (see Definition 3.1), these problems
lead to questions on the celebrated Mass Transportation Problem (MTP)
concerning unexplored constraints in the Monge-Kantorovich formulation
(see the books by Rachev and Rüschendorf [14] and by Villani [18] for an
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SIMILARITY AND TRIMMING 3

updated account of the interest and implications of the topic). Our problems
involve the optimal transportations, with respect to the quadratic loss, be-
tween probabilities when a part could remain fixed. In fact, in the considered
problems, minima are attained and the corresponding trimmed probabilities
are solutions of MTP’s which can be obtained or approximated. This gives
an additional descriptive scope to the procedure, that might allow to discover
underlying similar structures when they exist.

Since there are not general explicit expressions for the solutions of the
mutidimensional MTP, it is of primary interest to analize the possibilities
of Monte-Carlo approximations and this will be our main goal. However a
keystone in this process concerns uniqueness of solutions, which we remark as
other main result in the paper. The generality of this result was unexpected
and opens greater perspectives for future work.

The program to be developed through the paper is the following: In Sec-
tion 2 we will give the general definition, characterizations and properties
of trimmed probabilities. A remarkable result concerns the representation of
trimmings of any probability in terms of those of another (see Proposition
2.5 and Corollary 2.8). Our interest in MTP led to handle representations
based on McCann’s Theorem on MTP (see Theorem 2.6), generalizing those
given in [1] in terms of the uniform distribution on the unit interval. This
representation has the added value of providing a particular Skorohod’s a.s.
representation for weak convergence in Rk (see Theorem 2.7). Section 3
analyzes the different possibilities that naturally arise to measure the dis-
similarity between two probabilities using trimmings at a given level, as
well as for choosing trimming patterns. The main results in this section
involve the use of the L2-Wasserstein distance, a framework where the con-
nection with MTP is patent. By handling suitable representations it is easy
to prove the convergence of trimmings of convergent sequences (Lemma 3.7).
This result generalizes the consistency obtained in [5], where only sample
distributions are considered, and allows to obtain the consistency of the in-
troduced dissimilarity measures (Theorem 3.14). Another remarkable result
concerns the uniqueness of the best pair of trimmed probabilities solving
the corresponding minimization problems (Theorems 3.6 and 3.12). Finally,
Section 4 explores, with an example, the possibilities in descriptive analysis
of probability measures that arise from this approach.

The notation to be employed in this paper is the following. (X , β) will
denote a separable metric space endowed with its Borel σ-field although
often, mostly in Section 3, will be the k-dimensional Euclidean space Rk.
In this case the Lebesgue measure will be denoted by `k. The set of all
probability measures defined on β will be denoted P(X , β) and F2(X ) will
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4 P. C. ÁLVAREZ-ESTEBAN ET AL.

represent the set of the distributions in P(X , β) with finite second moment.
Given two probability distributions P,Q, by P � Q we will denote ab-

solute continuity of P with respect to (w.r.t) Q. We will say that the mea-
surable map T : X → X transports P to Q if Q = P ◦ T−1. supp(P ) will be
the support of P and P (·|B) the conditional distribution given the set B.

Unless otherwise stated, the random vectors will be assumed to be defined
on the same probability space (Ω, σ, ν). Convergence in distribution will be
denoted by →w and L(X) will denote the law of X.

2. Trimmings. We begin with some general definitions and properties
of trimmed probabilities defined on a separable metric space (X , β) with its
Borel σ-field.

Definition 2.1. Given 0 ≤ α ≤ 1 and P ∈ P(X , β), we say that P ∗ ∈
P(X , β), is an α-trimming of P if P ∗ � P , and dP ∗

dP ≤
1

1−α .

We will denote the set of α-trimmings of P by Rα(P ), that is

(2.1) Rα(P ) =
{
P ∗ ∈ P(X , β) : P ∗ � P, and

dP ∗

dP
≤ 1

1− α
P -a.s.

}
,

Notice that R1(P ) is just the set of probability measures absolutely con-
tinuous with respect to P .

An equivalent characterization is that P ∗ ∈ Rα(P ) if and only if P ∗ � P
and dP ∗

dP = 1
1−αf with 0 ≤ f ≤ 1. If f takes only the values 0 and 1 then it

is the indicator of a set, say A, such that P (A) ≥ 1 − α and the trimming
corresponds to considering the probability measure P (·|A). Definition 2.1
allows to reduce the weight of some regions of the measurable space without
completely removing them from the feasible set.

The following propositions collect some basic facts about trimmings.

Proposition 2.2. For any probability measure, P ∈ P(X , β),

(a) Rα1(P ) ⊂ Rα2(P ) if α1 ≤ α2.
(b) R0(P ) = {P}.
(c) Rα(P ) is a convex set.
(d) For α < 1, P ∗ ∈ Rα(P ) if and only if P ∗(A) ≤ 1

1−αP (A) for all A ∈ β.
(e) If α < 1 then Rα(P ) is closed for the topology of weak convergence in
P(X , β). If X is also complete then Rα(P ) is compact.

(f) If α < 1 then P ∗ ∈ Rα(P ) if and only if for all continuous and bounded
function h ≥ 0:

∫
hdP ∗ ≤ 1

1−α
∫
hdP.
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SIMILARITY AND TRIMMING 5

Proof. (a)-(c) are trivial and so is the only if part of (d). For the if part note
that if P ∗(A) ≤ 1

1−αP (A) for all A ∈ β, then, P ∗ � P and

P ∗(A) =
∫
A

dP ∗

dP
dP ≤

∫
A

1
1− α

dP,

for all A ∈ β and, therefore, dP ∗

dP ≤
1

1−α P -a.s. To prove the first part of
(e) it suffices to show that if {P ∗n}n is a sequence such that P ∗n ∈ Rα(P )
and P ∗n →w P ∗ then P ∗ ∈ Rα(P ). Thus, let us assume that {P ∗n}n is
such a sequence. Then, by the portmanteau Theorem we have P ∗(A) ≤
lim infn→∞ P ∗n(A) ≤ 1

1−αP (A), for every open set A. The result follows from
(d) and regularity of probability measures on metric spaces. If X is complete
then P is tight. It follows from (d) that Rα(P ) is tight and, by Prokhorov’s
Theorem (see, e.g., Theorem 1.2.10 in Araujo and Giné [2]), it is relatively
compact, hence compact.

