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Power Spectrum Fitting For Image Restoration
José Luis Crespo

Abstract—In this work we use some well known statistic
properties of natural images to present a simple but useful way
of restoring degraded single images. It is based on the Fourier
spectrum property of decaying exponentially for increasing
frequencies.

The main idea is to leave the phase information untouched and
to adapt the amplitudes so they fit a decaying law. This approach
may seem too naive but it is capable of quite a decent restoration
for images that usually are tackled by techniques such as blind
deconvolution, often computationally expensive. It only delivers
upon the user to choose a linear or parabolic fit in a log-log
diagram.

Index Terms—Image restoration, Image enhancement

I. INTRODUCTION

IMAGE restoration is an important topic in research because
of the need of improving the quality of blurred images. This

problem has been reviewed in [1], [2].
Although many advances have been made, there are still

occasions where degraded images do not get restored properly.
Even when state of the art methods can actually give a
decent result, some tweaking of parameters is required, and,
since the top performing methods are usually computationally
demanding, getting a final good restoration takes a lot of time.

In this work we show a computationally cheap way of
achieving quite a good result, that works with many commonly
found degraded images. Sometimes this result is not good
enough and then the computationally demanding methods
should be taken.

In section II we briefly review the topics that are involved.
Then in section III we present our method. In section IV we
show some results, and the possibilities for further research
are discussed in section V.

II. PREVIOUS RESEARCH

A. Image restoration

Image degradation is a common problem that may be caused
by noise, focusing defects or perturbations to the imaging
device in the time it is taking the picture. We will briefly
describe here the problem and the proposed solutions. See [3]
for in-depth details, and [4] for an updated record.

The field of image restoration is dominated by the Fourier
filtering approach, where a suitable filter is applied to the
image in order to obtain the restored version. In this approach,
image degradation in the Fourier domain is modeled as

g = Hf + a

where f corresponds to the original image, H to the perturba-
tion, a corresponds to noise and g to the final distorted image.
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If the exact nature of damage in the image is known, an
inverse filtering approach might look sufficient, but, unfortu-
nately, the ever present noise makes this very unstable, and
the results are often quite bad. Then a regularized approach
is needed. Some common ways for stable deconvolution are
Wiener, Lucy-Richardson and blind deconvolution.

Wiener filtering [5] corresponds to a least squares approach
that uses information about the PSF where noise amplification
is prevented by adjusting the signal-to-noise ratio. See, for
example, [6] for details.

Lucy-Richardson algorithm [7] iterates maximizing the like-
lihood that the resulting image, when convolved with the PSF
(which is given) is an instance of the blurred image, assuming
Poisson noise statistics. It is usually less affected by noise than
the Wiener deconvolution. See [3] for details.

In both previous algorithms the degradation’s PSF is known.
When this is not the case, the user should start with an
estimating effort. The other option is the blind deconvolution
algorithm [8], where the PSF is found together with the
restored image. Here the user is expected to have only an
estimate of the PSF size. This is critical, and one of the recent
proposals is [9] Improvements have been made for particular
degradation models, such as [10].

There are also deblurring algorithms that are not Fourier
based but wavelet-based [11]–[14]

A recent advanced deblurring algorithm can be reviewed in
[15]

B. Natural image spectra statistics

We are going to focus on the 1D Fourier spectrum statistics.
Other statistics of natural images can be reviewed in [16]

If we take the discrete Fourier transform of an image, we
will have a function with amplitude and phase:

F [I(fx, fy)] = A(fx, fy)ejΦ(fx,fy)

If we perform the rotational average of the amplitude within
the two dimensional frequency plane we have a 1-D spectral
power signal. This signal has been known for long to follow a
power law in natural images. It was first observed by television
engineers in the 50’s [17], [18] and it has been revisited many
times [19]–[23]. When considering image ensembles (let’s
remark that: ensembles) it often follows a decaying law that
can be expressed as

log(A) = −a log(f) + b

or
A(f) =

As

fa

where a happens to be near 2 in many image ensembles
(but not all, as it has also been studied). This a exponent is
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sometimes used to describe the textures of images [24], [25]:
higher values correspond to coarse textures and smaller values
to finer grain ones. It also varies with different types of scenes
[26]–[29] Some empirically found averages are:

[26]
Man-made vegetation road sky

2.3 1.8 1.4 1

[29]
Forest close-up meadow distant meadow

2.15 2.23 2.4

In [27] the a exponent is shown for different types of scenes,
along with its orientation change.

It can be seen that different authors have found different
slopes for similar categories, such as vegetation and forest.

Considering individual images, as it is our intent, we can see
that in [30] departures of the straight line fit are reported. Some
examples show how, for instance, images that are packed with
small objects (no large objects at all, like a picture of a grass
field) tend to be convex. In [31] it was already observed that
individual images have different slopes and even curvature.

