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Abstract In this survey we describe results concerning topological properties of polar 
and jacobian curves of foliations. We also describe how invariants defined from polar 
or jacobian curves can be used to characterize generalized curve foliations or second 
type ones.

Key words: singular foliation, polar curve, jacobian curve, Camacho-Sad index, 
equisingularity, ramification, Newton polygon, analytic invariant

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Generalized curve foliations and logarithmic models . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Polar and jacobian intersection multiplicities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Equisingularity data of a plane curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Topological properties of polar curves of foliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6 Topological properties of jacobian curves of foliations . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.7 Analytic invariants of irreducible plane curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Nuria Corral
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1.1 Introduction

Polar curves of a plane curve have been widely studied in order to better understand
singularities of plane curves. Given a curve 𝐶 defined by 𝑓 (𝑥, 𝑦) = 0 with 𝑓 ∈
C{𝑥, 𝑦} and a direction [𝑎 : 𝑏] ∈ P1

C, the polar curve P[𝑎:𝑏] is the curve defined by
the equation

𝑎
𝜕 𝑓

𝜕𝑥
+ 𝑏 𝜕 𝑓

𝜕𝑦
= 0.

Thus polar curves are the elements of the pencil of curves defined by 𝜕 𝑓

𝜕𝑥
and 𝜕 𝑓

𝜕𝑦

(see [18, section 2.7] for more details about pencils of curves). All the curves P[𝑎:𝑏]
are equisingular except for a finite number of directions (see Proposition 8.5.1 and
Remark 6.2.2 of [18]). Any of these equisingular polar curves P = P𝐶 is called a
generic polar curve of𝐶. It is well known that the topological type of a generic polar
curve is not determined by the topological type of the curve 𝐶 as showed by Pham
([68]): consider 𝑓𝜆 (𝑥, 𝑦) = 𝑦3 − 𝑥11 + 𝜆𝑥8𝑦. All the curves 𝐶𝜆 defined by 𝑓𝜆 = 0
are equisingular, but the generic polar curve of 𝐶0 is not equisingular to the generic
polar curve of 𝐶𝜆 with 𝜆 ≠ 0. In particular, this example shows that the topological
type of a generic polar curve of a plane curve depends on the analytic type of the
curve.

However, there are some properties of the topological type of a generic polar curve
that can be described from the equisingularity data of the curve 𝐶. These type of
results are known as decomposition theorems of a generic polar curve (see for instance
[65, 55, 40]). When 𝐶 is an irreducible curve with Puiseux pairs {(𝑚𝑖 , 𝑛𝑖)}𝑔𝑖=1, the
decomposition theorem proved by M. Merle in [65] says that a generic polar curve
P of 𝐶 has a decomposition

P = ∪𝑔
𝑖=1P

𝑖

such that the multiplicity at the origin of each curve P𝑖 is given by 𝑚0 (P𝑖) =

𝑛1 · · · 𝑛𝑖−1 (𝑛𝑖 − 1) and, for any irreducible component 𝛾 of P𝑖 , the coincidence
C(𝛾, 𝐶) of 𝛾 with 𝐶 is equal to C(𝛾, 𝐶) = 𝛽𝑖/𝛽0 where {𝛽0, 𝛽1, . . . , 𝛽𝑔} are
the characteristic exponents of 𝐶. In particular, the result of Merle implies that
the topological type of the curve 𝐶 can be recovered from the set of polar quo-
tients Q(𝐶) =

{
(𝛾,𝐶 )0
𝑚0 (𝛾) : 𝛾 irreducible component of P

}
together with the multi-

plicity 𝑚0 (P) since we have that 𝑚0 (P) = 𝑚0 (𝐶) − 1 = 𝛽0 − 1 and Q(𝐶) ={
𝛽1,

𝛽2
𝑛1
, . . . ,

𝛽𝑔

𝑛1 · · ·𝑛𝑔−1

}
where {𝛽0, 𝛽1, . . . , 𝛽𝑔} is the minimal system of generators

of the semigroup Γ𝐶 of 𝐶. Polar quotients introduced by B. Teissier in [75] are also
related to the 𝐶0-sufficiency degree Suff( 𝑓 ) of the plane curve 𝑓 = 0. Recall that
Suff( 𝑓 ) is the smallest integer 𝑟 such that the curve defined by the jet of order 𝑟,
𝑗𝑟 ( 𝑓 ), has the same topological type as the curve 𝑓 = 0 (see [75, 76], [58, Sections
7, 8] or [18, Chapter 7] for more details). These results show the interest of studying
polar curves to recover information about the curve 𝐶.

Polar curves can be thought as a particular case of the jacobian curve of a pair of
curves when one of them is non-singular. If we consider 𝑔(𝑥, 𝑦) = 𝑎𝑦 − 𝑏𝑥, we have
that the polar curve P[𝑎:𝑏] is given by the jacobian determinant
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𝜕𝑦
𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦

����� = 0.

More precisely, the jacobian curve of two germs of holomorphic functions 𝑓 , 𝑔 ∈
C{𝑥, 𝑦} is the curve given by 𝐽 ( 𝑓 , 𝑔) = 0 where 𝐽 ( 𝑓 , 𝑔) = 𝑓𝑥𝑔𝑦 − 𝑓𝑦𝑔𝑥 . Jacobian
curves of two plane curves 𝑓 = 0 and 𝑔 = 0 have been also considered to describe
properties of the curves 𝑓 = 0 and 𝑔 = 0 (see [63, 56, 57, 19]) since the analytic
type of the jacobian curve is an analytic invariant of the curves 𝑓 = 0 and 𝑔 = 0 (see
[64]). Moreover, the topological type of the jacobian curve is not an invariant of the
topological type of the pair of curves 𝑓 = 0 and 𝑔 = 0.

Note that this jacobian curve can be defined as the contact curve 𝑑𝑓 ∧ 𝑑𝑔 = 0
between the hamiltonian foliations 𝑑𝑓 = 0 and 𝑑𝑔 = 0. Hence, we can consider the
more general case of two germs of foliations F and G defined by 1-forms 𝜔 = 0
and 𝜂 = 0 in (C2, 0) and regard its contact curve, which is called the jacobian curve
JF,G of F and G, given by

𝜔 ∧ 𝜂 = 0.

A particular case of jacobian curves of foliations are polar curves of foliations:
when the foliation G is non-singular, the jacobian curve JF,G is a polar curve
of the foliation F . We have that polar curves of a foliation F are elements of
the linear system defined by the ideal IF generated by the coefficients of the 1-
form 𝜔. If 𝜈 = 𝜈0 (F ) is the multiplicity of F and 𝔪 is the maximal ideal of
C{𝑥, 𝑦}, the curves given by the elements of IF ∖ 𝔪𝜈+1 are polar curves of F ,
and there is a Zariski open set of IF ∖ 𝔪𝜈+1 such that all the curves defined by
elements of this open set are equisingular. Moreover, if 𝜔 = 𝐴(𝑥, 𝑦)𝑑𝑥 + 𝐵(𝑥, 𝑦)𝑑𝑦
is a 1-form defining F , a generic element of the curves of the pencil of curves
{𝑎𝐴(𝑥, 𝑦) + 𝑏𝐵(𝑥, 𝑦) = 0 : [𝑎 : 𝑏] ∈ P1

C} is equisingular to a generic element of
the linear system defined by the ideal IF . Hence, if we want to describe topological
properties of generic polar curves, it is enough to consider a generic element of the
above pencil of curves. We denote by PF one of these curves and we call it a generic
polar curve of the foliation F . Note that polar curves of plane curves can be thought
as polar curves of hamiltonian foliations.

Hence, we will consider foliations with a fixed invariant curve (separatrix) 𝐶
and study the properties of the generic polar curves of these foliations. Note that
generic polar curves of such foliations are not equisingular in general: consider for
example the hamiltonian foliation G given by 𝑑𝑓 = 0 and the foliation F given
by 𝜔 = 11(−𝑥10 + 𝑦2𝑥6)𝑑𝑥 + 5(𝑦4 − 𝑥7𝑦)𝑑𝑦 with 𝑓 = 𝑦5 − 𝑥11 (see [28] and
Example 1.5.11). By the results about polar curves of plane curves, we know that
there is a decomposition theorem for a generic polar curve of hamiltonian foliations.
The description of this decomposition is given in terms of the topological data of the
curve 𝐶; in particular, we can state it in terms of the dual graph of the reduction of
singularities of 𝐶. Hence, we wonder if there is also a similar statement for generic
polar curves of any foliation with𝐶 as curve of separatrices. A first restriction will be
to consider non dicritical foliations since it is clear that, if we consider the dicritical
foliations F𝑛,𝑚 given by 𝑚𝑦𝑑𝑥 − 𝑛𝑥𝑑𝑦 = 0 with 𝑛, 𝑚 ∈ N, gcd(𝑛, 𝑚) = 1, the
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topology of a generic polar curve 𝑎𝑚𝑦 − 𝑏𝑚𝑥 = 0 does not depend on the topology
of the curves 𝑦𝑛 − 𝑐𝑥𝑚 = 0 which are invariant curves of F𝑛,𝑚. A second restriction
will be to consider generalized curve foliations since in this case the reduction
of singularities of F coincides with the minimal reduction of singularities of the
curve 𝐶. If F is a non-dicritical generalized curve foliation with only an irreducible
separatrix, P. Rouillé [71, 70] proved that the decomposition theorem given by Merle
for hamiltonian foliations also holds for a generic polar curve of F ; he also defined
polar quotients for the foliation F and showed that they are topological invariants of
the foliation.

However, if we have a foliation whose curve of separatrices is not irreducible,
we realize that, in general, for non-dicritical generalized curves, we can not give a
decomposition as in the case of hamiltonian foliations [24]. Consider the foliation
given by𝜔 = (𝑦2+𝑥2𝑦+𝑥4)𝑑𝑥+ (𝑦2+𝑥3)𝑑𝑦. This foliation has three non-singular ir-
reducible separatrices𝐶1, 𝐶2 and𝐶3. The dual graph of the reduction of singularities
𝜋 of 𝐶 is

The decomposition theorem in this situation implies that 𝜋 must be also a reduction
of singularities of the generic polar curve (see [28]) but this is not true for the curve
𝑎(𝑦2 + 𝑥2𝑦 + 𝑥4) + 𝑏(𝑦2 + 𝑥3) = 0.

In the case of foliations, the Camacho-Sad indices of the foliation play a deter-
minant role in the topological behaviour of generic polar curves. The introduction
of logarithmic models of generalized curve foliations [24, 26] allow us to codify
the information which comes from the Camacho-Sad indices. We will show that
there is a decomposition theorem for a generic polar curve of a singular foliation
provided that the foliation is a non-dicritical generalized curve and avoids certain
Camacho-Sad indices in its reduction of singularities. These results will be ex-
plained in Section 1.5. Properties of jacobian curves of foliations will be described
in Section 1.6. Moreover, the point of view of foliations allows to recover the results
for plane curves considering hamiltonian foliations which are a particular case of
logarithmic foliations.

The study of polar curves of foliations have also been useful to study properties of
foliations. In [14] a characterization of second type foliations and generalized curve
foliations are given in terms of polar curves and also a description of the GSV-index.
Section 1.3 is devoted to describe these properties and we also include some new
results concerning jacobian curves. Recently, the jacobian curve of two foliations has
been used in the study of the Zariski invariant of plane curves which are separatrices
corresponding to a dicritical component of one of the foliations (see [44]).

The aim of this survey is to describe the results obtained by the author about polar
and jacobian curves of foliations, explaining the main tools used in their proofs as
well as relate the above statements with the ones known for polar curves or jacobian
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curves of plane curves. In the last section we review some invariants concerning
analytic classification of irreducible plane curves relating them with the results of
previous sections.

Acknowledgements. The author is supported by the Spanish research project
PID2019-105621GB-I00.
The author thanks the referee for his carefully reading of the paper and for his
contribution to a good presentation of it.

1.2 Generalized curve foliations and logarithmic models

In this section we will introduce some basic notions concerning the theory of germs
of singular holomorphic foliations in (C2, 0). The reader can refer for instance to
[10, 60, 23, 61] for a more detailed introduction to the subject.

A germ of singular holomorphic foliation F in (C2, 0) is defined by𝜔 = 0, where
𝜔 = 𝐴(𝑥, 𝑦)𝑑𝑥 + 𝐵(𝑥, 𝑦)𝑑𝑦 is a 1-form and we will assume that gcd(𝐴, 𝐵) = 1. The
origin is a singular point if 𝐴(0) = 𝐵(0) = 0. The algebraic multiplicity 𝜈0 (F ) is the
minimum of the orders 𝜈0 (𝐴), 𝜈0 (𝐵) at the origin of the coefficients of the 1-form
𝜔. Hence, the origin is a singular point of F if 𝜈0 (F ) ≥ 1.

We say that the origin is a simple singularity of F if there are local coordinates
(𝑥, 𝑦) in (C2, 0) such that F is defined by a 1-form

𝑦(𝜆 + 𝑎(𝑥, 𝑦))𝑑𝑥 − 𝑥(𝜇 + 𝑏(𝑥, 𝑦))𝑑𝑦 = 0 (1.1)

with 𝑎(0) = 𝑏(0) = 0, 𝜇 ≠ 0 and 𝜆/𝜇 ∉ Q>0. If 𝜆 = 0, the singularity is called a
saddle-node.

Consider the blow-up of the origin 𝜋1 : 𝑋1 → (C2, 0) and denote 𝐸1 = 𝜋−1
1 (0) the

exceptional divisor. The blow-up 𝜋1 is non-dicritical if 𝐸1 is invariant by the strict
transform 𝜋∗1F of F ; otherwise, the exceptional divisor 𝐸1 is generically transversal
to 𝜋∗1F and we say that the blow-up 𝜋1 is dicritical. We also say that the divisor 𝐸1
is dicritical or non-dicritical according to 𝜋1 being or not dicritical.

We say that a morphism 𝜋 : 𝑋 → (C2, 0), composition of a finite number of
punctual blow-ups, is a reduction of singularities of F if the strict transform 𝜋∗F of
F verifies that

• each irreducible component of the exceptional divisor 𝜋−1 (0) is either invariant
by 𝜋∗F or transversal to 𝜋∗F ;

• all the singular points of 𝜋∗F are simple and do not belong to a dicritical com-
ponent of the exceptional divisor.

The existence of a reduction of singularities for foliations in (C2, 0) is a consequence
of Seidenberg’s Desingularization Theorem [73]. Moreover, there is a minimal mor-
phism 𝜋 such that any other reduction of singularities of F factorizes through the
minimal one. If all the irreducible components of the exceptional divisor are invari-
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ant by 𝜋∗F we say that the foliation F is non-dicritical; otherwise, F is called a
dicritical foliation.

A separatrix 𝐶 of F is a germ of invariant irreducible curve, that is, if 𝛾 :
(C, 0) → (C2, 0) is a parametrization of 𝐶, then 𝛾∗𝜔 ≡ 0 where 𝜔 is a 1-form
defining F . If the curve 𝐶 is given by 𝑓 (𝑥, 𝑦) = 0, with 𝑓 ∈ C{𝑥, 𝑦}, we have also
that 𝐶 is a separatrix of F if and only if

𝜔 ∧ 𝑑𝑓 = 𝑓 ℎ 𝑑𝑥 ∧ 𝑑𝑦 (1.2)

where ℎ ∈ C{𝑥, 𝑦}. We denote Sep(F ) the set of separatrices of F . When F is a
non-dicritical foliation, we will denote by 𝑆F the curve of separatrices of F , that is,
𝑆F =

⋃
𝑆∈Sep(F) 𝑆.

Observe that, if we have a foliation with a simple singularity given by the expres-
sion in (1.1), with 𝜆𝜇 ≠ 0, then 𝑥 = 0 and 𝑦 = 0 are separatrices of the foliation. The
notion of separatrix can be extended considering also formal curves: in Section 1.3
we will also consider formal separatrices and 𝑆F may be a formal curve. If a foliation
has a saddle-node singularity, it has a convergent separatrix (called strong) and a
formal separatrix (called weak) that can be divergent.