Only the if part of (f) needs some additional justification, so let us show
that P ∗(A) ≤ 1

1−αP (A) if A is a closed set. Then, resorting to the metric d
in the space, the functions hn(x) = min(1, nd(x,A)) are positive, continuous
and bounded, and hn(x) ↓ IA(x), hence

P ∗(A) = lim
n→∞

∫
hndP

∗ ≤ lim
n→∞

1
1− α

∫
hndP =

1
1− α

P (A).

From the regularity of probability measures on separable metric spaces, the
inequality extends to every Borel set.

The next proposition guarantees that the weak limits of trimmed versions
of weakly convergent sequences are trimmed versions of the limits. Note that
the result would be false if our definition would have required exact trimming
levels (thus, making property (a) in Proposition 2.2 false).

Proposition 2.3. Let P , and {Pn}n be in P(X , β). If α < 1, {Pn}n is a
tight sequence and P ∗n ∈ Rα(Pn) for every n, then {P ∗n}n is tight.

Moreover, if Pn →w P and P ∗n →w P
∗, then P ∗ ∈ Rα(P ).

Proof. The first part is trivial from (d) in Proposition 2.2, while the second
easily follows from the portmanteau Theorem and (f) in the same proposi-
tion: For any h ≥ 0 continuous and bounded,

(2.2)
∫
hdP ∗n ≤

1
1− α

∫
hdPn for all n,

thus in the limit we have∫
hdP ∗ = lim

n→∞

∫
hdP ∗n ≤ lim

n→∞
1

1− α

∫
hdPn =

1
1− α

∫
hdP.
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6 P. C. ÁLVAREZ-ESTEBAN ET AL.

In [1] we gave an useful characterization of Rα(P ). It employs the set
Cα, the class of absolutely continuous functions h : [0, 1] → [0, 1] such that,
h(0) = 0, h(1) = 1, with derivative h′ such that 0 ≤ h′ ≤ 1

1−α . We give
such characterization in the following proposition as a matter of motivation
and comparison with the result in the general setting, contained in Propo-
sition 2.5. For this comparison remember that the quantile function of a
distribution transports the uniform law, U(0, 1), on this distribution.

Proposition 2.4. For any probability measure, P , on the real line

Rα(P ) = {P ∗ ∈ P(R, β) : P ∗(−∞, t] = h (P (−∞, t]) , h ∈ Cα}

Proposition 2.4 when applied to U(0, 1), states that the class Cα is the class
of all the distribution functions of α-trimmings of the uniform distribution.
Then, this proposition characterizes the α-trimmings of every distribution
in terms of the α-trimmings of the U(0, 1) distribution.

Proposition 2.5. Let Q ∈ P(X , β). If T transports Q to P , then

Rα(P ) =
{
P ∗ ∈ P(X , β) : P ∗ = Q∗ ◦ T−1, Q∗ ∈ Rα(Q)

}
.

Proof. If α = 1 and Q∗ is any probability absolutely continuous with respect
to Q, then P ∗ := Q∗ ◦T−1 � P , because P (B) = 0 implies Q(T−1(B)) = 0,
thus P ∗(B) = Q∗(T−1(B)) = 0. On the other hand, if P ∗ � P , we can
define w(y) = dP ∗

dP (T (y)) and Q∗(B) =
∫
B w(y)Q(dy), hence, the change of

variable formula shows for any set B in β:

Q∗ ◦ T−1(B) =
∫
T−1(B)

dP ∗

dP
(T (y))Q(dy)

=
∫
B

dP ∗

dP
(x)P (dx) = P ∗(B).

Let us assume that α < 1. If Q∗ ∈ Rα(Q), then for any B in β:

Q∗ ◦ T−1(B) =
∫
T−1(B)

dQ∗

dQ
(x)Q(dx)

≤ 1
1− α

Q
(
T−1(B)

)
=

1
1− α

P (B),

thus Q∗ ◦ T−1 ∈ Rα(P ).
If we assume that P ∗ ∈ Rα(P ), by defining Q∗ as above: Q∗(B) =∫

B
dP ∗

dP (T (y))Q(dy), we have Q∗ � Q, and, Q∗ ◦ T−1 = P ∗. Moreover, since
dP ∗

dP (x) ≤ 1
1−α a.s. (P ) and P = Q ◦ T−1, also dP ∗

dP (T (y)) ≤ 1
1−α a.s.(Q)

hence Q∗ ∈ Rα(Q).
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SIMILARITY AND TRIMMING 7

Obviously if P is atomic, every transported probability from P will also be
atomic. Thus, in every X there are probabilities that cannot be tranported
to any other probability on P(X , β). On the other hand, it is well known
(see e.g. Theorem 11.7.5 in Dudley [9]) that any law in a complete separa-
ble metric space can be obtained as the law of a random variable defined
on the space [0, 1] endowed with the Lebesgue measure. Moreover, when a
weakly convergent sequence of laws is involved, it is also possible to obtain a
sequence of random variables in that space with the given laws, converging
almost surely (see e.g. Theorem 11.7.2 in [9]). This is known as a Skorohod
or Skorohod-Dudley-Wichura a.s. representation, and our results concerning
convergences could be based on such a representation in a general frame-
work. However, the possibility of handling as representations only suitable
transports between probabilities on the same space, can be of independent
interest and we have opted by an alternative construction.

In our transport context, McCann [13] proved the existence of special
maps transporting any probability satisfying certain regularity conditions
to any other probability if X = Rk. Such maps are cyclically monotone,
characterized by the fact that they are sub-gradients of convex functions,
and the regularity condition on the probability can be described as giving
zero probability to small sets (see Villani [18]). However to avoid technical
details we will assume the more familiar (and restrictive) absolute continuity,
so that we state the following version of McCann’s result.