Considering the orientation influence, [23] showed that
taking into account the orientation variation of the power
spectra did not produce significant gains. [32] showed that, in
different types of scenes, the type of anisotropy was different,
but there is no clear law to fit. [28] show different shapes for
different scenes, though the variation is quite large and it has
not been pursued here.

In [22], [33] the reason behind that law was attributed to
the nature of usual images, that are formed of objects with
different sizes that overlap located at different distances. [30]
studied a wide collection of images and concluded that it
was only because of the usual type of imagery in which
we are interested, and showed how different type of images
have different decaying properties. The power law can be a
manifestation of the fractal or scale invariant nature of images.
There has been debate [34], [35] on the range of frequencies
where this law was applicable, and whether the cause were
edges or object distribution. Probably, it is not valid for very
low frequencies.

Nevertheless, we won’t be concerned with these limitations,
since we will restrict ourselves to images acquired with
commercial cameras, where the lowest frequencies are not that
low, and we will let the user choose the starting frequency for
the model to be valid.

This law has already been applied for categorization and
classification [28] It has also been used model the visual
processing system [21], [36], [37] and to detect specific types
of blurring in images [38], also in [39], where it is shown how
blurred spots tend to have a lower a exponent, that is, sharper
decrease.

There have been applications of these power law to restora-
tion: [40] has some mechanics which are similar to the ones
that we will produce, but they basically take the square root of
the amplitude. [41] force the image to follow a power-law, but
they impose a specific degradation model. As we will show
below, even without a degradation model we can go a great
deal to restoration. In [11] we can see an approach similar to
ours, but they only use the linear log-log fit, they impose a

parametric PSF and finally they take these parameters to feed a
deconvolution algorithm. In contrast, here we do not presume
any specific PSF, we admit curvature in the log-log fit, and
we directly force the image to follow a law. Note that [11]’s
images are satellite images whereas we are dealing here with
standard photographs.

III. MODEL FORMULATION AND IMPLEMENTATION

We notate the image by I(x, y) and its Fourier transform
by F (wx, wy), that is,

F (wx, wy) = F (I(x, y)) = A(wx, wy)eiΦ(wx,wy)

Then, let’s set the phase information apart and let’s take
the amplitude A(wx, wy) Now, if we shift the frequency
coordinates to polar form we have A(wr, wθ). In order to get
the average across the angular component we would do:

A(wr) =
∮
A(wr, wθ)dθ∮

dθ

In the discrete case we sum through angles.
If we plot this function in a log-log diagram, we can see

whether it fits the expected law.
Some random examples drawn from the 15 scene dataset

[27], [42], [43] are shown in fig. 1, together with their
1D radial spectrum. These are not degraded, so they are
examples of real radial spectra. We have used the [44] Matlab
implementation to obtain these plots.

As it can be seen, individual slopes may vary, and the
high frequency half of the log-log plot (roughly 90% of
the equally sized frequency bins) are not always so linear.
Sometimes a straight line seem to be a good fit, but sometimes
a more concave shape is shown. Convex shapes are quite
infrequent for the type of images commonly seen in everyday
photographs.

We will start assuming we are working with common natural
images. They may have the near -2 constant slope factor or
maybe another factor or maybe a parabolic decay.

The so well known linear fit in the log-log diagram corre-
sponds to the classic power-law:

A(wr) = Γwαr

If, instead, we use a parabolic fit, the it turns into:

A(wr) = Γwα+β logwr
r

The algorithm for deblurring the image is presented in fig
2

What we propose is to take the radial histogram of a
degraded picture and change it so it matches one of the two
previous fits. This is not an automatic method where the
computer takes all decisions. It is an interactive method, but
this is not a serious drawback because of two reasons:

• It is easy to provide a reasonable choice
• The result is quickly computed, so a new histogram shape

can be tried if necessary
We will interactively define a desired shape for the radial
histogram (steps 7 to 10). This will lead to a given gain for
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Fig. 1. Examples of photographs and their 1D spectrum

Require: user to choose degree of fit (1 for linear, 2 for parabollic)
1: if it is a color image then
2: Take the Value channel out of the HSV representation
3: end if
4: Produce the Discrete Fourier Transform of the image
5: Average rotationally the amplitude of the DFT for every radial bin, using 100 bins
6: repeat
7: plot the log-log plot of averaged amplitude versus frequency
8: let the user choose a number of points for the fit (at least two more than the degree of the fit). They are not necessarily

part of the amplitude line.
9: fit a straight line or a parabolla to the points the user provided (restricted between the interval of frequencies spanned

by the user-provided points)
10: plot the resulting fit, on top of the original amplitude versus frequency plot
11: until user is satisfied with the plot
12: Define gain as the ratio between the fit and the original amplitude
13: if original image was in color then
14: Apply gain to the amplitudes of DFT of each of the RGB channels (within the frequency span defined by the user)
15: Deblur each channel by taking the inverse DFT of the new amplitude and the original phase
16: else
17: Apply gain to the original amplitude (within the frequency span defined by the user)
18: Deblur the image by taking the inverse DFT of the new amplitude and the original phase
19: end if
20: Make sure the result is valid by discarding any imaginary component anc clipping the results to the allowed image range

Fig. 2. Proposed deblurring algorithm

each frequency band (step 12), defining an ”enhancing” or
”restoration” filter that we will apply to the image (steps 13
to 20). The way it is built implies that:

• The restoration filter does not affect phase. The original
phase information is left as is.