In [9], C. Camacho and P. Sad proved the existence of at least one (convergent)
separatrix for any foliation in (C2, 0). Note that, in dimension two, a foliation F is
dicritical if and only if F has infinitely many separatrices.

We have that the minimal reduction 𝜋 of singularities of a foliation F gives
a reduction of singularities of the curve of separatrices of F but in general the
converse is not true. In [8], C. Camacho, A. Lins Neto and P. Sad introduce the
notion of generalized curve foliations, a class of foliations for which the minimal
reduction of singularities of the curve of separatrices gives also the minimal reduction
of singularities of the foliation. More precisely, a non-dicritical foliation F is called a
generalized curve foliation if there are not saddle-node singularities in the reduction
of singularities of F . Dicritical generalized curve foliations are also studied in [8].

We will use properties of generalized curve foliations to study polar curves and
jacobian curves of these type of foliations. But, in next section, we will also consider
a wide class of foliations, called second type foliations. Recall that a foliation F is a
second type foliation if all the singularities of saddle-node type which appear in its
reduction of singularities are well oriented with respect to the exceptional divisor,
this means that the saddle-node singularities are not corners of the exceptional divisor
and that, for the trace type saddle-node singularities, the exceptional divisor is the
strong separatrix (see [62]). Hence formal separatrices can appear for second type
foliations.

Next result gives some properties of generalized curve and second type foliations:

Theorem 1.2.1 [8, 62] Let F be a non-dicritical foliation in (C2, 0) and consider
G 𝑓 the hamiltonian foliation defined by 𝑑𝑓 = 0, where 𝑓 is a reduced equation of
the curve 𝑆F of separatrices of F . Let 𝜋 : 𝑀 → (C2, 0) be the minimal reduction of
singularities of F . Then we have that
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(i) 𝜋 is also a reduction of singularities of 𝑆F . Moreover, 𝜋 is the minimal reduction
of singularities of 𝑆F if and only if F is of second type;

(ii) 𝜈0 (F ) ≥ 𝜈0 (G 𝑓 ), and equality holds if and only if F is a second type foliation;
(iii) 𝜇0 (F ) ≥ 𝜇0 (G 𝑓 ), where 𝜇0 (F ) denotes de Milnor number of F . Equality holds

if and only if F is a generalized curve foliation.

Recall that the Milnor number 𝜇0 (F ) is defined by

𝜇0 (F ) = dimC
C{𝑥, 𝑦}
(𝐴, 𝐵) = (𝐴, 𝐵)0

where (𝐴, 𝐵)0 denotes the intersection multiplicity of 𝐴 and 𝐵 at the origin.
We will denoteG the space of non-dicritical generalized curve foliations in (C2, 0)

and by G𝐶 the generalized curve foliations such that for any foliation F ∈ G𝐶 the
curve of separatrices of F is exactly the curve 𝐶, that is, 𝐶 = 𝑆F =

⋃
𝑆∈Sep(F)

𝑆.

In order to introduce the notion of logarithmic model we need to define the
Camacho-Sad index. This index was introduced by C. Camacho and P. Sad in the
seminal article [9] in order to prove the existence of separatrices for any singular
foliation in (C2, 0). We will see that Camacho-Sad indices play an important role in
the description of the topology both of the polar and jacobian curves of foliations
(see Sections 1.5 and 1.6).

Let F be a foliation in (C2, 0) and assume that 𝑆 = (𝑦 = 0) is a non-singular
invariant curve of F . Hence, a 1-form defining F can be written as 𝑦𝑎(𝑥, 𝑦)𝑑𝑥 +
𝑏(𝑥, 𝑦)𝑑𝑦. The Camacho-Sad index of F relative to 𝑆 at the origin is given by

I0 (F , 𝑆) = −Res0
𝑎(𝑥, 0)
𝑏(𝑥, 0) ,

where Res0 denote the residue at 0 of 𝑎 (𝑥,0)
𝑏 (𝑥,0) . A generalization of the Camacho-Sad

index of a foliation relative to a singular curve was given by A. Lins Neto in [59, p.
199] using expression (1.7). We give this generalization in Section 1.2.2.

Let F be a foliation in (C2, 0) defined by a 1-form 𝜔 = 0 with 𝜔 = 𝐴(𝑥, 𝑦)𝑑𝑥 +
𝐵(𝑥, 𝑦)𝑑𝑦. Consider the blow-up of the origin 𝜋1 : 𝑋1 → (C2, 0) and let 𝐸1 =

𝜋−1
1 (0) be the exceptional divisor. If we denote 𝜈 = 𝜈0 (F ), we can write 𝐴(𝑥, 𝑦) =∑
𝑖≥𝜈 𝐴𝑖 (𝑥, 𝑦) and 𝐵(𝑥, 𝑦) = ∑

𝑖≥𝜈 𝐵𝑖 (𝑥, 𝑦) with 𝐴𝑖 , 𝐵𝑖 homogeneous polynomials
of degree 𝑖 or zero, and (𝐴𝜈 , 𝐵𝜈) ≠ (0, 0). The exceptional divisor 𝐸1 is invariant
by the strict transform of the foliation 𝜋∗1F provided that 𝜋1 is not dicritical. Note
that this is equivalent to assume that 𝑥𝐴𝜈 (𝑥, 𝑦) + 𝑦𝐵𝜈 (𝑥, 𝑦) . 0. In this case, we can
compute the Camacho-Sad index of the strict transform 𝜋∗1F relative to 𝐸1 at the
singular points of 𝜋∗1F and, by the properties of the Camacho-Sad index, we have
that ([9, Proposition 2.2]) ∑︁

𝑃∈𝐸1

I𝑃 (𝜋∗1F , 𝐸1) = −1.
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Recall that the singular points of 𝜋∗1F at 𝐸1 are determined by the polynomial
𝑥𝐴𝜈 (𝑥, 𝑦) + 𝑦𝐵𝜈 (𝑥, 𝑦) and that the tangent cone of F is the set of lines defined by

𝑥𝐴𝜈 (𝑥, 𝑦) + 𝑦𝐵𝜈 (𝑥, 𝑦) = 0. (1.3)

This homogeneous polynomial can be factorized as 𝑥𝐴𝜈 (𝑥, 𝑦) + 𝑦𝐵𝜈 (𝑥, 𝑦) =

𝑘
∏𝑟
𝑖=1 (𝛼𝑖𝑥 + 𝛽𝑖𝑦)𝑚𝑖 with 𝑘 ∈ C ∖ {0} and the lines 𝛼𝑖𝑥 + 𝛽𝑖𝑦 = 0 are in bijection

with the singular points of 𝜋∗1F in 𝐸1 (see also [10, Proposition 4.7]).

Remark 1.2.2 Note that all the Camacho-Sad indices I𝑃 (𝜋∗1F , 𝐸1), for any 𝑃 ∈ 𝐸1,
are determined by the jet 𝑗 𝜈 (𝜔) = 𝐴𝜈 (𝑥, 𝑦)𝑑𝑥 + 𝐵𝜈 (𝑥, 𝑦)𝑑𝑦.

Let (𝑥1, 𝑦1) be coordinates in the first chart of the blow-up 𝜋1 such that
𝜋1 (𝑥1, 𝑦1) = (𝑥1, 𝑥1𝑦1) and 𝐸1 = (𝑥1 = 0). The strict transform of the foliation
𝜋∗1F in this chart is given by 𝜔1 = 0 where

𝜔1 = (𝐴𝜈 (1, 𝑦1) + 𝑦1𝐵𝜈 (1, 𝑦1) + 𝑥1 (· · · ))𝑑𝑥1 + 𝑥1 (𝐵𝜈 (1, 𝑦1) + 𝑥1 (· · · ))𝑑𝑦1.

We can assume that all the singularities {𝑃𝑖}𝑟𝑖=1 of 𝜋∗1F are in the first chart of
the blow-up and then they are given by 𝑃𝑖 = (0, 𝑑𝑖) where 𝐴𝜈 (1, 𝑦) + 𝑦𝐵𝜈 (1, 𝑦) =
𝑘
∏𝑟
𝑖=1 (𝑦 − 𝑑𝑖)𝑚𝑖 with 𝑘 ∈ C ∖ {0}. Hence, the Camacho-Sad index I𝑃𝑖 (𝜋∗1F , 𝐸1)

is given by

I𝑃𝑖 (𝜋∗1F , 𝐸1) = −Res𝑦=𝑑𝑖
𝐵𝜈 (1, 𝑦)

𝐴𝜈 (1, 𝑦) + 𝑦𝐵𝜈 (1, 𝑦)
= −Res𝑦=𝑑𝑖

𝐵𝜈 (1, 𝑦)
𝑘
∏𝑟
𝑖=1 (𝑦 − 𝑑𝑖)𝑚𝑖

.

1.2.1 Logarithmic models

A particular case of generalized curve foliations are logarithmic foliations. Recall
that a foliation is logarithmic if it is given by

𝑓1 · · · 𝑓𝑟
𝑟∑︁
𝑖=1

𝜆𝑖
𝑑𝑓𝑖

𝑓𝑖
= 0 (1.4)

where 𝑓𝑖 ∈ C{𝑥, 𝑦} and 𝜆𝑖 ∈ C, 𝜆𝑖 ≠ 0. Note that the curves defined by 𝑓𝑖 = 0 are
separatrices of the logarithmic foliation defined by the 1-form above.

Logarithmic foliations are generalized curve foliations (see [70]) but they can be
dicritical: for instance the foliation given by 𝑥𝑦( 𝑑𝑥

𝑥
− 𝑑𝑦

𝑦
) = 0. A logarithmic foliation

defined by a 1-form as in (1.4) is called resonant if
∑𝑟
𝑖=1 𝑛𝑖𝜆𝑖 = 0 with 𝑛𝑖 non-negative

integers not all zero. Non-resonant logarithmic foliations are non-dicritical (see [70,
Proposition 2.0.20]) but the converse is not true: consider the logarithmic foliation
associated to 𝑓1 = 𝑦, 𝑓2 = 𝑦 − 𝑥2, 𝑓3 = 𝑦 − 𝑥3 and 𝜆1 = 1, 𝜆2 = − 1

6 + 𝑖, 𝜆3 = − 1
6 − 𝑖.

We denote by L𝜆, 𝑓 the logarithmic foliation given by the 1-form in (1.4) where
𝑓 = 𝑓1 · · · 𝑓𝑟 and 𝜆 = (𝜆1, . . . , 𝜆𝑟 ) ∈ C𝑟 . Note that, if 𝐶 is the curve given by 𝑓 = 0,
we have that L𝜆, 𝑓 ∈ G𝐶 if 𝜆 avoids certain resonances.
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Remark 1.2.3 Note that the resonances that must be avoided in order to have that
L𝜆, 𝑓 is a non-dicritical foliation depend on the reduction of singularities of the curve
𝐶. Let us explain the type of resonances which appear.

Let 𝜋1 : 𝑋1 → (C2, 0) be the blow-up of the origin. Take coordinates (𝑥, 𝑦) in
(C2, 0) such that 𝑥 = 0 is not in the tangent cone of 𝐶 and denote 𝑚𝑖 = 𝑚0 (𝐶𝑖) the
multiplicity at the origin of the curve 𝐶𝑖 with 𝐶𝑖 = ( 𝑓𝑖 = 0) (see Section 1.4 for the
precise definition of these notions). Let (𝑥1, 𝑦1) be coordinates in the first chart of the
blow-up such that 𝜋1 (𝑥1, 𝑦1) = (𝑥1, 𝑥1𝑦1) and the exceptional divisor 𝐸1 = 𝜋−1

1 (0)
is given by 𝐸1 = (𝑥1 = 0). Then the strict transform of L𝜆, 𝑓 by 𝜋1 is given by

𝑥1 𝑓1 · · · 𝑓𝑟

(
(
𝑟∑︁
𝑖=1

𝜆𝑖𝑚𝑖)
𝑑𝑥1
𝑥1
+

𝑟∑︁
𝑖=1

𝜆𝑖
𝑑 𝑓𝑖

𝑓𝑖

)
= 0 (1.5)

where 𝑓𝑖 (𝑥1, 𝑥1𝑦1) = 𝑥
𝑚𝑖

1 𝑓𝑖 (𝑥1, 𝑦1), that is, 𝑓𝑖 = 0 is an equation of the strict
transform of 𝐶𝑖 by 𝜋1. From Expression (1.5) we get that, if

∑𝑟
𝑖=1 𝜆𝑖𝑚𝑖 ≠ 0, then

𝐸1 is an invariant curve of the strict transform of L𝜆, 𝑓 by 𝜋1 and hence 𝜋1 is
non-dicritical for the foliation L𝜆, 𝑓 .

We say that 𝜅𝐸1 (L𝜆, 𝑓 ) =
∑𝑟
𝑖=1 𝜆𝑖𝑚𝑖 is the residue of the logarithmic foliation

L𝜆, 𝑓 along the divisor 𝐸1. In Expression (3.2) of [31] the explicit expression of the
residues along the divisors in the reduction of singularities of 𝐶 are given when 𝐶
has non-singular irreducible components (the reader can refer to the works of E. Paul
concerning logarithmic foliations for more details, see for instance [66, 67]). Hence,
we obtain a finite number of resonances to be avoided by performing the blow-ups
needed to obtain a reduction of singularities of the curve 𝐶.
Let us give the notion of logarithmic model introduced in [25] (see also [24, 26]):
Definition 1.2.4 Given a generalized curve foliation F , we say that a logarithmic
foliation L is a logarithmic model of F if both foliations have the same curve of
separatrices and the Camacho-Sad indices of F and L coincide along the reduction
of singularities.
If we have a foliation F with a simple singularity at (C2, 0), the foliation is given by
a 1-form

(𝜆 + · · · )𝑦𝑑𝑥 − (𝜇 + · · · )𝑥𝑑𝑦, 𝜆𝜇 ≠ 0, 𝜆/𝜇 ∉ Q≥0. (1.6)

The quotient 𝜆/𝜇 is the Camacho-Sad index of the foliation with respect to 𝑦 = 0 and
it also determines the coefficient of the linear part of the holonomy. A logarithmic
foliation in (C2, 0), having holonomy with the same linear part as F , is given by

𝑥𝑦

(
𝜆
𝑑𝑥

𝑥
− 𝜇 𝑑𝑦

𝑦

)
= 0.

In this way, we can approach a germ of generalized curve foliation with a simple
singularity in (C2, 0) by a logarithmic foliation. In general, we have that
Theorem 1.2.5 [25, 26] Each non-dicritical generalized curve foliation F in (C2, 0)
has a logarithmic model. Moreover, the logarithmic model of F is unique once a
reduced equation of the separatrices is fixed.
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Hence the logarithmic model of F can be considered as a foliation which gives “the
linear part of the holonomy” of F .

Remark 1.2.6 Consider a foliation with a simple singularity (which is not a saddle-
node) in (C2, 0) given by a 1-form as in (1.6). The realization ℎ ∈ Diff(C, 0) of the
holonomy of the invariant curve 𝑦 = 0 is the diffeomorphism

ℎ(𝑦) = 𝑒2𝜋𝑖𝜇/𝜆𝑦 + 𝑦2𝑔(𝑦).

The holonomy of an invariant variety of a foliation is an interesting invariant of
the germ of singular foliation. For instance, a foliation F with a simple singularity
with 𝜆𝜇 ≠ 0 is linearizable if and only if the holonomy of an invariant variety is
linearizable (see [61, Theorem 2]). The reader can refer to [61, 23, 60] for more
details concerning the holonomy of an invariant variety of a foliation.

Moreover, Theorem 1.2.5 allows to associate to each non-dicritical generalized
curve F an exponent vector 𝜆(F ) = 𝜆 where L𝜆, 𝑓 is the logarithmic model of F .
Note that 𝜆(F ) is unique as element in P𝑟−1

C .
The existence of logarithmic models for non-dicritical foliations, without saddle-

node singularities, of codimension one in (C𝑛, 0) has been proved in [13]. There are
some works studying problems related with the existence of logarithmic models for
dicritical foliations in (C2, 0) ([11, 12]). The existence of logarithmic models in the
two dimensional real case has been proved in [34].