Theorem 2.6 (McCann). If P,Q ∈ P(Rk, β), and P � `k, then there exists
an (essentially) unique cyclically monotone map transporting P to Q.

Regarding asymptotic properties, the following theorem is a particular
case of a theorem of Heinich and Lootgieter [12], extending results in Cuesta
et al. [7] and Tuero [17]. It is included for completeness, and shows that the
particular representation obtained through Theorem 2.6 provides a partic-
ular Skorohod’s a.s. representation for weak convergence.

Theorem 2.7. Let Qn, Q, P ∈ P(Rk, β) such that Qn →w Q, and P � `k,
and let Tn (resp. T ) be cyclically monotone maps transporting P to Qn (resp.
to Q). Then Tn → T , P -a.s.

The maps T involved in Theorem 2.6 are intrinsically related to the op-
timal transportation from a probability to another when the cost function
is quadratic. Under the additional hypothesis of finite second order mo-
ment of the involved probabilities and the general case of separable Hilbert
spaces, the existence and uniqueness of a map T transporting P to Q with
minimum integrated cost was obtained in Cuesta-Albertos and Matrán [6].
Therefore, any such function T , given by Theorem 2.6, transporting P to Q
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8 P. C. ÁLVAREZ-ESTEBAN ET AL.

will be called an optimal transportation plan (o.t.p.) between P and Q or,
simply, an o.t.p. (in fact such function is an o.t.p. between any other P ′ and
P ′ ◦ T−1). A general overview of the MTP in the Probability context can
be found in the book by Rachev and Rüschendorf [14]. A more analytical
approach can be found in the book by Villani [18].

From Proposition 2.5 and Theorem 2.6 we obtain the following corollary
on the existence of universal representations of the sets of trimming of the
probabilities, on Rk, based on the set of trimmings of a given probability.

Corollary 2.8. If P0, Q ∈ P(Rk, β), and P0 � `k, then Rα(Q) coincides
with the set of all probabilities which can be written as P ∗0 ◦ T−1 where
P ∗0 ∈ Rα(P0) and T is the (essentially) unique o.t.p. between P0 and Q.

Remark 2.9. Once we have chosen a particular probability measure P0 on
Rk, P0 � `k, Corollary 2.8 allows to induce trimmed versions “similarly
tailored” according to the shape of P0: If P1, P2 are probabilities on Rk and
T1, T2 are the respective o.t.p. between P0 and P1 and between P0 and P2,
any P ∗0 ∈ Rα(P0) determine through the o.t.p.’s the trimmed probabilities
P ∗1 ∈ Rα(P1), P ∗2 ∈ Rα(P2), by the relations P ∗1 = P ∗0 ◦T−1

1 , P ∗2 = P ∗0 ◦T−1
2 .

This representation of the trimmed versions of two probabilities through
those of another permits the consideration of a new measure of similarity
between P1 and P2 according to the shape of P0 through the relation

T3(P1, P2) = min
P ∗0 ∈Rα(P0)

d(P ∗0 ◦ T−1
1 , P ∗0 ◦ T−1

2 ).

Note the role of P0 as a common pattern to measuring dissimilarities.
Trimming of two probabilities according to the same P0 will be called simi-
larly tailored. That was the kind of trimming adopted in [1] for probabilities
on the real line and the U(0,1) law as distribution of reference.

3. Best trimmed approximations. Given a metric, d, on P(X , β)
(or a convenient subset of it) and two probability measures, P and Q in
P(X , β), we can consider the problem of finding the α-trimmed version of
P which is closest to Q in d metric, namely,

Rα = Rα,d,P,Q = argmin
P ∗∈Rα(P )

d(P ∗, Q).

Compactness of Rα(P ) in the topology of weak convergence guarantees
the existence of such best trimmed approximation if d metrizes weak conver-
gence (e.g., if d is the bounded Lipschitz or the Prokhorov metric). This
best trimmed approximation needs not be unique, but convexity of the
set of trimmings ensures that the set of best approximations is a convex,
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SIMILARITY AND TRIMMING 9

compact set if d is a convex metric (meaning that d(γP + (1 − γ)Q,R) ≤
γd(P,R) + (1 − γ)d(Q,R) for all γ ∈ [0, 1]). This holds, for instance, for
the bounded Lipschitz metric. Nevertheless, the bounded Lipschitz or the
Prokhorov metric are not easily computed in general and may not be the
most interesting choice for applications.

In this section we will assume that X is a Banach space with norm ‖ · ‖
(usually X = Rk) and we focus on the Wasserstein metric W2, defined by

(3.1) W2
2 (P,Q) = inf

π∈M(P,Q)

{∫
‖x− y‖2dπ(x, y)

}
,

where M(P,Q) is the set of Borel probability measures on β × β with
marginals P and Q. It can be shown that W2 is a metric on the set F2(X )
provided X is a separable Banach space (see Bickel and Freedman [3]). With
an slight abuse of notation, given P ∈ F2(X ) and Θ,Φ ⊂ F2(X ), we will
often denote

W2(P,Θ) = inf
Q∈Θ
W2(P,Q) and W2(Θ,Φ) = inf

(P,Q)∈Θ×Φ
W2(P,Q).