• Since we take the filter from a 1D spectrum, it will be
radially symmetric

• We get directly a restoration filter, not a PSF of the
degradation

These may be considered serious limitations, but our results

show that the approach is quite robust and effective, though it
is not perfect, and cannot cope with a serious departure of the
first two assumptions. That is we need that phase information
is mostly valid, and the perturbation is not too far from radial
symmetry. Most failures of our method correspond to synthetic
examples, where theoretical PSF’s are used. Apparently, real
life PSF’s are not so far from the symmetric case.

Summaryzing our method: we produce a desired histogram
by taking a first or second order fit to the points that the user
enters in the log-log plot and, once the user accepts the shape,
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Fig. 3. Results with some sample images. Left column are original images, center column images restored with [15] method and right column are restored
with proposed method. Last row is an example taken from [15] and the rest are degraded images taken from a personal collection, taken with a simple digital
camera.



5

we find the needed gain in each affected frequency band. For
color images we calculate this in the value channel of the HSV
representation of the image, and the same gain is then applied
to all three RGB channels. All gain operations are done in the
frequency domain, and the inverse Fourier transform is taken
to recover the original image, which is clipped if some value
fails to be inside the allowed range.

IV. RESULTS

We have implemented the method as a Matlab function and
have measured the time it takes to deblur images. In figure
3 we can see the results of applying the above mentioned
procedure to some sample pictures For comparison purposes,
we present also the results of applying a state of the art blind
deconvolution restoring algorithm [15]. Note that this is a
compiled executable program, not a Matlab function.

Though blind deconvolution is intended to be a fully
automatic, no user-tweaking algorithm, some tweaking is
permitted and sometimes necessary or at least recommended.
Each method has some parameters you can play with. In
the particular method of [15] you need an estimation of the
PSF size (common to all blind deconvolution techniques)
and the noise level (in some other techniques that follow a
bayesian framework you may need to give some information
characterizing the image prior). In these experiments, for the
initial PSF size we have used a simple visual estimation, and
we have left the noise level at its default value. Since this
method needs large memory for the images, we have reduced
sizes if needed, to about 300 Kpx

Considering the computation time, the non interactive part
of our method is solved in Matlab, in the computer we used,
most times between 1 and 2 seconds. The [15] method uses a
compiled program that solved the problem in around 2 minutes
in the same computer, with some difficult cases (large PSF
size) requiring even 30 minutes.

Since these are actual degraded pictures, in most cases there
is no ground truth available. This also means that the actual
perturbation may be of any kind, including the nonlinear case.
Other than the visual appearance, we made an attempt of
objective image quality assessment, by using the IQM measure
[45] of the images. On the average the [15] method gave an
improvement with a factor of more than 2 in the first attempt.
The proposed method gave an improvement with a factor of
more than 3 with most of the images in a single attempt and
with one out of each four, in two attempts.

As it can be seen, this method produces results that are
comparable to more sophisticated methods, with much less
computational effort.

Next, we show some sensitivity results. studying how the
outcome can vary with the following choices:

• lowest and highest frequency to filter
• vertical displacement in the log-log plot
• higher or lower exponents of the power-law to fit
We use the 2260 (third row in Fig. 3) image as an example

for these tests. In figure Fig. 4 we see the fit and the
corresponding result

As can be seen, all choices improve the original image. No
big differences are produced. The choice of highest frequency

to filter doesn’t make much of a difference, provided you don’t
get way too short. The most influential factor seems to be the
lowest frequency to filter. For the particular image shown in
the figure, a parabollic fit makes a better improvement. Hence,
a recommended approach for the user would be to try first a
linear and a parabollic fit in a sensible frequency interval, this
means roughly the rightmost half in the log-log plot. Then,
choose the best one and try varying the lowest frequency. Good
hints for this are the bending points that may show up in the
original amplitude plot; great accuracy is not required. All this
process can easily be performed in a minute.

V. CONCLUSIONS

A simple but effective restoration method has been pro-
posed. It is well suited to common real images with common
real degradations. It works pretty well with very little previous
knowledge.

An interesting further research will be the fitting of an image
to the closest point in the natural image manifold.

It remains an open question whether there is a way to
improve quality by taking into account different directions.
If we don’t sum radially for all frequencies, but retain the
direction, we may be able to apply selective filtering for
different directions. In a preliminary attempt we have found
no advantages, because data are more sensitive to noise, since
there is no a summing operation, which has the side effect of
canceling some noise. It would be interesting to follow [28],
to fit orientations and overall size, according to the methods
described in [23].
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