Although a generic polar curve PF of a foliation F and the one PL of its
logarithmic model L are not equisingular in general (consider the foliations with
𝑦5−𝑥11 = 0 as separatrix given in the introduction), the study of properties shared by
PF and PL is essential to describe properties of PF thanks to the properties shared
by the Newton polygons of F and L (see [26, 28] and Section 1.5). Logarithmic
models are also crucial in the study of jacobian curves of foliations (see [31] and
Section 1.6).

1.2.2 Camacho-Sad index relative to singular separatrices

We include here the generalization of the Camacho-Sad index of a foliation relative to
a singular separatrix. This definition uses the decomposition of the 1-form defining
the foliation given in Expression (1.7). This expression will be also used in the
definition of the GSV-index in Section 1.3.

Let 𝐶 be a curve in (C2, 0) with 𝑓 = 0 a reduced equation of 𝐶 and let F be
a foliation in (C2, 0) defined by a 1-form 𝜔. The curve 𝐶 is a a separatrix of the
foliation F if and only if there exist 𝑔, 𝑘 ∈ C{𝑥, 𝑦}, with 𝑘 and 𝑓 relatively prime,
such that

𝑔𝜔 = 𝑘𝑑𝑓 + 𝑓 𝜃 (1.7)

where 𝜃 is a holomorphic 1-form with either 𝜃 ∧ 𝑑𝑓 ≠ 0 or 𝜃 = 0. The proof of the
characterization of𝐶 being a separatrix of F with expression (1.7) was given in [59,
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p. 198] when 𝑓 is irreducible and in [74, Lemma 1.1] in the general case. Let us
explain the idea of the proof of this characterization. Note that if (1.7) holds, then

𝑔𝜔 ∧ 𝑑𝑓 = 𝑓 𝜃 ∧ 𝑑𝑓 = 𝑓 ℎ1𝑑𝑥 ∧ 𝑑𝑦

with ℎ1 ≠ 0 if 𝜃 ≠ 0, and hence we have an expression as in (1.2) and 𝑓 = 0
is a separatrix of F . Conversely, assume that 𝑓 = 0 is a separatrix of F and
that Equation (1.2) holds. We can assume that ( 𝑓 = 0) ≠ (𝑥 = 0) and we write
𝜔 = 𝐴(𝑥, 𝑦)𝑑𝑥 + 𝐵(𝑥, 𝑦)𝑑𝑦. Let us show that, if we put 𝑔 =

𝜕 𝑓

𝜕𝑦
, 𝑘 = 𝐵 and 𝜃 = ℎ𝑑𝑥,

then (1.7) holds. We have that

𝑔𝜔 =
𝜕 𝑓

𝜕𝑦
(𝐴𝑑𝑥 + 𝐵𝑑𝑦),

𝑘𝑑𝑓 + 𝑓 𝜃 = 𝐵
(
𝜕 𝑓

𝜕𝑥
𝑑𝑥 + 𝜕 𝑓

𝜕𝑦
𝑑𝑦

)
+ 𝑓 ℎ𝑑𝑥.

Since 𝐴 𝜕 𝑓
𝜕𝑦
− 𝐵 𝜕 𝑓

𝜕𝑥
= 𝑓 ℎ by (1.2), then 𝑔𝜔 = 𝑘𝑑𝑓 + 𝑓 𝜃 as wanted.

Note that the decomposition given in (1.7) is not unique. A. Lins Neto generalized
in [59] (see also [5, 74]) the definition of Camacho-Sad index of a foliation F relative
to a singular separatrix 𝐶 using expression (1.7). With the notations above we have
that

I0 (F , 𝐶) = −
1

2𝜋𝑖

∫
𝜕𝐶

1
𝑘
𝜃

where 𝜕𝐶 = 𝐶 ∩ 𝑆3
𝜀 , with 𝑆3

𝜀 is a small sphere centered at 0 ∈ C2 oriented as the
boundary of 𝐶 ∩ 𝐵4

𝜀 for a ball 𝐵4
𝜀 such that 𝑆3

𝜀 = 𝜕𝐵4
𝜀 (see [5]). Let us give an

example.

Example 1.2.7 Consider a logarithmic foliation L𝜆, 𝑓 given by the 1-form

𝜔𝜆, 𝑓 = 𝑓1 · · · 𝑓𝑟
𝑟∑︁
𝑖=1

𝜆𝑖
𝑑𝑓𝑖

𝑓𝑖
.

Note that if we take the separatrix 𝐶1 = ( 𝑓1 = 0), we can write 𝜔𝜆, 𝑓 as

𝜔𝜆, 𝑓 = 𝜆1 𝑓2 · · · 𝑓𝑟𝑑𝑓1 + 𝑓1𝜃

with 𝜃 = 𝑓2 · · · 𝑓𝑟 (
∑𝑟
𝑖=2 𝜆𝑖

𝑑 𝑓𝑖
𝑓𝑖
). Hence, if we compute the Camacho-Sad index of

L𝜆, 𝑓 relative to 𝐶1 we obtain

I0 (L𝜆, 𝑓 , 𝐶1) = −
1

2𝜋𝑖

∫
𝜕𝐶1

1
𝜆1 𝑓2 · · · 𝑓𝑟

𝜃 = − 1
2𝜋𝑖

𝑟∑︁
𝑖=2

𝜆𝑖

𝜆1

∫
𝜕𝐶1

𝑑𝑓𝑖

𝑓𝑖
.

If 𝛾1 (𝑡) is a Puiseux parametrization of the curve 𝐶1, then

(𝐶1, 𝐶𝑖)0 = ord𝑡 ( 𝑓𝑖 (𝛾1 (𝑡))) =
1

2𝜋𝑖

∫
𝑑𝑓𝑖 (𝛾1 (𝑡))
𝑓𝑖 (𝛾(𝑡))

=
1

2𝜋𝑖

∫
𝜕𝐶1

𝑑𝑓𝑖

𝑓𝑖
.
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Hence, we conclude

I0 (L𝜆, 𝑓 , 𝐶1) = −
𝑟∑︁
𝑖=2

𝜆𝑖

𝜆1
(𝐶1, 𝐶𝑖)0

which extends to logarithmic foliations the computations given in [59, p. 201] (see
also [70, p. 53]). This expression was also used in [34] to prove the existence of
logarithmic models in the real case.

1.3 Polar and jacobian intersection multiplicities

As we mention in the introduction, polar curves of foliations can also be used to
characterize properties of foliations. We recall here some results that can be found
in [14] for polar curves of foliations and we include new similar properties that can
be obtained for jacobian curves of foliations (see also [31, Appendix B]).

Let F be a singular foliation in (C2, 0) and PF be a generic polar curve of F . If
F is a non-dicritical generalized curve foliation with 𝐶 as curve of separatrices, we
proved (see [26, Proposition 3.7]) that the multiplicity of intersection (PF , 𝐶)0 can
be computed in terms of local invariants of the foliation F , that is,

(PF , 𝐶)0 = 𝜇0 (F ) + 𝜈0 (F ).

If besides we use the properties of generalized curves foliations given in Theo-
rem 1.2.1, we get that (PF , 𝐶)0 = 𝜇0 (𝐶) + 𝜈0 (𝐶) − 1. Moreover, let us explain that
the multiplicity of intersection of PF and 𝐶 can be used to characterize second type
foliations.

In this section, we will denote 𝑆F the formal curve whose irreducible components
are all invariant curves of a non-dicritical foliation F . Hence, we have that

Proposition 1.3.1 [14, Proposition 2] Given a non-dicritical foliation F in (C2, 0),
we have that

(PF , 𝑆F)0 ≤ 𝜇0 (F ) + 𝜈0 (F )

and equality holds if and only if F is a second type foliation.

Let us recall the notion of𝐶-polar excess Δ(F , 𝐶) introduced in [14, Definition 2]
(this notion was extended to the dicritical case in [43]). Let F be a singular foliation
in (C2, 0) and 𝐶 be a formal invariant curve of F . The 𝐶-polar excess Δ0 (F , 𝐶) is
given by

Δ0 (F , 𝐶) = (PF , 𝐶)0 − (PG , 𝐶)0 = (PF , 𝐶)0 − 𝜇0 (𝐶) − 𝜈0 (𝐶) + 1

where G is a generalized curve foliation with 𝐶 = 𝑆G . We have that (see [14,
Corollary 3])

Δ0 (F , 𝐶) ≥ 0
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for any non-dicritical foliation F in (C2, 0) and any curve 𝐶 ⊂ 𝑆F . Moreover, the
polar excess can be used to characterize generalized curve foliations

Corollary 1.3.2 [14, Corollary 4] A non-dicritical foliation F in (C2, 0) is a gen-
eralized curve foliation if and only if

Δ0 (F , 𝑆F) = 0.

In [5], M. Brunella described generalized curve foliations using GSV-index (in-
troduced by X. Gómez-Mont, J. Seade and A. Verjovsky in [45]). He proved
that 𝐺𝑆𝑉 (F , 𝐶) ≥ 0 for any invariant curve 𝐶 of a non-dicritical foliation F
and 𝐺𝑆𝑉 (F , 𝑆F) = 0 if F is a generalized curve foliation. In fact, property
𝐺𝑆𝑉 (F , 𝑆F) = 0 characterizes non-dicritical generalized curve foliations (see also
[22, Theorem 3.3]). Let us recall the definition of GSV-index and give the relationship
with the 𝐶-polar excess.

Let F be a foliation in (C2, 0) defined by a 1-form 𝜔 = 0 with 𝜔 = 𝐴(𝑥, 𝑦)𝑑𝑥 +
𝐵(𝑥, 𝑦)𝑑𝑦 and consider a separatrix 𝐶 of the foliation F with 𝑓 = 0 a reduced
equation of 𝐶. In [45, Section 3], an algebraic definition of the GSV-index is given.
In the case of dimension two, with the notations above, we get that the GSV-index of
F with respect to 𝐶 at the origin is given by

𝐺𝑆𝑉0 (F , 𝐶) = dimC
C{𝑥, 𝑦}
(𝐴, 𝐵, 𝑓 ) − dimC

( 𝑓 ) ∩ (𝐴, 𝐵)
( 𝑓 𝐴, 𝑓 𝐵)

where the parentheses represent ideals in the local ring C{𝑥, 𝑦} generated by the
terms inside the parentheses. Moreover, in [45, Section 4], the authors showed that
the index is a topological invariant.

M. Brunella in [5] proved that the GSV-index can be calculated as follows. Let
𝐶 be a separatrix of a foliation F in (C2, 0) and 𝑓 = 0 a reduced equation of
𝐶. If 𝜔 is a 1-form defining F , there exist 𝑔, 𝑘 ∈ C{𝑥, 𝑦} such 𝑔𝜔 = 𝑘𝑑𝑓 + 𝑓 𝜃
with 𝜃 a holomorphic 1-form as explained in Section 1.2.2 and Equation (1.7). The
GSV-index of F with respect to 𝐶 at the origin is given by

𝐺𝑆𝑉0 (F , 𝐶) =
1

2𝜋𝑖

∫
𝜕𝐶

𝑔

𝑘
𝑑

(
𝑘

𝑔

)
where 𝜕𝐶 = 𝐶 ∩ 𝑆3

𝜀 , with 𝑆3
𝜀 is a small sphere centered at 0 ∈ C2 oriented as the

boundary of 𝐶 ∩ 𝐵4
𝜀 for a ball 𝐵4

𝜀 such that 𝑆3
𝜀 = 𝜕𝐵

4
𝜀 (see [5]). Note that if 𝐶 is an

irreducible curve and 𝛾(𝑡) is a Puiseux parametrization of 𝐶, we have that

𝐺𝑆𝑉0 (F , 𝐶) = ord𝑡 ((𝑘/𝑔) ◦ 𝛾).

Example 1.3.3 [5, p. 538] Let us compute the GSV-index for the foliation F given
by 𝜔 = 0 with

𝜔 = 𝑦𝑝+1𝑑𝑥 − 𝑥(1 + 𝜆𝑦𝑝)𝑑𝑦, 𝑝 ≥ 1, 𝜆 ∈ C
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(the formal normal form of a saddle-node singularity). If 𝐶1 = (𝑥 = 0) and 𝐶2 =

(𝑦 = 0) we have that

𝐶𝑆𝑉0 (F , 𝐶1) = 𝑝 + 1; 𝐶𝑆𝑉0 (F , 𝐶2) = 1.

The computation of the Camacho-Sad indices gives

I0 (F , 𝐶1) = −Res𝑦=0
−(1 + 𝜆𝑦𝑝)

𝑦𝑝+1
= 𝜆; I0 (F , 𝐶2) = 0.

Remark 1.3.4 Note that 𝐺𝑆𝑉0 (F , 𝐶) can be negative (see [6, p. 24]). Consider the
dicritical foliation F given by 𝜔 = 3𝑦𝑑𝑥 − 2𝑥𝑑𝑦 and the separatrix 𝐶 = ( 𝑓 = 0)
with 𝑓 = 𝑦2 − 𝑥3. If we take 𝑔 = 2𝑦, 𝑘 = −2𝑥 and 𝜃 = 6𝑑𝑥 we obtain the expression
𝑔𝜔 = 𝑘𝑑𝑓 + 𝑓 𝜃 as in (1.7). If we consider 𝛾(𝑡) = (𝑡2, 𝑡3), then 𝐺𝑆𝑉0 (F , 𝐶) =
ord𝑡

(
−2𝑥
2𝑦 (𝛾(𝑡))

)
= ord𝑡 ( −2𝑡2

2𝑡3 ) = −1. However, if we consider the separatrix 𝑆 =

(𝑥 = 0), then 𝐺𝑆𝑉0 (F , 𝑆) = ord𝑡 (3𝑡) = 1.
In [5], M. Brunella introduces the notion of non-dicritical separatrices, that is,
separatrices whose reduction of singularities does not meet a dicritical component.
Remark that this notion is different to the one of isolated separatrices, which are the
separatrices of F whose strict transform by the reduction of singularities 𝜋 of F cut
the exceptional divisor 𝜋−1 (0) in a non-dicritical component (see [32, Remark 1]).
In [5, Proposition 6], it is proved that if 𝐶 is a non-dicritical separatrix of F , then
𝐺𝑆𝑉0 (F , 𝐶) ≥ 0. In particular, the GSV-index is non-negative for non-dicritical
foliations.

The GSV-index is not additive on the separatrices (see [5, p. 532]), that is, if 𝐶1
and 𝐶2 are separatrices of F and 𝐶 = 𝐶1 ∪ 𝐶2, then

𝐺𝑆𝑉0 (F , 𝐶1 ∪ 𝐶2) = 𝐺𝑆𝑉0 (F , 𝐶1) + 𝐺𝑆𝑉0 (F , 𝐶2) − 2(𝐶1, 𝐶2)0. (1.8)

(note that the Camacho-Sad index has a similar behaviour [5, 74]).
In [14, Proposition 4] we prove that, if F is a non-dicritical foliation with 𝑆F as

curve of separatrices and 𝐶 ⊂ 𝑆F is a curve union of convergent separatrices of F ,
then we have that

𝐺𝑆𝑉0 (F , 𝐶) = Δ0 (F , 𝐶).

In particular, this formula gives a way to generalize the definition of the GSV-index
to formal invariant curves and also gives another interpretation of the non-negativity
of the GSV-index for non-dicritical foliations.

Now we will prove some new results which relate local invariants of the foliations
with jacobian curves. In the rest of the section, the foliations F and G may be
dicritical ones unless otherwise stated. Next lemma shows that a description of the
GSV-index can also be obtained if we consider jacobian curves of foliations. Note
that we recover the above result ([14, Proposition 4]) when the foliation F in next
lemma is non-singular.
Lemma 1.3.5 Consider an irreducible curve 𝐶 = ( 𝑓 = 0) in (C2, 0). Let G be
a foliation such that the irreducible components of 𝐶 are separatrices of G and
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consider the hamiltonian foliation G 𝑓 given by 𝑑𝑓 = 0. Then, for any foliation F in
(C2, 0), we have that

𝐺𝑆𝑉0 (G, 𝐶) = (JF,G , 𝐶)0 − (JF,G 𝑓
, 𝐶)0.