The infimum in (3.1) is attained, so that to find W2
2 (P,Q) it is enough to

obtain a pair (X,Y ) of random vectors with distributions laws L(X) = P
and L(Y ) = Q and satisfying∫

‖X − Y ‖2 dν = inf
{∫
‖U − V ‖2 dν, L(U) = P, L(V ) = Q

}
Such a pair (X,Y ) is called an L2-o.t.p. for (P,Q). (L2-optimal coupling

for (P,Q) is an alternative, sometimes used, terminology).
In [6] (see also Rüschendorf and Rachev [16] and McCann [13]) it was

proved that, under continuity assumptions on the probability P , the L2-
o.t.p. (X,Y ) for (P,Q) can be represented as (X,T (X)) for some suitable
“optimal map” T . This map coincides with the (essentially unique) cycli-
cally monotone map transporting P to Q (see [13]). Since in this section we
only use the W2 distance, in the sequel we will use the term o.t.p. for the
pair (X,Y ) which will also apply to the map T. For posterior use we summa-
rize some properties in the following statement. The interested reader can
find the proofs in Cuesta-Albertos et al. [6], [8], and Tuero [17]. A different
approach, involving more analytical proofs, is summarized in [18]

Proposition 3.1. Assume that P,Q ∈ F2(Rk), and that P � `k, and let
(X,Y ) be an o.t.p. for (P,Q). Then we have:

(a) The cardinal of the support of a regular conditional distribution of Y
given X = x is one, P -a.s.

imsart-aop ver. 2006/03/07 file: Similarity_of_Probabilities.tex date: June 12, 2008



10 P. C. ÁLVAREZ-ESTEBAN ET AL.

(b) There exists a P -probability one set D and a Borel measurable cycli-
cally monotone map T : D → Rk such that Y = T (X), ν−a.s.

(c) If (X,Y1) and (X,Y2) are o.t.p.’s for (P,Q), then Y1 = Y2 ν−a.s.
(d) If T is an o.t.p. for (P,Q), then T is a.e. continuous on supp(P ).

Regarding the convexity of the W2−metric we have a nice property. It
is easy to check that the Wasserstein metric always satisfies the inequality
W2

2 (γP +(1−γ)Q,R) ≤ γW2
2 (P,R)+(1−γ)W2

2 (Q,R), γ ∈ (0, 1), but when
R� `k, property (a) in Proposition 3.1 leads to more:

Theorem 3.2. Let Pi, Qi, i = 1, 2, be probability measures in F2(Rk) such
that Pi � `k, i = 1, 2. If Q1 6= Q2 and there is not a common o.t.p. T such
that Q1 = P1 ◦ T−1 and Q2 = P2 ◦ T−1, then, for every γ in (0, 1),

W2
2 (γP1 + (1− γ)P2, γQ1 + (1− γ)Q2) < γW2

2 (P1, Q1) + (1− γ)W2
2 (P2, Q2).

Proof. Assume that fi is the density function of Pi, and let (Xi, Ti(Xi)),
i = 1, 2 be o.t.p.’s for (Pi, Qi), i = 1, 2. If Pγ := γP1 + (1 − γ)P2 and
Qγ := γQ1 + (1− γ)Q2, then fγ := γf1 + (1− γ)f2 is a density function for
Pγ . Let us define on the support of Pγ the following random function:

T (x) =

{
T1(x) with probability γf1(x)/(γf1(x) + (1− γ)f2(x))

T2(x) with probability (1− γ)f2(x)/(γf1(x) + (1− γ)f2(x))

If Xγ is any r.v. with probability law L(Xγ) = Pγ , we have:

ν[T (Xγ) ∈ A] =
∫
µ[T (Xγ) ∈ A|Xγ = x]Pγ(dx)

=
∫
IA[T1(x)]

γf1(x)
γf1(x) + (1− γ)f2(x)

Pγ(dx)

+
∫
IA[T2(x)]

(1− γ)f2(x)
γf1(x) + (1− γ)f2(x)

Pγ(dx)

= γ

∫
IA[T1(x)]f1(x)dx+ (1− γ)

∫
IA[T2(x)]f2(x)dx

= γν[T1(X1) ∈ A] + (1− γ)ν[T2(X2) ∈ A]
= γQ1(A) + (1− γ)Q2(A) = Qγ(A).

Since L(T (Xγ)) = Qγ , by the same argument, we have:

W2
2 (Pγ , Qγ) ≤

∫
‖Xγ − T (Xγ)‖2 dν

= γ

∫
‖X1 − T1(X1)‖2 dν + (1− γ)

∫
‖X2 − T2(X2)‖2 dν

= γW2
2 (P1, Q1) + (1− γ)W2

2 (P2, Q2).
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SIMILARITY AND TRIMMING 11

This shows that W2
2 (Pγ , Qγ) < γW2

2 (P1, Q1) + (1− γ)W2
2 (P2, Q2) unless

T is an o.t.p. for (Pγ , Qγ). But a) in Proposition 3.1 implies that a random
map cannot be an o.t.p, thus T should be non-random, leading to

T (x) =


T1(x) if x ∈ Supp(P1)− Supp(P2)

T1(x) (= T2(x)) if x ∈ Supp(P1) ∩ Supp(P2)

T2(x) if x ∈ Supp(P2)− Supp(P1)

This fact would contradict our hypothesis because it implies that T would
be an o.t.p. common for (P1, Q1) and (P2, Q2).

Taking P1 = P2 in Theorem 3.2, we obtain the following corollary, stating
the strict convexity of W2

2 (P, ·).

Corollary 3.3. Let P,Q1, Q2, be probability measures in F2(Rk) and as-
sume that P � `k. If Q1 6= Q2, then, for every γ in (0, 1),

W2
2 (P, γQ1 + (1− γ)Q2) < γW2

2 (P,Q1) + (1− γ)W2
2 (P,Q2).

Now let us return to the consideration of trimmed probabilities. If P has
finite second moment and P ∗ ∈ Rα(P ) then∫

‖x‖2dP ∗(x) ≤ 1
1− α

∫
‖x‖2dP (x).

This shows thatRα(P ) ⊂ F2(Rk) if P ∈ F2(Rk). Our next result is a version
of Proposition 2.2 (e) for the metric W2.

Proposition 3.4. If P ∈ F2(X ), where X is a separable Banach space, then
Rα(P ) is compact in the W2 topology.

Proof. Convergence in W2 is equivalent to weak convergence plus conver-
gence of second moments (Bickel and Freedman [3], Lemma 8.3). We saw in
the proof of Proposition 2.2 that Rα(P ) is tight. Now, given an infinite set
R ⊂ Rα(P ) we can extract a sequence {Qn}n ⊂ R that converges weakly.
Let us call Q its weak limit. Then W2(Qn, Q) → 0 iff ‖x‖2 is uniformly
Qn-integrable. Fix t > 0. Then∫
‖x‖>t

‖x‖2dQn(x) =
∫
‖x‖>t

‖x‖2dQn
dP

(x)dP (x) ≤ 1
1− α

∫
‖x‖>t

‖x‖2dP (x),

from which the uniform integrability of ‖x‖2 is immediate.
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12 P. C. ÁLVAREZ-ESTEBAN ET AL.

The last proposition implies that there always exists a best trimmed ap-
proximation in Wasserstein metric and the set of best trimmed approximants
is compact. From the convexity of the metric the set of best approximations
is convex. The following example shows that the best trimmed approxima-
tion is not always unique.

Example 3.5. Set P = 1
2δ{−1} + 1

2δ{1} and Q = δ{0}. Obviously, every
P ∗ ∈ Rα(P ) satisfies thatW2(P ∗, Q) = 1, and, then, the set of best trimmed
approximations is Rα(P ).

Of course, under the absolutely continuity hypothesis, the strict convex-
ity property in Corollary 3.3 ensures the uniqueness of the best trimmed
approximation.

Theorem 3.6. Assume that P and Q, belong to F2(Rk) and that P � `k.
Then there exists an unique Qα ∈ Rα(Q), verifying:

W2(P,Qα) =W2(P,Rα(Q)).

This uniqueness result shows that in the measure of dissimilarity T1(P,Q)
= W2(P,Rα(Q)), considered in the introduction, the minimum is attained
by just a trimmed probability if P is absolutely continuous.

Theorem 2.7 and Corollary 2.8 allow also to show that any trimmed ver-
sion of a probability in F2(Rk), which is the limit of probabilities in F2(Rk),
can be obtained as the limit of trimmed versions of these probabilities.

Lemma 3.7. Let {Qn}n and Q be in P(Rk, β), and assume that Qn →w Q.
Then, if Q∗ ∈ Rα(Q), there exist a sequence {Q∗n}n such that Q∗n ∈ Rα(Qn),
for all n, and Q∗n →w Q

∗.

Proof. Let P be any probability measure on Rk such that P � `k, and
consider the sequence {Tn}n of o.t.p.’s between P and Pn. If T is the o.t.p.
between P and Q, Theorem 2.7 implies that Tn → T , P−a.s.

By Corollary 2.8 Q∗ = P ∗ ◦ T−1 for some Q∗ ∈ Rα(Q). Define now
Q∗n = P ∗◦T−1

n , that belongs to Rα(Qn) by the already used characterization
in Corollary 2.8. Since Tn → T , P−a.s., and P ∗ � P , also Tn → T , P ∗−a.s.
Therefore Q∗n = P ∗ ◦ T−1

n →w P
∗ ◦ T−1 = Q∗.

Remark 3.8. As it was already noticed, this lemma (in conjunction with
Proposition 2.3) generalizes the main result in [5]. There the proof involved
a smart, ad hoc, construction of trimmed versions of the sample distribu-
tions. A generalization of that proof, for arbitrary convergent sequences of
probability measures, seems to be impossible.

Theorem 3.9. Let {Pn}n, P and Q be in F2(Rk), such thatW2(Pn, P )→ 0.
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SIMILARITY AND TRIMMING 13

a) If Q� `k and Pn,α := arg min
P ∗n∈Rα(Pn)

W2(P ∗n , Q), then

W2(Pn,α, Pα)→ 0, where Pα := arg min
P ∗∈Rα(P )

W2(P ∗, Q).

b) If P � `k and Qn,α ∈ Rα(Q) satisfies thatW2(Pn, Qn,α) =W2(Pn,Rα(Q)),
then

W2(Qn,α, Qα)→ 0, where Qα := arg min
Q∗∈Rα(Q)

W2(P,Q∗).

Proof. Both statements have similar proofs, so let us consider only statement
a). By Proposition 2.3 the sequence {Pn,α}n is tight and by the same argu-
ment that in the proof of Proposition 3.4, the function ‖x‖2 is uniformly inte-
grable for {Pn}n thus also for {Pn,α}n. Therefore to showW2(Pn,α, Pα)→ 0
it suffices to guarantee that if {Prn,α}n is any weakly convergent subsequence
then Prn,α →w Pα.

By Proposition 2.3, if Prn,α →w P
∗, then P ∗ ∈ Rα(P ) and, therefore

(3.2) W2(Pα, Q) ≤ W2(P ∗, Q) = limW2(Prn,α, Q) ≤ lim infW2(P ∗rn,α, Q),

for any choice P ∗rn,α ∈ Rα(Prn). Lemma 3.7 and the uniform integrability
argument allow to choose this last sequence verifying W2(P ∗rn,α, Pα) → 0,
hence W2(P ∗rn,α, Q) → W2(Pα, Q), which joined with (3.2) and with the
uniqueness of the best trimmed approximation Pα given by Theorem 3.6
shows that P ∗ = Pα.

3.1. Trimming in both probabilities. To state the uniqueness of the best
trimmed approximations we will use some additional notation and basic
results. Given v0 ∈ Rk with ‖v0‖ = 1, we will consider H0 an hyperplane
orthogonal to v0. The orthogonal projection on H0 will be denoted by π0

and for every y ∈ Rk, we will denote ry = 〈y−π0(y), v0〉. Given a measurable
set B ⊂ Rk, and z ∈ H0, we will also denote

Bz := {y ∈ B : π0(y) = z}, and zv0 := {ry : y ∈ Bz},

Given the probability distribution P , we will denote with P ◦ the marginal
distribution of P on H0 and with Pz a regular conditional distribution given
z, where z ∈ H0. This conditional probability induces in an obvious way a
probability on the real line through the isometry Iz between (Rk)z and R,
given by y → ry. This probability will be denoted λz and its distribution
(resp. quantile) function will be denoted F (x|z) (resp. qz(t). We stress on
the joint measurability of these functions in the following lemma, that we
include for future reference.
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14 P. C. ÁLVAREZ-ESTEBAN ET AL.