Proof Assume that 𝐶 is irreducible and let 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) be a Puiseux
parametrization of 𝐶. The general case follows from Property (1.8) of GSV-index
and Lemma 1.3.6 below.

If F is defined by 𝜔 = 0 with 𝜔 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦 and G is defined by 𝜂 = 0 with
𝜂 = 𝑃𝑑𝑥 +𝑄𝑑𝑦, we have that

(JF,G , 𝐶)0 = ord𝑡 (𝐴(𝛾(𝑡))𝑄(𝛾(𝑡)) − 𝐵(𝛾(𝑡))𝑃(𝛾(𝑡))).

From Equation (1.7) applied to 𝜂 we get that

𝑃 =
𝑘

𝑔
𝑓𝑥 +

𝑓

𝑔
�̃�; 𝑄 =

𝑘

𝑔
𝑓𝑦 +

𝑓

𝑔
�̃�

and hence

(JF,G , 𝐶)0 = ord𝑡 (𝐴(𝛾(𝑡)) 𝑓𝑦 (𝛾(𝑡)) − 𝐵(𝛾(𝑡)) 𝑓𝑥 (𝛾(𝑡))) + ord𝑡 ((𝑘/𝑔) ◦ 𝛾(𝑡))
= (JF,G 𝑓

, 𝐶)0 + 𝐺𝑆𝑉0 (G, 𝐶)

as wanted. □

Let us prove the following lemma which was used in the previous proof.

Lemma 1.3.6 Let G be a foliation in (C2, 0). Consider 𝐶1 = ( 𝑓1 = 0) and 𝐶2 =

( 𝑓2 = 0) two irreducible separatrices of G. For any foliation F in (C2, 0), we have
that

(JF,G , 𝐶1 ∪ 𝐶2)0 − (JF,G 𝑓
, 𝐶1 ∪ 𝐶2)0 = (JF,G , 𝐶1)0 − (JF,G 𝑓1

, 𝐶1)0
+ (JF,G , 𝐶2)0 − (JF,G 𝑓2

, 𝐶2)0 − 2(𝐶1, 𝐶2)0

where 𝑓 = 𝑓1 𝑓2.

Proof Since (JF,G , 𝐶1 ∪ 𝐶2)0 = (JF,G , 𝐶1)0 + (JF,G , 𝐶2)0, we only need to show
that

(JF,G 𝑓
, 𝐶1 ∪ 𝐶2)0 = (JF,G 𝑓1

, 𝐶1)0 + (JF,G 𝑓2
, 𝐶2)0 + 2(𝐶1, 𝐶2)0.

If the foliation F is defined by𝜔 = 0 with𝜔 = 𝐴(𝑥, 𝑦)𝑑𝑥 +𝐵(𝑥, 𝑦)𝑑𝑦, then the curve
JF,G 𝑓

is given by

𝑓2

(
𝐴
𝜕 𝑓1
𝜕𝑦
− 𝐵𝜕 𝑓1

𝜕𝑥

)
+ 𝑓1

(
𝐴
𝜕 𝑓2
𝜕𝑦
− 𝐵𝜕 𝑓2

𝜕𝑥

)
= 0.

Thus, if 𝛾1 (𝑡) is a Puiseux parametrization of the curve 𝐶1, we have that
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(JF,G 𝑓
, 𝐶1)0 = ord𝑡 ( 𝑓2 (𝛾1 (𝑡))) + ord𝑡

(
𝐴(𝛾1 (𝑡))

𝜕 𝑓1
𝜕𝑦
(𝛾1 (𝑡)) − 𝐵(𝛾1 (𝑡))

𝜕 𝑓1
𝜕𝑥
(𝛾1 (𝑡))

)
= (𝐶1, 𝐶2)0 + (JF,G 𝑓1

, 𝐶1)0.

A similar computation gives (JF,G 𝑓
, 𝐶2)0 = (𝐶1, 𝐶2)0 + (JF,G 𝑓2

, 𝐶2)0 and this ends
the proof. □

From Proposition B.1 in [31] we have that, if F and G are two foliations (that can be
dicritical) in (C2, 0) without common separatrices and𝐶 is an irreducible separatrix
of G, then

(JF,G , 𝐶)0 = 𝜇0 (G, 𝐶) + 𝜏0 (F , 𝐶)0 (1.9)

where 𝜇0 (G, 𝐶) denotes the Milnor number of G along 𝐶 and 𝜏0 (F , 𝐶)0 is the
tangency order of F with 𝐶. Note that, if F is a non-singular foliation, the result
given in (1.9) generalizes Proposition 1 in [14] for a dicritical foliation G. Let us
recall the definition of the invariants which appear in Expression (1.9).

Let F be a foliation in (C2, 0) defined by a 1-form 𝜔 = 0 with 𝜔 = 𝐴(𝑥, 𝑦)𝑑𝑥 +
𝐵(𝑥, 𝑦)𝑑𝑦. Let 𝑆 be a formal curve at (C2, 0) with a primitive parametrization
𝛾 : (C, 0) → (C2, 0) given by 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)). If 𝑆 is a separatrix of F , the
Milnor number 𝜇0 (F , 𝑆) of F along 𝑆 is given by

𝜇0 (F , 𝑆) =
{

ord𝑡 (𝐵(𝛾(𝑡))) − ord𝑡 (𝑥(𝑡)) + 1, if 𝑥(𝑡) ≠ 0
ord𝑡 (𝐴(𝛾(𝑡))) − ord𝑡 (𝑦(𝑡)) + 1, if 𝑦(𝑡) ≠ 0.

This number is also called multiplicity of the vector field v along 𝑆, see [8, p. 152-
153], where v is the vector field v = −𝐵(𝑥, 𝑦) 𝜕

𝜕𝑥
+𝐴(𝑥, 𝑦) 𝜕

𝜕𝑦
also defines de foliation

F .

Example 1.3.7 Let F be a foliation in (C2, 0) with a simple singularity given by a
1-form as in Equation (1.1) with 𝜆𝜇 ≠ 0. If 𝑆1 = (𝑥 = 0) and 𝑆2 = (𝑦 = 0) are the
two transversal separatrices of F , then

𝜇0 (F , 𝑆1) = 𝜇0 (F , 𝑆2) = 1.

Assume now that F has a saddle-node singularity in (C2, 0) given by 𝜔 = 𝑦𝑝+1𝑑𝑥 −
𝑥(1 + 𝜆𝑦𝑝)𝑑𝑦, with 𝑝 ≥ 1, 𝜆 ∈ C, then

𝜇0 (F , 𝑆1) = 𝑝 + 1, 𝜇0 (F , 𝑆2) = 1.

If 𝑆 is not a separatrix of F , the tangency order 𝜏0 (F , 𝑆) of F with 𝑆 (at the origin)
is given by 𝜏0 (F , 𝑆) = ord𝑡 (𝛼(𝑡)) where 𝛾∗𝜔 = 𝛼(𝑡)𝑑𝑡 with 𝛼(𝑡) = 𝐴(𝛾(𝑡)) ¤𝑥(𝑡) +
𝐵(𝛾(𝑡)) ¤𝑦(𝑡) (see [8, p. 167] when the curve 𝐶 is non-singular or [14] for the general
case).

Example 1.3.8 LetF be the foliation given by𝜔 = (𝑦3+𝑦2−𝑥𝑦)𝑑𝑥−(2𝑥𝑦2+𝑥𝑦−𝑥2)𝑑𝑦
(Suzuki’s example). Consider the curve 𝑆 = (𝑦 − 𝑥 = 0) which is not an invariant
curve of F . A parametrization of 𝑆 is given by 𝛾(𝑡) = (𝑡, 𝑡) and hence 𝜏0 (F , 𝑆) =
ord𝑡 (−𝑡3) = 3.
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Let 𝜋1 : 𝑋1 → (C2, 0) be the blow-up of the origin and take (𝑥1, 𝑦1) coordinates
in the first chart such that 𝜋1 (𝑥1, 𝑦1) = (𝑥1, 𝑥1𝑦1). Then the strict transform 𝜋∗1F of
F by 𝜋1 is given by 𝜔1 = 0 with

𝜔1 =
𝜋∗1𝜔

𝑥3
1

= −(𝑦3
1𝑑𝑥1 + (𝑦1 − 1 + 2𝑥1𝑦

2
1)𝑑𝑦1)

in the first chart of the blow-up. Note that 𝜈0 (F ) = 2 and that 𝜋1 is a dicritical blow-
up for F . Hence, we can compute the tangency order of 𝜋∗1F with 𝐸1 = 𝜋−1

1 (0)
at the point 𝑃 ∈ 𝐸1 given by 𝑃 = (0, 1) in coordinates (𝑥1, 𝑦1) and we get that
𝜏𝑃 (𝜋∗1F , 𝐸1) = 1.

Example 1.3.9 Consider a foliation F in (C2, 0) and let 𝜋1 : 𝑋1 → (C2, 0) be the
blow-up of the origin. Let 𝜋∗1F denote the strict transform by 𝜋1 of the foliation F
and 𝐸1 = 𝜋−1

1 (0) be the exceptional divisor. If the blow-up 𝜋1 is a dicritical blow-up
for F , then we have that (see [8, Lemma 3])

𝜈0 (F ) − 1 =
∑︁
𝑃∈𝐸1

𝜏𝑃 (𝜋∗1F , 𝐸1).

In [71, Lemma 3.7], P. Rouillé prove that if F is a non-dicritical generalized curve
foliation and G 𝑓 is the hamiltonian foliation defined by 𝑑𝑓 = 0 with 𝑆F = ( 𝑓 = 0),
then we have that

𝜏0 (F , 𝑆) = 𝜏0 (G 𝑓 , 𝑆) = (𝑆F , 𝑆)0
for any irreducible curve 𝑆 which is not a separatrix of F . Moreover, the tangency
order can also be used to characterize second type foliations (see [14]):

Lemma 1.3.10 [14, Corollary 1] Consider a non-dicritical foliation F with 𝑆F =

( 𝑓 = 0) and let 𝐶 be an irreducible curve which is not a separatrix of F . Then

𝜏0 (F , 𝐶) ≥ 𝜏0 (G 𝑓 , 𝐶) = (𝑆F , 𝐶)0 − 1 (1.10)

and the equality holds if and only if F is a second type foliation.

The difference 𝜏0 (F , 𝐶) − 𝜏0 (G 𝑓 , 𝐶) is determined explicitly, including the case
of dicritical foliations, in [7, Lemma 4.2].

Finally, as a consequence of Equation (1.9) and Lemma 1.3.5 we obtain

Corollary 1.3.11 Let𝐶 = ( 𝑓 = 0) be an irreducible curve in (C2, 0),G be a foliation
such 𝐶 is a separatrix of G and G 𝑓 be the hamiltonian foliation given by 𝑑𝑓 = 0.
Then

𝐺𝑆𝑉0 (G, 𝐶) = 𝜇0 (G, 𝐶) − 𝜇0 (G 𝑓 , 𝐶).

Consequently, if G is non-dicritical and 𝑆G = 𝐶 irreducible, we have that G is a
generalized curve foliation if and only if 𝜇0 (G, 𝐶) = 𝜇0 (G 𝑓 , 𝐶).

In [29], we have proved a particular case of the result above thanks to the properties
shared by the Newton polygons of non-dicritical generalized curve foliations with
the same curve of separatrices. More precisely, we prove the following result:
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Lemma 1.3.12 [29, Lemma 1] Consider a non-dicritical generalized curve foliation
F with 𝐶 = ( 𝑓 = 0) as curve of separatrices and let G 𝑓 be the hamiltonian foliation
given by 𝑑𝑓 = 0. Let 𝜋 : (𝑀, 𝑃) → (C2, 0) be any morphism composition of a finite
number of punctual blow-ups, 𝐷 = 𝜋−1 (0) be the exceptional divisor and 𝐸 be an
irreducible component of 𝐷 with 𝑃 ∈ 𝐸 . Then

𝜇𝑃 (𝜋∗F , 𝐸) = 𝜇𝑃 (𝜋∗G 𝑓 , 𝐸).

1.4 Equisingularity data of a plane curve

Before explaining the results concerning the topological properties of polar and
jacobian curves of singular foliations in Sections 1.5 and 1.6, we need to explain
how to describe the equisingularity data of a plane curve.

The main classifications of complex analytic plane curve singularities are topo-
logical or analytic classifications. Two germs of plane curves 𝐶1 and 𝐶2 in (C2, 0)
are topologically equivalent (resp. analytically equivalent) if and only if there exists
an homeomorphism 𝜑 : 𝑈 → 𝑉 (resp. analytic isomorphism) between open neigh-
bourhoods𝑈 and 𝑉 of the origin, where the curves 𝐶1 and 𝐶2 are defined, such that
𝜑(𝐶1 ∩ 𝑈) = 𝐶2 ∩ 𝑉 . From the works of Zariski, it is known that the topological
classification of curves is equivalent to the equisingular one: two plane curves are
equisingular if they have the same minimal reduction of singularities. In this section
we will describe topological invariants of a germ of plane curve in (C2, 0). The
description of analytic invariants of plane curves is more intricate; we will consider
it in Section 1.7.

There are many equivalent ways of describing topological invariants associated
to a plane curve 𝐶 in (C2, 0). For instance, in [39, 40] the equisingularity data of
the curve 𝐶 is described in terms of the Eggers diagram of the curve 𝐶, defined
in [36]. In [18, 3], the authors consider the Enriques diagram (introduced in [37])
which keeps records of the proximity relations among the centers of blowing-up
in the resolution of singularities of the curve. Since in the study of singularities of
foliations in (C2, 0), the reduction of singularities is a key tool, we will describe the
equisingularity data of 𝐶 in terms of the dual graph 𝐺 (𝐶) of the minimal reduction
of singularities of 𝐶 (a more detailed description of the relationship between the
equisingularity data of 𝐶 and the dual graph 𝐺 (𝐶) can be found in [28, 31]). To
deepen in the study of the invariants of the singularities of a plane curve and its
reduction of singularities, the reader can consult for instance [79, 4, 18, 78, 77] or
the recent survey [42] which gives an introduction to the use of toric and tropical
geometry in the analysis of plane curve singularities.
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1.4.1 Equisingularity data of an irreducible curve

Let us introduce some definitions concerning the description of the equisingularity
data of a germ of irreducible plane curve, which will be also called a branch (for
a more detailed description the reader can refer for instance to [18, 78, 47]). Let 𝐶
be a germ of irreducible curve in (C2, 0) given by 𝑓 = 0 with 𝑓 ∈ C{𝑥, 𝑦}. We can
write 𝑓 (𝑥, 𝑦) = ∑

𝑖≥𝑛 𝑓𝑖 (𝑥, 𝑦) with 𝑓𝑖 (𝑥, 𝑦) homogeneous polynomials or zero, and
𝑓𝑛 (𝑥, 𝑦) . 0. We say that 𝑚0 (𝐶) = 𝑛 is the multiplicity of the curve 𝐶 at the origin.
The tangent cone of the curve is equal to the set of lines given by the linear factors
of 𝑓𝑛 (𝑥, 𝑦) = 0. In the rest of the section we will assume that 𝑥 = 0 is not tangent
to the curve (that is, 𝑥 = 0 is not one of the lines in the tangent cone of 𝐶). The
Newton-Puiseux Theorem shows that there exists a convergent fractionary power
series

𝑦(𝑥) =
∑︁
𝑖≥𝑛

𝑎𝑖𝑥
𝑖/𝑛

such that 𝑓 (𝑥, 𝑦(𝑥)) = 0. We say that 𝑦(𝑥) is a Puiseux series of𝐶. Note that, if 𝑦(𝑥) =∑
𝑖≥𝑛 𝑎𝑖𝑥

𝑖/𝑛 is a Puiseux series of𝐶 and 𝜀 is an 𝑛-root of the unity, then
∑
𝑖≥𝑛 𝑎𝑖𝜀

𝑖𝑥𝑖/𝑛

is also a Puiseux series of 𝐶. If we denote by 𝑦1 (𝑥) = 𝑦(𝑥), 𝑦2 (𝑥), . . . , 𝑦𝑛 (𝑥) all the
Puiseux series of 𝐶 obtained from 𝑦(𝑥) by the action of each of the 𝑛-roots of the
unity as we have shown, we have that

𝑓 (𝑥, 𝑦) = 𝑢(𝑥, 𝑦)
𝑛∏
𝑖=1
(𝑦 − 𝑦𝑖 (𝑥))

where 𝑢(𝑥, 𝑦) is a unit in C{𝑥, 𝑦}.
Given a Puiseux series 𝑦(𝑥) =

∑
𝑖≥𝑛 𝑎𝑖𝑥

𝑖/𝑛 of an irreducible curve, we can
consider a parametrization 𝛾 : (C, 0) → (C2, 0) given by 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) with

𝑥(𝑡) = 𝑡𝑛

𝑦(𝑡) =
∑︁
𝑖≥𝑛

𝑎𝑖𝑡
𝑖

such that 𝑓 (𝛾(𝑡)) ≡ 0. Let us introduce some of the invariants that codify the
equisingularity data of the irreducible curve 𝐶.