Lemma 3.10. The maps (x, z) → F (x|z) and (t, z) → qz(t) are jointly
measurable in their arguments.

Proof. Note that if F (x, y) is a joint distribution function on R × Rk−1

and G(z) is the marginal on Rk−1, then they are measurable (for prob-
abilities supported on finite sets it is obvious and the generalization car-
ries over through standard arguments). On the other hand, let us consider
the measures ηx and µ respectively associated to the increasing functions
F (x, ·) and G(·). As a consequence of the Differentiation Theorem for Radon
Measures (see e.g. Sections 1.6.2 and 1.7.1 in Evans and Gariepy [10]), if
we consider for any z = (z1, ..., zk−1) ∈ Rk−1, the sequence of rectangles
An(z) := {(y1, ..., yk−1) : zi − 1

n < yi ≤ zi + 1
n , i = 1, ..., k − 1}, we have the

following a.s. convergence, leading to the measurability:

F (x|z) = lim
n→∞

ηx(An(z))
µ(An(z))

.

The measurability of qz(t) follows from the key property x ≤ qz(t) if and
only if F (x|z) ≤ t.

Theorem 3.11 gives a nice property of the best trimmed approximations of
two probabilities when trimming is allowed in both probabilities. According
to this result, the best trimming functions involved in this problem are
basically indicator functions of appropriate sets with, may be, the exception
of points that remain fixed in the transport. In particular, partial trimming
is impossible on supp(P )−supp(Q).

Theorem 3.11. Let α > 0, and let P,Q ∈ P(Rk, β). Assume that P � `k

has density f w.r.t. `k. If P1 ∈ Rα(P ) and Q1 ∈ Rα(Q) verify that

W2
2 (P1, Q1) =W2

2 [Rα(P ),Rα(Q)] > 0,

and T is an o.t.p. for (P1, Q1), then T (x) = x P -a.s. on the set A := {x ∈
Rk : a1(x) ∈ (0, 1)}, where a1 := (1− α)f1 and f1 is the density function of
P1 with respect to P .

Proof. Assume, on the contrary, that P (A∩{x ∈ Rk : ‖T (x)−x‖ > 0}) > 0
and let us denote by P̂ the conditional distribution of P given this set.

From (e) in Proposition 3.1 we have that T is a.e. continuous. Let x0

be a point in the support of P̂ in which T is continuous. Then, for every
ε > 0 there exists δ > 0 such that T (B(x0, δ)) ⊂ B(T (x0), ε). Let us denote
A = B(x0, δ) ∩ A.

Let v0 = (T (x0)−x0)/‖T (x0)−x0‖ and H0 be the hyperplane orthogonal
to v0 which contains x0. With the notation at the beginning of this subsec-
tion, taking ε small enough, we can assume that m := infy∈B(T (x0),ε) ry is
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SIMILARITY AND TRIMMING 15

greater than M := supy∈B(x0,δ) ry. Therefore,

(3.3) ‖T (y)− π0[T (y)]‖ > ry, for every y ∈ A.

On the other hand, we have

(3.4) P [A] =
∫
H0

Pz(Az)P ◦(dz) =
∫
H0

λz(zv0)P ◦(dz).

Since x0 belongs to the support of P̂ , then P [A] > 0, thus

(3.5) P ◦{z ∈ H0 : λz(zv0) > 0} > 0.

Let z ∈ H0 such that λz(zv0) > 0. If y1, y2 ∈ Az satisfy that ry1 < ry2 ,
the orthogonality between (π0(y)−x0) and (y−π0(y)) for every y ∈ Rk and
(3.3) lead to

‖y1 − T (y1)‖2 = ‖T (y1)− π0[T (y1)] + π0(y1)− y1 + π0(T (y1))− π0(y1)‖2

=
(
rT (y1) − ry1

)2
+ ‖π0[T (y1)]− z‖2

>
(
rT (y1) − ry2

)2
+ ‖π0[T (y1)]− π0(y2)‖2(3.6)

= ‖y2 − T (y1)‖2.

Now, we consider the partition of the set A = A− ∪A+ given by

A− := {y ∈ A : F (ry|π0(y)) ≤ 1/2}, and
A+ := {y ∈ A : F (ry|π0(y)) > 1/2}.

From Lemma 3.10 we have that these sets are measurable. For almost every
z ∈ H0 satisfying λz(zv0) > 0 they define a value Rz, such that the sets

A−z := {y ∈ Az : ry < Rz},
z−v0 := {ry : y ∈ A−z },

A+
z := {y ∈ Az : ry > Rz},
z+
v0 := {ry : y ∈ A+

z }

verify λz[z−v0 ] = λz[z+
v0 ] > 0. Let λ−z and λ+

z be the probability λz conditioned
to the sets z−v0 and z+

v0 respectively, and let their corresponding distribution
(resp. quantile) functions be F−(x|z) and F+(x|z) (resp. q−z (t) and q+

z (t)).
Then, recalling the isometry Iz and the way to obtain o.t.p.’s in the real
line, the map Γ : A− → A+ defined by

Γ(y) = I−1
π0(y)

[
q+
π0(y)

[
F− (ry |π0(y))

]]
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16 P. C. ÁLVAREZ-ESTEBAN ET AL.

is an o.t.p. between P−z and P+
z for almost every z ∈ H0 satisfying Pz(zv0) >

0. To end the construction, let us consider the function a∗ : Rk → R defined
as follows:

a∗(y) =


a1(y) if y /∈ A

a1(y)−min{1− a1[Γ(y)], a1(y)} if y ∈ A−

a1(y) + min{1− a1(y), a1[Γ−1(y)]} if y ∈ A+.

From this point, the proof involves three steps:

Step 1. f∗ := a∗/(1 − α) is a density with respect to P that defines a
probability P ∗ ∈ Rα(P ).

Obviously a∗(Rk) ⊂ [0, 1]. On the other hand∫
Rk
a∗(y)P (dy) =

∫
Rk
a1(y)P (dy)

−
∫
A−

min {1− a1[Γ(y)], a1(y)}P (dy)

+
∫
A+

min
{

1− a1(y), a1[Γ−1(y)]
}
P (dy).(3.7)

For almost every z ∈ H0 satisfying Pz(Az) > 0, by construction, the law
of a1 under P+

z , P+
z ◦ a−1

1 , coincides with the law P−z ◦ (a1(Γ))−1, while
P+
z ◦ (a1(Γ−1))−1 = P−z ◦ a−1

1 . Therefore the last term verifies

∫
A+

min
{

1− a1(y), a1[Γ−1(y)]
}
P (dy)

=
∫
H0

(∫
A+
z

min
{

1− a1(y), a1[Γ−1(y)]
}
Pz(dy)

)
P ◦(dz)

=
∫
H0

(∫
A−z

min {1− a1(Γ(y)), a1(y)}Pz(dy)
)
P ◦(dz)

=
∫
A−

min {1− a1[Γ(y)], a1(y)}P (dy),(3.8)

what, joined to (3.7) leads to
∫
Rk a

∗(y)P (dy) =
∫
Rk a1(y)P (dy) = 1 − α,

which proves this step.

Step 2. There exists a random map, T ∗, transporting P ∗ to Q1.

Let us consider the random map T ∗ defined by T ∗(y) = T (y) on the com-
plementary of A+ and, for y ∈ A+, taking the values T (y) or T [Γ(y)]
with probabilities f1(y)/f∗(y) (= a1(y)/a∗(y)) and [f∗(y) − f1(y)]/f∗(y)
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(= [a∗(y)− a1(y)]/a∗(y)) respectively. These values are positive because, by
construction, a∗(y) > a1(y) on A+.

The argument to show that T ∗ transports P ∗ to Q1 is analogous to
that developed in Theorem 3.2, taking into account that P+

z ◦ a−1
1 = P−z ◦

(a1(Γ))−1.

Step 3. W2
2 (P1, Q1) >W2

2 (P ∗, Q1).

By construction of T ∗ and inequality (3.6), we have

W2
2 (P ∗, Q1) ≤

∫
Rk
‖y − T ∗(y)‖2P ∗(dy)

=
∫

(A+)c
‖y − T (y)‖2P ∗(dy)

+
∫
A+

(
‖y − T (y)‖2 f1(y)

f∗(y)
+ ‖y − T [Γ−1(y)]‖2 f

∗(y)− f1(y)
f∗(y)

)
f∗(y)P (dy)

<

∫
(A−∪A+)c

‖y − T (y)‖2f1(y)P (dy) +
∫
A−
‖y − T (y)‖2f∗(y)P (dy)

+
∫
A+

(
‖y − T (y)‖2f1(y) + ‖Γ−1(y)− T [Γ−1(y)]‖2(f∗(y)− f1(y))

)
P (dy).

Moreover, by construction of the map Γ, recalling the relation P+
z ◦

(a1(Γ−1))−1 = P−z ◦ (a1)−1, we obtain that∫
A+
‖Γ−1(y)− T [Γ−1(y)]‖2(f∗(y)− f1(y))P (dy)

= −
∫
A−
‖y − T (y)‖2(f∗(y)− f1(y))P (dy),

what, by construction of f∗, gives

W2
2 (P ∗, Q1) <W2

2 (P1, Q1),

contradicting the optimality of the pair (P1, Q1).

Theorem 3.12 (Uniqueness). Let α > 0 and let P,Q ∈ P(Rk, β), with P �
`k. If W2

2 [Rα(P ),Rα(Q)] > 0, then there exists a unique pair of probability
distributions P1 ∈ Rα(P ) and Q1 ∈ Rα(Q) such that

(3.9) W2
2 (P1, Q1) =W2

2 [Rα(P ),Rα(Q)].

Proof. Assume that (P1, Q1) and (P2, Q2) are two different pairs fulfilling
(3.9), and let ai := (1− α)fi, i = 1, 2, where fi is the density function of Pi
with respect to P . By using convex combinations Pδi = δiP1 +(1−δi)P2 and
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18 P. C. ÁLVAREZ-ESTEBAN ET AL.

Qδi = δiQ1 + (1 − δi)Q2, i = 1, 2, with δ1 6= δ2, from Theorem 3.2, we can
assume that P1 and P2 have common support, and that T is the common
o.t.p. for both solutions. That is, Qi = Pi ◦ T−1, for i = 1, 2. Moreover, in
the set {a1 6= a2} it is satisfied that 0 < a1(y) < 1, so that Theorem 3.11
implies that T (x) = x on this set. But then it is easy to show that there
exist sets A ⊂ {a1 = a2} and B ⊂ {a1 < a2} such that, defining

a∗(x) =


0 if x ∈ A

a2(x) if x ∈ B

a1(x) if x /∈ A ∪B,

thus, f∗ := a∗/(1 − α) is the density function of a probability, say P ∗, in
Rα(P ), Q∗ := P ∗ ◦ T−1 belongs to Rα(Q) and:

W2
2 (P ∗, Q∗) =

∫
Rk
‖x− T (x)‖2f∗(x)P (dx)

=
∫
{a1=a2}−A

‖x− T (x)‖2f1(y)P (dx)

<

∫
{a1=a2}

‖x− T (x)‖2f1(x)P (dx) =W2
2 (P1, Q1).

Once we have the uniqueness result given in Theorem 3.12, the generaliza-
tion of Theorem 3.9 to this framework of double trimming is straightforward.

Theorem 3.13. Let {Pn}n , {Qn}n, P and Q be in F2(Rk), satisfying

W2(Pn, P )→ 0, W2(Qn, Q)→ 0, and P � `k.