The characteristic exponents of the curve𝐶 are defined as follows (see [82, Section
II.3]):

𝛽0 = 𝑛,

𝛽1 = min{𝑖 : 𝑎𝑖 ≠ 0, 𝑖 . 0 mod (𝑛)}.

If 𝛽1 does not exists, the 𝑦(𝑥) is a power series in 𝑥, and the curve 𝐶 is non-singular
(this means that 𝑛 = 1). Otherwise, let us consider 𝑒1 = gcd(𝑛, 𝛽1) and define
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𝛽2 = min{𝑖 : 𝑎𝑖 ≠ 0, 𝑖 . 0 mod (𝑒1)},
𝑒2 = gcd(𝑒1, 𝛽2).

We have that 𝑒2 < 𝑒1. We repeat the above procedure and we define

𝑒𝑘 = gcd(𝑒𝑘−1, 𝛽𝑘) = gcd(𝛽0, 𝛽1, . . . , 𝛽𝑘),
𝛽𝑘+1 = min{𝑖 : 𝑎𝑖 ≠ 0, 𝑖 . 0 mod (𝑒𝑘)}.

Since the sequence 𝑒0 = 𝑛 > 𝑒1 > 𝑒2 > · · · > 𝑒𝑘 > · · · is strictly decreasing, there
exists 𝑔 such that 𝑒𝑔 = 1. The sequence of positive integers {𝛽0, 𝛽1, . . . , 𝛽𝑔} are
called characteristic exponents of the curve 𝐶.

Note that 𝛽𝑖 is the first exponent which appears in the series which does not belong
to the additive group generated by the precedent 𝛽 𝑗 . Hence the Puiseux series 𝑦(𝑥)
can be written as

𝑦(𝑥) =
∑︁
𝑖∈ (𝑛)
𝑖<𝛽1

𝑎𝑖𝑥
𝑖/𝑛 + 𝑎𝛽1𝑥

𝛽1/𝑛 +
∑︁
𝑖∈ (𝑒1 )

𝛽1<𝑖<𝛽2

𝑎𝑖𝑥
𝑖/𝑛 + 𝑎𝛽2𝑥

𝛽2/𝑛 + · · · +

+
∑︁

𝑖∈ (𝑒𝑔−1 )
𝛽𝑔−1<𝑖<𝛽𝑔

𝑎𝑖𝑥
𝑖/𝑛 + 𝑎𝛽𝑔𝑥𝛽𝑔/𝑛 +

∑︁
𝑖>𝛽𝑔

𝑎𝑖𝑥
𝑖/𝑛

where the coefficients 𝑎𝛽𝑖 , 𝑖 = 1, 2, . . . , 𝑔, are non-zero. The parametrization can be
written as
𝑥(𝑡) = 𝑡𝑛

𝑦(𝑡) = 𝑎𝑛𝑡𝑛 + 𝑎2𝑛𝑡
2𝑛 + · · · + 𝑎𝑘𝑛𝑡𝑘𝑛 + 𝑎𝛽1 𝑡

𝛽1 + 𝑎𝛽1+𝑒1 𝑡
𝛽1+𝑒1 + · · · + 𝑎𝛽1+𝑘1𝑒1 𝑡

𝛽1+𝑘1𝑒1

+ 𝑎𝛽2 𝑡
𝛽2 + 𝑎𝛽2+𝑒2 𝑡

𝛽2+𝑒2 + · · · + 𝑎𝛽𝑞 𝑡𝛽𝑞 + 𝑎𝛽𝑞+𝑒𝑞 𝑡𝛽𝑞+𝑒𝑞 + · · · + 𝑎𝛽𝑔 𝑡𝛽𝑔+
+ 𝑎𝛽𝑔+1𝑡𝛽𝑔+1 + · · ·

For 1 ≤ 𝑖 ≤ 𝑔, we can also define the integers 𝑛𝑖 and 𝑚𝑖 as

𝑛𝑖 =
𝑒𝑖−1
𝑒𝑖

, 𝛽𝑖 = 𝑚𝑖𝑒𝑖 with gcd(𝑛𝑖 , 𝑚𝑖) = 1.

We have that
𝑚0 (𝐶) = 𝑛 = 𝑛1 · · · 𝑛𝑔,

𝛽𝑖

𝑛
=

𝑚𝑖

𝑛1 · · · 𝑛𝑖
.

The set {(𝑚𝑖 , 𝑛𝑖)}𝑔𝑖=1 are called Puiseux pairs of the curve 𝐶. Note that data of the
Puiseux pairs is equivalent to the data of the characteristics exponents. Hence, we
can write

𝑦(𝑥) = 𝑎𝑛𝑥 + 𝑎2𝑛𝑥
2 + · · · + 𝑎𝑘𝑛𝑥𝑘 + 𝑎𝛽1𝑥

𝑚1
𝑛1 + 𝑎𝛽1+𝑒1𝑥

𝑚1+1
𝑛1 + · · · + 𝑎𝛽1+𝑘1𝑒1𝑥

𝑚1+𝑘1
𝑛1

+ 𝑎𝛽2𝑥
𝑚2
𝑛1𝑛2 + 𝑎𝛽2+𝑒2𝑥

𝑚2+1
𝑛1𝑛2 + · · · + 𝑎𝛽𝑞𝑥

𝑚𝑞

𝑛1𝑛2 · · ·𝑛𝑞 + · · · + 𝑎𝛽𝑔𝑥
𝑚𝑔

𝑛1𝑛2 · · ·𝑛𝑔

+ 𝑎𝛽𝑔+1𝑥
𝑚𝑔+1

𝑛1𝑛2 · · ·𝑛𝑔 + · · ·
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The characteristic exponents determine the Puiseux pairs of an irreducible plane
curve and conversely. Moreover, two irreducible plane curves are equisingular if and
only if they have the same characteristic exponents (see [81, Theorem 2.1]).

Let 𝐶 be an irreducible curve. The semigroup Γ𝐶 of the curve 𝐶 is the subset of
Z≥0 given by

Γ𝐶 = {(𝐷,𝐶)0 : 𝐷 is a germ of plane curve in (C2, 0)}
= {ord𝑡 (𝑔(𝛾(𝑡))) : 𝑔 ∈ C{𝑥, 𝑦}}.

Since the intersection multiplicity is additive and 0 ∈ Γ𝐶 , the set Γ𝐶 is a semigroup.
Moreover, there exists an integer 𝑐 > 0 such that any non-negative integer greater
than or equal to 𝑐 is contained in Γ𝐶 but 𝑐 − 1 ∉ Γ𝐶 (see [82, Theorem 1.1]). The
number 𝑐 is called the conductor of the semigroup Γ𝐶 . In a more algebraic way, the
ideal (𝑡𝑐) is contained in the image of the morphism

𝛾♯ : C{𝑥, 𝑦} → C{𝑡}
𝑔 ↦→ 𝑔(𝛾(𝑡))

but 𝑡𝑐−1 is not contained in the image of 𝛾♯ (see [82, Proposition 1.2]). For instance,
if 𝐶 is an irreducible curve with only one Puiseux pair {(𝑚, 𝑛)}, the semigroup
of 𝐶 is given by Γ𝐶 = {𝑎𝑛 + 𝑏𝑚 : 𝑎, 𝑏 ∈ Z≥0} and the conductor is equal to
𝑐 = (𝑛 − 1) (𝑚 − 1).

There exists a unique minimal finite set of integers {𝛽0, 𝛽1, . . . , 𝛽𝑔} which gen-
erates the semigroup Γ𝐶 , that is, Γ𝐶 = {𝑡0𝛽0 + 𝑡1𝛽1 + · · · + 𝑡𝑔𝛽𝑔 : 𝑡𝑖 ∈ Z≥0} (see
[82, Theorem 3.9]). Moreover, the generators of the semigroup are determined from
the characteristic exponents as follows:

𝛽0 = 𝛽0 = 𝑛,

𝛽𝑖 = 𝑛𝑖−1𝛽𝑖−1 + 𝛽𝑖 − 𝛽𝑖−1 for 𝑖 = 1, 2, . . . , 𝑔

where we put 𝑛0 = 1.
In particular, we obtain that two irreducible curves 𝐶1 and 𝐶2 are topologically

equivalent if and only if Γ𝐶1 = Γ𝐶2 .
Note that if 𝛿 is a curve such that (𝐶, 𝛿)0 = 𝛽𝑖 for some 0 ≤ 𝑖 ≤ 𝑔, then 𝛿 is an

irreducible curve since, if 𝛿 = 𝛿1 ∪ 𝛿2, we have

(𝐶, 𝛿)0 = (𝐶, 𝛿1)0 + (𝐶, 𝛿2)0

with (𝐶, 𝛿1)0, (𝐶, 𝛿2)0 ∈ Γ𝐶∖{0} in contradiction with the fact that {𝛽0, 𝛽1, . . . , 𝛽𝑔}
is a minimal set of generators of Γ𝐶 .

For any 1 ≤ 𝑘 ≤ 𝑔, a curve 𝐶𝑘 with 𝑚0 (𝐶𝑘) = 𝑛0𝑛1 · · · 𝑛𝑘−1 = 𝛽0/𝑒𝑘−1 and
(𝐶,𝐶𝑘)0 = 𝛽𝑘 (or equivalently the coincidence is given by C(𝐶,𝐶𝑘) = 𝛽𝑘/𝛽0,
see definition in Section 1.4.2 and Remark 1.4.3) is called a 𝑘-semiroot of 𝐶. The
minimal set of generators of the semigroup Γ𝐶𝑘

is the set
{
𝛽0
𝑒𝑘−1

,
𝛽1
𝑒𝑘−1

, . . . ,
𝛽𝑘−1
𝑒𝑘−1

}
and

the characteristic exponents of 𝐶𝑘 are given by
{
𝛽0
𝑒𝑘−1

,
𝛽1
𝑒𝑘−1

, . . . ,
𝛽𝑘−1
𝑒𝑘−1

}
(see [69] or



22 Nuria Corral

[33] for more properties of semiroots of an irreducible plane curve). A particular
set of semiroots of 𝐶 is given by the characteristic approximate roots introduced by
Abhyankar and Moh in [1] (see also [46]).

Note that semiroots will also be useful to study analytic invariants of an irreducible
plane curve as we will explain in Section 1.7.

1.4.2 Equisingularity data of a curve with several branches

In general, if 𝐶 is any reduced curve, we can write 𝐶 = ∪𝑟
𝑖=1𝐶𝑖 with 𝐶𝑖 irreducible

for 𝑖 = 1, . . . , 𝑟 . An irreducible curve 𝐶𝑖 of 𝐶 will also be called a branch of 𝐶.
Two germs of plane curves𝐶 = ∪𝑟

𝑖=1𝐶𝑖 and 𝐷 = ∪𝑠
𝑗=1𝐷 𝑗 in (C2, 0) are equisingu-

lar if 𝑟 = 𝑠 and there exists a bijection Ψ : {𝐶𝑖}𝑟𝑖=1 → {𝐷𝑖}
𝑟
𝑖=1 with Ψ(𝐶𝑖) = 𝐷𝑖 and

such that the curves 𝐶𝑖 and 𝐷𝑖 are equisingular branches and (𝐶𝑖 , 𝐶 𝑗 )0 = (𝐷𝑖 , 𝐷 𝑗 )0
for all 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑟}.

In the rest of the section we will consider a curve 𝐶 = ∪𝑟
𝑖=1𝐶𝑖 and, for each

irreducible component 𝐶𝑖 of 𝐶, we denote 𝑛𝑖 = 𝑚0 (𝐶𝑖) the multiplicity of 𝐶𝑖 at
the origin, {𝛽𝑖0, 𝛽

𝑖
1, . . . , 𝛽

𝑖
𝑔𝑖
} the characteristic exponents of 𝐶𝑖 and {(𝑚𝑖

𝑙
, 𝑛𝑖
𝑙
)}𝑔𝑖
𝑖=1 its

Puiseux pairs.
Let 𝜋𝐶 : 𝑋𝐶 → (C2, 0) be the minimal reduction of singularities of 𝐶, that is,

𝜋𝐶 is a morphism composition of a finite sequence of punctual blow-ups such that
the strict transform of the curve 𝐶 by 𝜋𝐶 is a non-singular curve which has normal
crossing with the exceptional divisor 𝜋−1

𝐶
(0). When 𝐶 is an irreducible curve, the

idea of the proof of the existence of a reduction of singularities of a curve 𝐶 is based
on the fact that, after a finite number of punctual blow-ups, the multiplicity of the
strict transform of 𝐶 decreases and hence, a non-singular curve is obtained after
a finite number of punctual blow-ups. In general, it is necessary to do additional
blow-ups to assure that strict transform of the curve 𝐶 has normal crossings with the
exceptional divisor (the details can be found for instance in [78, Theorem 3.3.1] for
the irreducible case and [78, Theorem 3.4.4] for the general case).

Example 1.4.1 Consider the curve𝐶 = (𝑦2−𝑥3 = 0). The strict transform𝐶 (1) = 𝜋∗1𝐶

of 𝐶 by the blow-up of the origin 𝜋1 : 𝑋1 → (C2, 0) is the non-singular curve
𝑦2

1 − 𝑥1 = 0 given in coordinates (𝑥1, 𝑦1) in the first chart of the blow-up. However,
the curve𝐶 (1) is tangent to the exceptional divisor 𝐸1 = 𝜋−1

1 (0) at the origin 𝑃1 of the
first chart. Hence, to obtain a reduction of singularities with normal crossings we need
to perform a new blow-up 𝜋2 : 𝑋2 → (𝑋1, 𝑃1) with center at the point 𝑃1. Now the
strict transform 𝐶 (2) of 𝐶 goes through the intersection point 𝑃2 of the two divisors
𝐸1 and 𝐸2 = 𝜋−1

2 (𝑃1). Finally, we perform a new blow-up 𝜋3 : 𝑋3 → (𝑋2, 𝑃2) with
center at 𝑃2 and we get that 𝜋𝐶 = 𝜋1◦𝜋2◦𝜋3 is the minimal reduction of singularities
of 𝐶.
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We can construct a graph associated to the minimal reduction of singularities 𝜋𝐶
of 𝐶 which also codifies the information concerning the equisingularity data of
the curve 𝐶. The dual graph 𝐺 (𝐶) is the graph whose vertices correspond to the
irreducible components 𝐸 of the exceptional divisor 𝜋−1

𝐶
(0). Two vertices are joined

by an edge when the corresponding divisors intersect. Each irreducible component
𝐶𝑖 of 𝐶 is represented by an arrow attached to the vertex which corresponds to the
only component 𝐸 of the exceptional divisor which intersects the strict transform of
𝐶𝑖 by 𝜋𝐶 . The reader can refer to [39, Section 1.4.3] for a detailed description of the
construction of the dual graph of a curve from the equisingularity data given by the
characteristic exponents.