If P ∗n ∈ Rα(Pn) and Q∗n ∈ Rα(Qn) satisfy

W2(P ∗n , Q
∗
n) =W2(Rα(Pn),Rα(Qn)),

then W2(P ∗n , P
∗) → 0 and W2(Q∗n, Q

∗) → 0, where P ∗ ∈ Rα(P ), Q∗ ∈
Rα(Q) and W2(P ∗, Q∗) = W2(Rα(P ),Rα(Q)).

The Strong Law of Large Numbers and the Glivenko-Cantelli Theorem
assure (through the uniform integrability argument) that when {Pωn }n is
the sequence of empirical probability distributions based on a sequence
{Xn}n of independent identically distributed (i.i.d.) random vectors, with
law P ∈ F2(Rk), then W2(Pωn , P ) → 0 for a.s. ω. Therefore the following
theorem on the consistency of the trimmed approximations is immediate.
This result allows the use of Monte-Carlo simulations to approximate any
of the dissimilarity measures T1 and T2 between probabilities.
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SIMILARITY AND TRIMMING 19

Theorem 3.14 (Consistency). Let {Xn}n, {Yn}n be two sequences of i.i.d.
random vectors with L(Xn) = P , L(Yn) = Q, P,Q ∈ F2(Rk), and let Pωn ,
Qωn be the empirical distributions based on the samples {X1(ω), ...Xn(ω)}
and {Y1(ω), ...Yn(ω)}.

(a) If Q� `k and Pωn,α := arg min
P ∗∈Rα(Pωn )

W2(P ∗, Q), then

W2(Pωn,α, Pα)→ 0 ν-a.s., where Pα := arg min
P ∗∈Rα(P )

W2(P ∗, Q).

(b) If P � `k and Qωn,α ∈ Rα(Q) verifiesW2(Pωn , Q
ω
n,α) =W2(Pωn ,Rα(Q)),

then

W2(Qωn,α, Qα)→ 0 ν-a.s., where Qα := arg min
Q∗∈Rα(Q)

W2(P,Q∗).

(c) If P or Q� `k and Pωn,α ∈ Rα(Pωn ) and Qωn,α ∈ Rα(Q) satisfy

W2(Pωn,α, Q
ω
n,α) = W2(Rα(Pωn ),Rα(Q)),

then W2(Pωn,α, Pα)→ 0 and W2(Qωn,α, Qα)→ 0 ν-a.s., where

(Pα, Qα) := arg min{W2(P ∗, Q∗) : P ∗ ∈ Rα(P ), Q∗ ∈ Rα(Q)}.

(d) If P or Q� `k and Pωn,α ∈ Rα(Pωn ) and Qωn,α ∈ Rα(Qωn) satisfy

W2(Pωn,α, Q
ω
n,α) =W2(Rα(Pωn ),Rα(Qωn)),

then W2(Pωn,α, Pα)→ 0 and W2(Qωn,α, Qα)→ 0 ν-a.s., where

(Pα, Qα) := arg min{W2(P ∗, Q∗) : P ∗ ∈ Rα(P ), Q∗ ∈ Rα(Q)}.

4. Example. To end the paper, we present in Figure 4 a display show-
ing different levels of similarity between a standard normal distribution, P ,
and a mixture of normal distributions with variance 1 and means 0 and 4,
and respective weights 0.8 and 0.2, Q = 0.8N(0, 1) + 0.2N(4, 1).

From left to right, the columns in the display correspond to respective
trimming levels 0, 0.1, 0.15 and 0.2. In descending order, the rows show the
results for the best trimming according to T2(P,Q), T1(P,Q), T1(Q,P ) and
T3(P,Q), that is respectively when trimming is allowed in both probabilities,
only in Q, only in P , and in both probabilities but with the similarly tailored
trimming of Remark 2.9.

A few comments on the similarity shown in these figures are in order.
Taking into account that Q can be considered the result of adding a 20% of
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Fig 1. Densities arising from the minimization of the measures of dissimilarity T2(P,Q),
T1(P,Q), T1(Q,P ) and T3(P,Q) (top to bottom) with different trimming levels (α =
0, 0.1, 0.15 and 0.2, left to right). P is a N(0,1) distribution and Q is the mixture 0.8
N(0,1) + 0.2 N(4,1). The figures show the densities of the probabilities obtained as best
trimmed approximations of P (blue) and Q (red).

contamination to P, it is obvious that T1(P,Q) and T2(P,Q) should be 0 for
every α ≥ 0.2. This is what happens in the first two rows. In fact, it can be
checked that T1(P,Q) > 0 for every α < 0.2. However, T2 allows to move P
a bit closer to Q and then, T2(P,Q) = 0 even at level 0.1909.

On the other hand, it is impossible to obtain Q by simply trimming P .
Thus, T1(Q,P ) > 0 for every trimming level α. The same happens with
T3(P,Q) because the differences between P and Q can not be eliminated
through a similarly tailored trimming.

It is also worth to pay some attention to the differences in the o.t.p.’s
associated to the considered trimmings. The small bump in the density of
Q is responsible for most of the dissimilarity between P and Q. Optimal
trimming tries to decrease the Q density on the right tail whenever it is
possible, as it is the case in the first two rows. In such cases there is true
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trimming (a1 < 1 in Theorem 3.11) and there is no mass transportation
in this range. A secondary source of dissimilarity comes from the different
scale between the P density and the main bump in the density of Q. When
trimming is allowed in P , the P density is decreased on the left tail and
there is no mass transportation on the left, as in the first and third rows
in the display. Note that in the first row, true mass transportation happens
only in the central region. On the opposite, in the fourth row the trimming
function is always zero or one and there is true mass transportation on the
non-trimmed range (the o.t.p. is a.s. different from the identity).

This example stresses, in a descriptive way, the differences between the
measures of dissimilarity considered through the paper. In particular intu-
ition mostly agrees with the use of T2, while the right use of T3 should involve
some extra caution in practice.
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