Now we introduce some notations concerning the dual graph and the equisingu-
larity data of the curve 𝐶 (for more details the reader can refer to [28, Appendix A]
or [31, Section 2.3, Appendix A.1]). Given a vertex 𝐸 of 𝐺 (𝐶), the valence of a
divisor 𝐸 in the dual graph𝐺 (𝐶) is equal to the number of arrows and edges attached
to 𝐸 in 𝐺 (𝐶) (all the incoming and outgoing edges and arrows are counted). Denote
by 𝐸1 the component of 𝜋−1

𝐶
(0) which appears after the blow-up of the origin. We

associate to 𝐸 a number 𝑏𝐸 defined by: 𝑏𝐸 + 1 is the valence of 𝐸 if 𝐸 ≠ 𝐸1 and 𝑏𝐸1

is the valence of 𝐸1.
A divisor 𝐸 of 𝐺 (𝐶) is called a bifurcation divisor of 𝐺 (𝐶) if 𝑏𝐸 ≥ 2 and a

terminal divisor if 𝑏𝐸 = 0. A dead arc is a path which joins a bifurcation divisor
with a terminal divisor without going through other bifurcation divisors. We denote
𝐵(𝐶) the set of bifurcation divisors of 𝐺 (𝐶).

The geodesic of a divisor 𝐸 is the path which joins the first divisor 𝐸1 with the
divisor 𝐸 . The geodesic of an irreducible component𝐶𝑖 is the geodesic of the divisor
which meets the strict transform of the curve 𝐶𝑖 .

Example 1.4.2 Consider the curve 𝐶 = 𝐶1 ∪ 𝐶2 with 𝐶1 = (𝑦2 − 𝑥3 = 0) and
𝐶2 = (𝑦 = 0). The minimal reduction of singularities 𝜋𝐶 of 𝐶 is composed by three
punctual blow-ups 𝜋𝐶 = 𝜋1 ◦ 𝜋2 ◦ 𝜋3. Let 𝜋1 : 𝑋1 → (C2, 0) be the blow-up of
the origin and 𝐸1 = 𝜋−1

1 (0). The strict transform 𝜋∗1𝐶 cuts 𝐸1 in a point 𝑃1, which
correspond to the origin of the first chart of the blow-up. Let 𝜋2 : 𝑋2 → (𝑋1, 𝑃1) be
the blow-up with center at 𝑃1 and 𝐸2 = 𝜋−1

2 (𝑃1). Then the strict transform 𝜋∗2 (𝜋
∗
1𝐶)

cuts 𝐸2 in two points 𝑃2 and 𝑃3. Note that, although the two irreducible components
of 𝜋∗2 (𝜋

∗
1𝐶) are non-singular curves, we need to blow-up with center at point 𝑃2 to

have normal crossings with the exceptional divisor.
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The dual graph 𝐺 (𝐶) of the curve 𝐶 is the following one

We have that 𝑏𝐸1 = 1, 𝑏𝐸2 = 1 and 𝑏𝐸3 = 2. Hence, 𝐸3 is a bifurcation divisor of
𝐺 (𝐶).

The morphism 𝜋1 ◦ 𝜋2 ◦ 𝜋3 is also the minimal reduction of singularities of the
curve 𝐶1 as shown in Example 1.4.1. In this case, the dual graph 𝐺 (𝐶1) is given by

and we have that 𝑏𝐸1 = 1, 𝑏𝐸2 = 0 and 𝑏𝐸3 = 2. Then, 𝐸3 is a bifurcation divisor
and 𝐸2 is a terminal divisor of 𝐺 (𝐶1).

Given two irreducible curves 𝛾 and 𝜉, the coincidence C(𝛾, 𝜉) is defined as

C(𝛾, 𝜉) = sup
1≤𝑖≤𝑚0 (𝛾)
1≤ 𝑗≤𝑚0 (𝜉 )

{
ord𝑡 (𝑦𝛾𝑖 (𝑥) − 𝑦

𝜉

𝑗
(𝑥))

}
where {𝑦𝛾

𝑖
(𝑥)}𝑚0 (𝛾)

𝑖=1 , {𝑦 𝜉
𝑗
(𝑥)}𝑚0 ( 𝜉 )

𝑗=1 are the Puiseux series of 𝛾 and 𝜉 respectively.

Remark 1.4.3 (see [65, Proposition 2.4]) Note that the coincidence C(𝛾, 𝜉) deter-
mines the intersection multiplicity (𝛾, 𝜉)0 and viceversa since we have that

C(𝛾, 𝜉) = 𝛼

𝑚0 (𝛾)
if, and only if,

(𝛾, 𝜉)0
𝑚0 (𝛿)

=
𝛽𝑞

𝑛1 · · · 𝑛𝑞−1
+
𝛼 − 𝛽𝑞
𝑛1 · · · 𝑛𝑞

where {𝛽0, 𝛽1, . . . , 𝛽𝑔} are the characteristic exponents of 𝛾 and 𝛼 is a rational
number with 𝛽𝑞 ≤ 𝛼 < 𝛽𝑞+1 (𝛽𝑔+1 = ∞), {(𝑚𝑖 , 𝑛𝑖)}𝑔𝑖=1 are the Puiseux pairs of 𝛾
(𝑛0 = 1) and {𝛽0, 𝛽1, . . . , 𝛽𝑔} is the minimal system of generators of the semigroup
Γ𝛾 of 𝛾.
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Given an irreducible component 𝐸 of 𝜋−1
𝐶
(0), a curvette �̃� of 𝐸 is a non-singular

curve transversal to 𝐸 at a non-singular point of 𝜋−1
𝐶
(0). The projection 𝛾 = 𝜋𝐶 (�̃�)

is a germ of plane curve in (C2, 0) and, by abuse of notation, we say that 𝛾 is an
𝐸-curvette. All the 𝐸-curvettes have the same multiplicity at the origin that will be
denoted by 𝑚(𝐸) and we denote by 𝜐(𝐸) the coincidence C(𝛾𝐸 , 𝛾′𝐸) between two
different 𝐸-curvettes 𝛾𝐸 , 𝛾′

𝐸
which cut 𝐸 in different points.

There is a partial order in the set of vertices of 𝐺 (𝐶) given by 𝐸 < 𝐸 ′ if the
geodesic of 𝐸 ′ goes through 𝐸 . Hence, if 𝐸 < 𝐸 ′ we have that 𝜐(𝐸) < 𝜐(𝐸 ′).

Example 1.4.4 In any of the dual graphs given in Example 1.4.2, we have that
𝜐(𝐸1) = 1, 𝜐(𝐸2) = 2, 𝜐(𝐸3) = 3

2 and 𝑚(𝐸1) = 𝑚(𝐸2) = 1, 𝑚(𝐸3) = 2.

Given an irreducible component 𝐸 of 𝜋−1
𝐶
(0), we denote by 𝜋𝐸 : 𝑋𝐸 → (C2, 0)

the morphism reduction of 𝜋𝐶 to 𝐸 (see [28, Appendix A]), that is, the morphism
which verifies that

• the morphism 𝜋𝐶 factorizes as 𝜋𝐶 = 𝜋𝐸 ◦ 𝜋′𝐸 where 𝜋𝐸 and 𝜋′
𝐸

are composition
of punctual blow-ups;

• the divisor 𝐸 is the strict transform by 𝜋′
𝐸

of an irreducible component 𝐸𝑟𝑒𝑑 of
𝜋−1
𝐸
(0) and 𝐸𝑟𝑒𝑑 ⊂ 𝑋𝐸 is the only component of 𝜋−1

𝐸
(0) with self-intersection

equal to −1.

More precisely, we have

𝑋𝐶

𝜋𝐶

&&
𝜋′
𝐸
// 𝑋𝐸

𝜋𝐸
// (C2, 0)

𝐸 −→ 𝐸𝑟𝑒𝑑

Remark 1.4.5 Let 𝐸 be an irreducible component of 𝜋−1
𝐶
(0). Note that, if �̃�𝐸 is a

curvette of 𝐸 , then 𝜋′
𝐸
(�̃�𝐸) is a curvette of 𝐸𝑟𝑒𝑑 ⊂ 𝑋𝐸 and we have that curve

𝛾𝐸 = 𝜋𝐶 (�̃�𝐸) = 𝜋𝐸 (𝜋′𝐸 (�̃�𝐸)) is an 𝐸-curvette, with 𝛾𝐸 a curve in (C2, 0). It is clear
that 𝑚(𝐸) = 𝑚(𝐸𝑟𝑒𝑑) = 𝑚0 (𝛾𝐸) and 𝜐(𝐸) = 𝜐(𝐸𝑟𝑒𝑑).

We will denote by 𝜋∗
𝐸
𝐶 the strict transform of 𝐶 by the morphism 𝜋𝐸 . The points

𝜋∗
𝐸
𝐶 ∩ 𝐸𝑟𝑒𝑑 are called infinitely near points of 𝐶 in 𝐸 .

Remark 1.4.6 The number of infinitely near points of 𝜋∗
𝐸
𝐶 in 𝐸𝑟𝑒𝑑 is equal to 𝑏𝐸

when 𝐶 is a curve with only non-singular irreducible components.

Consider any 𝐸-curvette 𝛾𝐸 of a divisor 𝐸 of 𝐺 (𝐶). Let {𝛽𝐸0 , 𝛽
𝐸
1 , . . . , 𝛽

𝐸
𝑔 (𝐸 ) } be

the characteristic exponents of 𝛾𝐸 and {(𝑚𝐸1 , 𝑛
𝐸
1 ), (𝑚

𝐸
2 , 𝑛

𝐸
2 ), . . . , (𝑚

𝐸
𝑔 (𝐸 ) , 𝑛

𝐸
𝑔 (𝐸 ) )}

be the Puiseux pairs of 𝛾𝐸 . Note that 𝑚(𝐸) = 𝑚0 (𝛾𝐸) = 𝛽𝐸0 . If 𝜎 : 𝑀𝛾𝐸 → (C2, 0)
is the minimal reduction of singularities of 𝛾𝐸 , then 𝜋𝐸 factorizes by 𝜎. We have
two possibilities for the value 𝜐(𝐸):
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1. either 𝐸 corresponds to the last divisor which appears in 𝜎 and hence 𝜐(𝐸) =
𝛽𝐸
𝑔 (𝐸 )/𝛽

𝐸
0 . We say that 𝐸 is a Puiseux divisor for 𝐶 and we put 𝑛𝐸 = 𝑛𝑔 (𝐸 ) ,

𝑘𝐸 = 𝑔(𝐸) − 1;
2. or 𝐸 appears in 𝜋𝐸 performing 𝑞 ≥ 1 punctual blow-ups after 𝜎 and we have that
𝜐(𝐸) = (𝛽𝐸

𝑔 (𝐸 ) + 𝑞)/𝛽
𝐸
0 . We put 𝑛𝐸 = 1 and 𝑘𝐸 = 𝑔(𝐸). In this case, if we also

have that 𝐸 is a bifurcation divisor, we say that 𝐸 is a contact divisor.

We define 𝑛
𝐸
= 𝑚(𝐸)/𝑛𝐸 = 𝑛𝐸1 · · · 𝑛

𝐸
𝑘𝐸

. Note that if 𝐸 belongs to a dead arc whose
terminal divisor is 𝐹 we have that 𝑚(𝐹) = 𝑛

𝐸
.

Example 1.4.7 Let us explain with some examples the two possibilities above. Con-
sider a curve 𝐶 with characteristic exponents {4, 6, 9} whose dual graph is given
by

If 𝛾 is an 𝐸3-curvette, then the minimal reduction of singularities of 𝛾 coincides with
𝜋𝐸3 and hence 𝐸3 is a Puiseux divisor for 𝐶. Note that 𝑚(𝐸3) = 2 and 𝜐(𝐸3) = 3

2 .
However, if 𝛿 is an 𝐸4-curvette, then its minimal reduction of singularities is 𝜋𝐸3

instead of 𝜋𝐸4 (that is, we are in case 2.). Hence 𝐸4 is not a Puiseux divisor for 𝐶.
Note that 𝑚(𝐸4) = 2, 𝜐(𝐸4) = 2 and 𝛿 is a curve with one Puiseux pair {(3, 2)}. The
bifurcation divisors of 𝐺 (𝐶) are 𝐸3 and 𝐸6. The divisors 𝐸2 and 𝐸5 are terminal
divisors with 𝑚(𝐸2) = 1 and 𝑚(𝐸5) = 2.

Consider now a curve 𝐶 = 𝐶1 ∪𝐶2 where 𝐶1 and 𝐶2 are two equisingular curves
with characteristic exponents {4, 6, 9} and C(𝐶1, 𝐶2) = 3. Then the dual graph𝐺 (𝐶)
is given by

The bifurcation divisors of 𝐺 (𝐶) are 𝐸3, 𝐸6 and 𝐸7. The divisors 𝐸3 and 𝐸6 are
Puiseux divisors for 𝐺 (𝐶) while 𝐸7 is a contact divisor.

1.4.3 Ramification

Let us explain some properties concerning the behaviour of a plane curve under a
ramification. For a detailed description the reader can refer to [26, 28, 31].

Consider a plane curve 𝐶 = ∪𝑟
𝑖=1𝐶𝑖 in (C2, 0). If 𝑥 = 0 is not tangent to 𝐶, the

ramification 𝜌 : (C2, 0) → (C2, 0) given by 𝜌(𝑢, 𝑣) = (𝑢𝑛, 𝑣) is a 𝐶-transversal
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ramification. In order to have that 𝐶 = 𝜌−1𝐶 has only non-singular irreducible
components, we need that 𝑛 ≡ 0 mod (𝑛1, 𝑛2, . . . , 𝑛𝑟 ) where 𝑛𝑖 = 𝑚0 (𝐶𝑖). Each
curve 𝐶𝑖 = 𝜌−1𝐶𝑖 has exactly 𝑛𝑖 irreducible components, {𝜎𝑖

𝑗
}𝑛𝑖
𝑗=1, which are in

bijection with the Puiseux series of𝐶𝑖 . Hence, the number of irreducible components
of 𝐶 is equal to 𝑚0 (𝐶) = 𝑛1 + · · · + 𝑛𝑟 . In [28] it is proved that the equisingularity
data of 𝐶 can be recovered from the curve 𝜌−1𝐶.

Working with the ramification of a curve allows to deal with the information
provided by the parametrizations of the curve as it was done in [55, 56, 57] where
the authors consider the tree model. The relationship between these two approaches
is explained in [31, Section 7.1].

We are interested in the description of the relationship between the dual graphs
𝐺 (𝐶) and 𝐺 (𝐶) of the minimal reduction of singularities of 𝐶 and 𝐶 respectively.
This relationship will be a very useful tool to prove the results in Sections 1.5 and
1.6.

Note that two consecutive vertices 𝐸 , 𝐸 ′ of 𝐺 (𝐶) with 𝐸 < 𝐸 ′ verify that
𝜐(𝐸 ′) = 𝜐(𝐸)+1. This implies that𝐺 (𝐶) is completely determined by the bifurcation
divisors, the order relations among them and the number of edges which leave from
each bifurcation divisor.

Let 𝐾𝑖 be the geodesic in 𝐺 (𝐶) of a branch 𝐶𝑖 of 𝐶 and let 𝐾𝑖 be the sub-graph
of 𝐺 (𝐶) corresponding to the geodesics of the irreducible components {𝜎𝑖

𝑙
}𝑛𝑖
𝑙=1 of

𝜌−1𝐶𝑖 . Let us explain how to construct 𝐾𝑖 from 𝐾𝑖 . Denote by 𝐵(𝐾𝑖) and 𝐵(𝐾𝑖) the
bifurcation vertices of 𝐾𝑖 and 𝐾𝑖 respectively. We say that a vertex 𝐸 of 𝐵(𝐾𝑖) is
associated to a vertex 𝐸 of 𝐵(𝐾𝑖) if 𝜐(𝐸) = 𝑛𝜐(𝐸). Note that there can be other
bifurcation vertices in 𝐺 (𝐶) ∖ 𝐵(𝐾𝑖) with valuation equal to 𝑛𝜐(𝐸) but they are not
associated to 𝐸 .

If 𝐸 is the first bifurcation divisor of 𝐵(𝐾𝑖) and 𝐸 ′ is its consecutive vertex
in 𝐵(𝐾𝑖), then 𝐸 has only one associated vertex 𝐸 in 𝐵(𝐾𝑖) and there are two
possibilities for the number of edges which leave from it:

• If 𝐸 is a Puiseux divisor for 𝐶𝑖 (that is, 𝐸 is a Puiseux divisor of 𝐺 (𝐶) with
𝜐(𝐸) = 𝛽𝑖1

𝑛𝑖
), then there are 𝑛𝑖1 edges which leave from 𝐸 in 𝐾𝑖; then 𝐸 ′ has 𝑛𝑖1

associated vertices in 𝐵(𝐾𝑖);
• otherwise 𝐸 is a contact divisor for 𝐶𝑖 and there is only one edge which leave

from 𝐸 in 𝐾𝑖; thus 𝐸 ′ has only one associated vertex in 𝐵(𝐾𝑖).

Recall that, if 𝐸 is a Puiseux divisor for𝐶, then 𝐸 is a Puiseux divisor for at least one
irreducible component 𝐶𝑖 but it can be a contact divisor for all the other irreducible
components (see [31]). Consider now any vertex 𝐸 of 𝐵(𝐾𝑖) and assume that we
have constructed the part of 𝐾𝑖 corresponding to the vertices of 𝐾𝑖 with valuation
≤ 𝜐(𝐸). Then there are 𝑛

𝐸
= 𝑛𝑖1 · · · 𝑛

𝑖
𝑘𝐸

vertices {𝐸ℓ }𝑛𝐸
ℓ=1 associated to 𝐸 and

• If 𝐸 is a Puiseux divisor for 𝐶𝑖 , then there are 𝑛𝑖
𝑘𝐸+1 edges which leave from each

vertex 𝐸ℓ in 𝐾𝑖 .
• If 𝐸 is a contact divisor for 𝐶𝑖 , then there is only one edge which leaves from

each vertex 𝐸ℓ in 𝐾𝑖 .
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The dual graph 𝐺 (𝐶) is constructed by gluing the graphs 𝐾𝑖 . Thus we deduced that,
if 𝐸 is a divisor of 𝐺 (𝐶) associated to a divisor 𝐸 of 𝐺 (𝐶), then

𝑏
𝐸
=


𝑏𝐸 , if 𝐸 is a contact divisor for 𝐶;
(𝑏𝐸 − 1)𝑛𝐸 , if 𝐸 is a Puiseux divisor for 𝐶 which belongs

to a dead arc;
(𝑏𝐸 − 1)𝑛𝐸 + 1, if 𝐸 is a Puiseux divisor for 𝐶 which does not

belong to a dead arc.

Note that all vertices in 𝐺 (𝐶) associated to a divisor 𝐸 of 𝐺 (𝐶) have the same
valence. Observe also that there are non-bifurcation divisors of 𝐺 (𝐶) without asso-
ciated divisors in 𝐺 (𝐶).

Example 1.4.8 Let us consider the curve 𝐶 = 𝐶1 ∪ 𝐶2 with 𝐶1 = (𝑦2 − 𝑥3 = 0)
and 𝐶2 = (𝑦 = 0) whose dual graph was given in Example 1.4.2. If we take the
ramification 𝜌(𝑢, 𝑣) = (𝑢2, 𝑣), the curve 𝜌−1𝐶 = 𝐶 is given by 𝑣(𝑣−𝑢3) (𝑣+𝑢3) = 0.
Next figure represents the dual graphs 𝐺 (𝐶) and 𝐺 (𝐶)

where 𝐸1 and 𝐸3 are the associated divisors to 𝐸1 and 𝐸3 respectively, and 𝐶1 =

𝐶1
1 ∪ 𝐶

2
1 .

Other examples describing 𝐺 (𝐶) and 𝐺 (𝐶) can be found in [28, Example 2].
Given two divisors 𝐸ℓ and 𝐸 𝑘 associated to the same bifurcation divisor 𝐸

of 𝐺 (𝐶), there exists a bijection 𝜌ℓ,𝑘 : 𝐸ℓ
𝑟𝑒𝑑
→ 𝐸 𝑘

𝑟𝑒𝑑
which maps the points in

𝜋∗
𝐸ℓ
𝐶𝑖 ∩ 𝐸ℓ𝑟𝑒𝑑 to the points 𝜋∗

𝐸𝑘
𝐶𝑖 ∩ 𝐸 𝑘𝑟𝑒𝑑 (see [31, Appendix A.2]). Moreover, there

is a morphism 𝜌
𝐸ℓ ,𝐸

: 𝐸ℓ
𝑟𝑒𝑑
→ 𝐸𝑟𝑒𝑑 , which is a ramification of order 𝑛𝐸 (see [28,

Lemma 8]), such that 𝜌
𝐸𝑘 ,𝐸
◦ 𝜌ℓ,𝑘 = 𝜌𝐸ℓ ,𝐸

. Note that the morphism 𝜌
𝐸ℓ ,𝐸

maps the
points in 𝜋∗

𝐸ℓ
𝐶𝑖 ∩ 𝐸ℓ𝑟𝑒𝑑 to the only point in 𝜋∗

𝐸
𝐶𝑖 ∩ 𝐸𝑟𝑒𝑑 . We say that the infinitely

near points of 𝐶𝑖 in 𝐸ℓ , that is 𝜋∗
𝐸ℓ
𝐶𝑖 ∩ 𝐸ℓ𝑟𝑒𝑑 , are associated to the infinitely near

point 𝜋∗
𝐸
𝐶𝑖 ∩ 𝐸𝑟𝑒𝑑 of 𝐶𝑖 in 𝐸 .

In [31, Appendix A.3] we can found a description of the behaviour of logarithmic
foliations under ramifications.
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1.5 Topological properties of polar curves of foliations

In this section we will state the results concerning the topological properties of polar
curves of singular foliations that depend on the local invariants of the foliations. The
notations introduced in Section 1.4 will be useful to state the results concerning the
decomposition results of polar and jacobian curves of foliations.

Recall that if F is a foliation in (C2, 0) defined by a 1-form 𝜔 = 0, with 𝜔 =

𝐴(𝑥, 𝑦)𝑑𝑥 + 𝐵(𝑥, 𝑦)𝑑𝑦, a generic polar curve PF is given by

𝑎𝐴(𝑥, 𝑦) + 𝑏𝐵(𝑥, 𝑦) = 0

with [𝑎 : 𝑏] ∈ P1
C.

One of the main tools used in the study of properties of polar curves is the Newton
polygon. Let us recall its definition. Let F be a foliation in (C2, 0) defined by a 1-
form 𝜔 = 0, with 𝜔 = 𝐴(𝑥, 𝑦)𝑑𝑥 + 𝐵(𝑥, 𝑦)𝑑𝑦, 𝐴, 𝐵 ∈ C{𝑥, 𝑦}. The Newton polygon
N(F ; 𝑥, 𝑦) = N(𝜔; 𝑥, 𝑦) is defined as the Newton polygon of the ideal generated
by 𝑥𝐴 and 𝑦𝐵. More precisely, N(F ; 𝑥, 𝑦) is the convex envelop of Δ(𝜔) + (R≥0)2
where Δ(𝜔) = {(𝑖, 𝑗) : 𝜔𝑖 𝑗 ≠ 0} is the support of 𝜔 and 𝜔 =

∑
𝑖, 𝑗 𝜔𝑖 𝑗 with

𝜔𝑖 𝑗 = 𝐴𝑖 𝑗𝑥
𝑖−1𝑦 𝑗𝑑𝑥 + 𝐵𝑖 𝑗𝑥𝑖𝑦 𝑗−1𝑑𝑦. (1.11)

For a plane curve 𝐶 defined by the reduced equation 𝑓 = 0, we can write 𝑓 =∑
𝑖 𝑗 𝑓𝑖 𝑗𝑥

𝑖𝑦 𝑗 and define the support Δ( 𝑓 ) = {(𝑖, 𝑗) : 𝑓𝑖 𝑗 ≠ 0}. Hence the Newton
polygon N(𝐶; 𝑥, 𝑦) of the curve 𝐶 is the convex envelop of Δ( 𝑓 ) + (R≥0)2. Note
that N(𝐶; 𝑥, 𝑦) = N(𝑑𝑓 ; 𝑥, 𝑦). It is known that if F is a generalized curve foliation
with 𝐶 as curve of separatrices we have that

N(F ; 𝑥, 𝑦) = N(𝐶; 𝑥, 𝑦)

(see [70] or [71, Proposition 3.8]).
Since the knowledge of the Newton polygon is useful to describe the infinitely

near points of a curve (see [26]), we wonder if it is possible to determine the Newton
polygon of PF in terms of the one of F . As we will see, the Camacho-Sad indices
of F have a great influence in that relationship. A first result in this direction is the
following

Lemma 1.5.1 [26, Proposition 3.5] Let F be a singular foliation in (C2, 0) and
consider a side 𝐿 ofN(F ; 𝑥, 𝑦) with slope −1/𝜇 with 𝜇 ∈ Q and 𝜇 ≥ 1. If 𝑖+ 𝜇 𝑗 = 𝑘
is the equation of the line which contains 𝐿, then

N(PF; 𝑥, 𝑦) ⊂ {(𝑖, 𝑗) : 𝑖 + 𝜇 𝑗 ≥ 𝑘 − 𝜇}.

Note that the lemma above does not provide enough information to describe the
slopes of N(PF; 𝑥, 𝑦) as the following example shows.

Example 1.5.2 Consider the foliations F𝑖 defined by the 1-forms 𝜔𝑖 = 0, 𝑖 = 1, 2,
with 𝜔1 = (𝑦2 − 4𝑥𝑦2 − 4𝑥2𝑦 − 𝑥4)𝑑𝑥 + (𝑦2 + 2𝑥2𝑦 + 2𝑥3 − 𝑥4)𝑑𝑦 and 𝜔2 = (𝑦2 −
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4𝑥3𝑦 − 5𝑥4)𝑑𝑥 + (3𝑦2 + 2𝑥𝑦 − 𝑥4)𝑑𝑦. Both foliations are generalized curve foliations
with curve of separatrices𝐶 given by (𝑦+𝑥) (𝑦−𝑥2) (𝑦+𝑥2) = 0 (this can be checked
using Theorem 1.2.1 or from the description of their reduction of singularities given
below). Hence F1 and F2 have the same Newton polygon. However, N(PF1 ) and
N(PF2 ) are different as it is shown in the figure below:

The black points denote points in Δ(𝜔𝑖 ) while the points marked with ◦ are points in the
support of PF𝑖 .

In fact, the reader can check that the foliations F1 and F2 are non-dicritical
logarithmic foliations with 𝑓1 = (𝑦+𝑥), 𝑓2 = (𝑦−𝑥2), 𝑓3 = (𝑦+𝑥2),𝜆(F1) = (1, 1,−1)
and 𝜆(F2) = (1, 1, 1). From the Newton polygons of PF1 and PF2 we can deduce
that the curve PF1 is an irreducible curve with one Puiseux pair {(3, 2)} while PF2

have two non-singular irreducible components. If 𝜋1 : 𝑀1 → (C2, 0) is the blow-up
of the origin, there are two infinitely near points 𝑃1, 𝑃2 of 𝐶 in 𝐸1. Assume that 𝑃1
is the infinitely near point of the curve 𝑦 + 𝑥 = 0. Hence, the curve PF1 is tangent
to the exceptional divisor 𝐸1 = 𝜋−1

1 (0) at the point 𝑃2 and PF1 does not satisfy the
statement of Theorem 1.5.6 below.

The reduction of singularities of F1 and F2 coincides with the one of 𝐶 given by

C3E1 E1

C1

E2

C2

C1

The computation of the Camacho-Sad indices for a logarithmic foliation L𝜆, 𝑓 gives
(see the proof of [26, Proposition 4.4]) :

I𝑃1 (L𝜆, 𝑓 , 𝐸1) = − 𝜆1
𝜆1+𝜆2+𝜆3

; I𝑄1 (L𝜆, 𝑓 , 𝐸2) = − 𝜆1+𝜆2+𝜆3
𝜆1+2(𝜆2+𝜆3 ) ;

I𝑄2 (L𝜆, 𝑓 , 𝐸2) = − 𝜆2
𝜆1+2(𝜆2+𝜆3 ) ; I𝑄3 (L𝜆, 𝑓 , 𝐸2) = − 𝜆3

𝜆1+2(𝜆2+𝜆3 ) ;

where, by abuse of notation, we put L𝜆, 𝑓 to refer to the strict transform of the
foliation by the corresponding morphism. Hence, for the foliations F1 and F2 we get

I𝑃1 (F1, 𝐸1) = −1; I𝑄1 (F1, 𝐸1) = −1; I𝑄2 (F1, 𝐸1) = −1; I𝑄3 (F1, 𝐸1) = 1;

I𝑃1 (F2, 𝐸1) = − 1
3 ; I𝑄1 (F2, 𝐸1) = − 3

5 ; I𝑄2 (F2, 𝐸1) = − 1
5 ; I𝑄3 (F2, 𝐸1) = − 1

5 .
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In order have a more detailed description of N(PF; 𝑥, 𝑦), we have to control the
“contribution” to the Newton polygon of F of the coefficients 𝐴 and 𝐵 of the 1-form
𝜔 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦 defining F . More precisely, a point (𝑖, 𝑗) ∈ Δ(𝜔) is said to be a
contribution of 𝐵 if 𝐵𝑖 𝑗 ≠ 0 in the expression (1.11). We have the following results
that can be found in [26]

Proposition 1.5.3 [26, Proposition 3.4] Let F be a generalized curve foliation in
(C2, 0) and take a side 𝐿 of the Newton polygonN(F ) with slope −1/𝑝, 𝑝 ∈ N. If 𝐿
has no contribution of 𝐵 in his highest vertex, then there is a corner in the reduction
of singularities of F with Camacho-Sad index equal to −1.

Example 1.5.4 In Example 1.5.2, the side 𝐿2 of N(F1) does not have contribution
of 𝐵 and hence F1 has Camacho-Sad index equal to −1 at the corner 𝑄2.

If L is a logarithmic foliation with non-singular separatrices, we can explicitly
compute the Camacho-Sad indices at all the infinitely near points in the reduction
of singularities in terms of the exponent vector 𝜆(L) and conclude that, if L is
non-resonant, then there is no Camacho-Sad index equal to −1 in any corner of
the reduction of singularities of L (see [26, Proposition 4.4]). This result implies
the contribution of 𝐵 in the highest vertex of all the sides of N(L). We deduce
that, if F is a non-dicritical generalized curve such that its logarithmic model is
non-resonant and such that the irreducible components of its curve of separatrices
are non-singular, we have

(★) if N(F; 𝑥, 𝑦) has 𝑠 sides with slopes −1/𝑝 𝑗 , 𝑝 𝑗 ∈ N, 𝑗 = 1, . . . , 𝑠 and 𝑝1 < 𝑝2 <

· · · < 𝑝𝑠 , then the first 𝑠−1 sides ofN(PF ; 𝑥, 𝑦) are obtained from the ones ofN(F; 𝑥, 𝑦)
by a vertical translation of one unit and the others sides have slope ≥ −1/𝑝𝑠 .

Behaviour of the Newton polygon of F and PF when they verify property (★).

Remark 1.5.5 Note that if G 𝑓 is the hamiltonian foliation given by 𝑑𝑓 = 0 and
𝐶 = ( 𝑓 = 0), we have the following property:

If the Newton polygon N(G 𝑓 ; 𝑥, 𝑦) has 𝑠 sides 𝐿1, 𝐿2, . . . , 𝐿𝑠 with 𝐿ℓ contained in the
line given by 𝑖+𝛼ℓ 𝑗 = 𝑘ℓ with 𝛼ℓ ∈ Q, 𝛼ℓ ≥ 1, then the first 𝑠−1 sides ofN(PG 𝑓 ; 𝑥, 𝑦) =
N(P𝐶 ; 𝑥, 𝑦) are obtained from the ones of N(G 𝑓 ; 𝑥, 𝑦) by a vertical translation of one
unit and the other sides are contained in the region { (𝑖, 𝑗 ) : 𝑖 + 𝛼𝑠 𝑗 ≥ 𝑘𝑠 − 𝛼𝑠 }.

This property can be deduce from the fact that the hamiltonian foliation G 𝑓 is a
non-resonant logarithmic foliation, or directly from the expression of the 1-form
defining G 𝑓 . In fact, since G 𝑓 is defined by 𝑑𝑓 = 0, then the coefficients of the



32 Nuria Corral

1-form that defines G 𝑓 are 𝐴 =
𝜕 𝑓

𝜕𝑥
and 𝐵 =

𝜕 𝑓

𝜕𝑦
. Hence, if (𝑖, 𝑗) ∈ Δ( 𝑓 ) with 𝑗 ≥ 1,

then (𝑖, 𝑗 − 1) ∈ Δ( 𝜕 𝑓
𝜕𝑦
), and thus each side 𝐿 of N(G 𝑓 ; 𝑥, 𝑦) has contribution of 𝐵

in its highest vertex and we get that

if (𝑖, 𝑗) ∈ Δ(𝑑𝑓 ) = Δ( 𝑓 ) with 𝑗 ≥ 1, then (𝑖, 𝑗−1) ∈ Δ
(
𝜕 𝑓

𝜕𝑦

)
⊂ Δ

(
𝑎
𝜕 𝑓

𝜕𝑥
+ 𝑏 𝜕 𝑓

𝜕𝑦

)
,

for generic 𝑎, 𝑏 (see the proof of [26, Proposition 3.5] for more details).
In particular, hamiltonian foliations always satisfy property (★) when its curve

of separatrices has non-singular irreducible components (and hence all the slopes of
the Newton polygon are of the type −1/𝑝 with 𝑝 ∈ N).

Property (★) is key to prove the decomposition result for generic polar curves of
foliations. The strategy is to prove first the decomposition theorem for foliations
whose curve of separatrices has non-singular irreducible components and then study
the general case considering a ramification 𝜌 : (C2, 0) → (C2, 0) of the type
𝜌(𝑢, 𝑣) = (𝑢𝑛, 𝑣) such that the curve of separatrices 𝜌−1𝐶 of 𝜌∗F has non-singular
irreducible components.

1.5.1 The case of non-singular separatrices

Let us consider first the case of a foliation F in (C2, 0) such that its curve of
separatrices 𝐶 has only non-singular irreducible components. We have that

Theorem 1.5.6 [26, Theorem 6.1] Let F be a non-dicritical generalized curve fo-
liation in (C2, 0) with non-resonant logarithmic model. Assume that all the irre-
ducible components of the curve 𝐶 of separatrices of F are non-singular curves.
Let 𝜋 : (𝑁, 𝑃) → (C2, 0) be a finite sequence of punctual blow-ups such that 𝑃 is
an infinitely near point of 𝐶, then

𝑚𝑃 (𝜋∗PF) = 𝑚𝑃 (𝜋∗𝐶) − 1,

where 𝜋∗PF , 𝜋∗𝐶 denote the strict transforms of PF , 𝐶 by 𝜋. Moreover, the curve
𝜋∗PF is transversal to the exceptional divisor 𝜋−1 (0) at 𝑃.

Consider 𝜋𝐶 : 𝑋𝐶 → (C2, 0) the minimal reduction of singularities of 𝐶. Given
a component 𝐸 of the divisor 𝜋−1

𝐶
(0), we consider the morphism 𝜋𝐸 : 𝑋𝐸 → (C2, 0)

reduction of 𝜋𝐶 to 𝐸 and we write 𝜋𝐶 = 𝜋𝐸 ◦𝜋′𝐸 . In the conditions of Theorem 1.5.6,
given a bifurcation divisor 𝐸 of 𝐺 (𝐶), we define the curve P𝐸 as the union of the
branches 𝜉 of PF such that

• 𝜋∗
𝐸
𝜉 ∩ 𝜋∗

𝐸
𝐶 = ∅;

• if 𝐸 ′ < 𝐸 , then 𝜋∗
𝐸
𝜉 ∩ 𝜋′

𝐸
(𝐸 ′) = ∅.

Thus, if 𝐵(𝐶) is the set of bifurcation vertices of 𝐺 (𝐶), there is a unique decompo-
sition PF = ∪𝐸∈𝐵(𝐶 )𝑃𝐸 such that
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d1.𝑚0 (𝑃𝐸) = 𝑏𝐸 − 1;
d2. 𝜋∗

𝐸
𝑃𝐸 ∩ 𝜋∗

𝐸
𝐶 = ∅;

d3. if 𝐸 ′ < 𝐸 , then 𝜋∗
𝐸
𝑃𝐸 ∩ 𝜋′

𝐸
(𝐸 ′) = ∅;

d4. if 𝐸 ′ > 𝐸 , then 𝜋∗
𝐸′𝑃

𝐸 ∩ 𝐸 ′
𝑟𝑒𝑑

= ∅.
In particular, if 𝐸 is not a bifurcation divisor, then 𝜋∗

𝐸
P ∩ 𝐸𝑟𝑒𝑑 = 𝜋∗

𝐸
𝐶 ∩ 𝐸𝑟𝑒𝑑 .

Consequently, properties d1-d4 above imply the following ones stated in terms of
the coincidences and the data in 𝐺 (𝐶).

Corollary 1.5.7 [26, Corollaire 6.2] Let F be a non-dicritical generalized curve
foliation in (C2, 0) with non-resonant logarithmic model. Let 𝐶 = ∪𝑟

𝑖=1𝐶𝑖 be the
curve of separatrices of F and assume that all the irreducible components 𝐶𝑖 of
𝐶 are non-singular curves. If PF is a generic polar curve of F , there is a unique
decomposition PF = ∪𝐸∈𝐵(𝐶 )𝑃𝐸 of such that

1. 𝑚0 (𝑃𝐸) = 𝑏𝐸 − 1;
2. for each irreducible component 𝜉 of 𝑃𝐸 , we have that

(i) C(𝐶𝑖 , 𝜉) = 𝜐(𝐸) if 𝐸 belongs to the geodesic of 𝐶𝑖;
(ii) C(𝐶 𝑗 , 𝜉) = C(𝐶 𝑗 , 𝐶𝑖) if 𝐸 belongs to the geodesic of 𝐶𝑖 but not to the one of
𝐶 𝑗 .

1.5.2 General case

Let us consider now the general case. Let 𝐶 be the curve of separatrices of the
foliation F . Assume that 𝑥 = 0 is not in the tangent cone of 𝐶. Then the morphism
𝜌 : (C2, 0) → (C2, 0) given by 𝜌(𝑢, 𝑣) = (𝑢𝑛, 𝑣) is a ramification transverse
to 𝐶 (see Section 1.4.3). If 𝑛 = 𝑚0 (𝐶), then all the irreducible components of
𝜌−1𝐶 are non-singular curves. Note that, if F is a non-dicritical generalized curve
foliation with𝐶 as curve of separatrices, then 𝜌∗F is also a non-dicritical generalized
curve foliation with 𝜌−1𝐶 as curve of separatrices. Moreover, logarithmic models of
foliations also behave well under ramifications (see [26, Section 7]).

In general, the curve 𝜌−1PF is not equisingular to the curve P𝜌∗F: it is enough
to consider the foliation F given by 𝑑 (𝑦3 − 𝑥11) = 0 and 𝜌(𝑢, 𝑣) = (𝑢3, 𝑣). The
curve 𝜌−1PF = {−11𝑎𝑢30 + 3𝑏𝑣2 = 0} has two non-singular branches 𝛾1, 𝛾2 with
coincidence equal to C(𝛾1, 𝛾2) = 15 while the curve P𝜌∗F = {−11𝑎𝑢32 + 𝑏𝑣2 = 0}
has also two non-singular branches 𝛿1, 𝛿2 but with coincidence C(𝛿1, 𝛿2) = 16.

However, we can prove the following result. Let us denote 𝐶 = 𝜌−1𝐶 and let
𝜋
𝐶

: 𝑋
𝐶
→ (C2, 0) be the minimal reduction of singularities of 𝐶, then

Lemma 1.5.8 [28, Lemma 6] Let F ∈ G𝐶 with non-resonant logarithmic model.
For each irreducible component 𝐸 of 𝜋−1

𝐶
(0) with 𝜐(𝐸) > 𝑛, we have that

𝜋∗
𝐸
(𝜌−1PF) ∩ 𝐸𝑟𝑒𝑑 = 𝜋∗

𝐸
P𝜌∗F ∩ 𝐸𝑟𝑒𝑑 .

Moreover, 𝑚𝑃 (𝜋∗
𝐸
(𝜌−1PF)) = 𝑚𝑃 (𝜋∗

𝐸
P𝜌∗F) for each 𝑃 ∈ 𝜋∗

𝐸
(𝜌−1PF) ∩ 𝐸𝑟𝑒𝑑 .
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Since P𝜌∗F satisfies Theorem 1.5.6, the previous proposition allows to prove next
result

Theorem 1.5.9 [26, Proposition 7.6] Let F be a non-dicritical generalized curve
foliation with non-resonant logarithmic model and 𝐶 as curve of separatrices. Con-
sider any ramification 𝜌 : (C2, 0) → (C2, 0) transverse to 𝐶 such that 𝜌−1𝐶 has
non-singular irreducible components. If 𝜋 : (𝑁, 𝑃) → (C2, 0) is a sequence of
punctual blow-ups such that 𝑃 is an infinitely near point of 𝜌−1𝐶, then

𝑚𝑃 (𝜋∗ (𝜌−1PF)) = 𝑚𝑃 (𝜋∗ (𝜌−1𝐶)) − 1

and the curve 𝜋∗ (𝜌−1PF) is transversal to the exceptional divisor 𝜋−1 (0) at 𝑃.

As we have already explained in Section 1.5.1, the result above allows to give a
decomposition

𝜌−1PF =
⋃

𝐸∈𝐵(𝐶 )

𝑃𝐸

as the one described in Corollary 1.5.7, where𝐶 = 𝜌−1𝐶. Thanks to the relationship
between the dual graphs 𝐺 (𝐶) and 𝐺 (𝐶) (see Section 1.4.3 and [28, Appendix B]),
we get a decomposition

PF =
⋃

𝐸∈𝐵(𝐶 )
𝑃𝐸

where 𝜌−1𝑃𝐸 = ∪𝑛𝐸
𝑖=1𝑃

𝐸 𝑗 with {𝐸 𝑗 }𝑛𝐸
𝑗=1 the divisors of 𝐺 (𝐶) associated to 𝐸 in

𝐺 (𝐶). Hence, we recover the usual statement of the decomposition result for a
generic polar curve:

Theorem 1.5.10 (Decomposition theorem [25],[26, Theorem 5.1]) Let F be a non-
dicritical generalized curve foliation with non-resonant logarithmic model and 𝐶 as
curve of separatrices. Let 𝐵(𝐶) be the set of bifurcation divisors of 𝐺 (𝐶). Then a
generic polar curve PF has a decomposition

PF =
⋃

𝐸∈𝐵(𝐶 )
𝑃𝐸

such that

D1. 𝑚0 (𝑃𝐸) =
{
𝑛
𝐸
𝑛𝐸 (𝑏𝐸 − 1), if 𝐸 does not belong to a dead arc;

𝑛
𝐸
𝑛𝐸 (𝑏𝐸 − 1) − 𝑛

𝐸
, otherwise.

D2. For each irreducible component 𝜉 of 𝑃𝐸 , we have that

i) C(𝐶𝑖 , 𝜉) = 𝜐(𝐸) if 𝐸 belongs to the geodesic of 𝐶𝑖;
ii) C(𝐶𝑘 , 𝜉) = C(𝐶𝑘 , 𝐶𝑖) if 𝐸 belongs to the geodesic of 𝐶𝑖 but not to the one of
𝐶𝑘 .

The result above generalizes the decomposition theorem given by E. Garcı́a-Barroso
in [39, 40] for a generic polar curve of a plane curve with several irreducible
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components (see also [55]). Note that the above description does not determine
completely the topological type of PF as it is showed in next example.

Example 1.5.11 ([28, Example 1]). Consider the foliations F𝑖 given by 𝜔𝑖 = 0 where

𝜔1 = 𝑑 (𝑦5 − 𝑥11),
𝜔2 = 11(−𝑥10 + 𝑦2𝑥6)𝑑𝑥 + 5(𝑦4 − 𝑥7𝑦)𝑑𝑦,
𝜔3 = 11(−𝑥10 + 𝑦𝑥8)𝑑𝑥 + 5(𝑦4 − 𝑥9)𝑑𝑦.

The curve𝐶 = (𝑦5− 𝑥11 = 0) is the only separatrix of each F𝑖 . In fact, if we consider
𝛾(𝑡) = (𝑡5, 𝑡11), we have that 𝛾∗𝜔𝑖 ≡ 0. Moreover, the computation of Milnor number
gives 𝜇0 (F𝑖) = 40 = 𝜇0 (𝐶) for 𝑖 = 1, 2, 3, hence by Theorem 1.2.1, the foliations F𝑖
are non-dicritical generalized curve foliations in G𝐶 .

The generic polar curves PF1 , PF2 and PF3 are not equisingular:

• PF1 have two branches 𝛾1, 𝛾2, each of them with characteristic exponents {2, 5}
and coincidence C(𝛾1, 𝛾2) = 5

2 .
• PF2 has two irreducible components 𝛿1, 𝛿2. One branch 𝛿1 has characteristic

exponents {3, 7} and the branch 𝛿2 is a non-singular curve. The coincidence
between both branches is given by C(𝛿1, 𝛿2) = 7

3 .
• PF3 is an irreducible curve with characteristic exponents {4, 9}.

In these examples, the minimal reduction of singularities of 𝐶 gives also a reduction
of singularities of a generic polar curve as shows next figure.

The grey arrows correspond to the branches of a generic polar curve. The black arrow
represents the curve 𝐶.

Note that, in general, the minimal reduction of singularities of F is not a reduction
of singularities of PF , although we can deduce some properties of 𝜋∗

𝐶
PF . For

instance, if 𝐶 is an irreducible curve, from the properties of the decomposition of
PF , we get that, given a bifurcation divisor 𝐸 of 𝐺 (𝐶), the curve 𝜋∗

𝐸
𝑃𝐸 does not

intersect 𝐸𝑟𝑒𝑑 since 𝑚0 (𝑃𝐸) < 𝑚(𝐸). The branches of 𝑃𝐸 go through the divisors
in the dead arc corresponding to 𝐸 as shown in the previous example. In [40, Section
5.1], for the generic polar curve P𝐶 of a plane curve 𝐶, E. Garcı́a Barroso gives a
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description of some the properties of the branches of the curves 𝑃𝐸 which appear in
the decomposition theorem in terms of the Eggers diagram of the curve 𝐶.

However, we are able to determine completely the topological type of a generic
polar curve of a foliation F provided we impose conditions over the equisingularity
type of the curve 𝐶 of separatrices of F and we assume that the exponents vector
𝜆(F ) belongs to a Zariski open set 𝑈𝐶 ⊂ P𝑟−1

C which depends on the analytic type
of the curve𝐶 (a detailed description of the set𝑈𝐶 can be found in [28]: in Section 4
when the curve 𝐶 has non-singular irreducible components, and in Section 6 for the
general case). Foliations F with 𝜆(F ) ∈ 𝑈𝐶 are called Zariski-general foliations.
We say that a curve 𝐶 has a kind equisingularity type if for each dead arc of 𝐺 (𝐶)
with bifurcation divisor 𝐸 and terminal divisor 𝐹 we have that 𝑚(𝐸) = 2𝑚(𝐹), that
is, 𝑛𝐸 = 2 for any bifurcation divisor 𝐸 of 𝐺 (𝐶) which belongs to a dear arc. We
can state now the result which describes the equisingularity type of PF in terms of
the dual graph 𝐺 (𝐶):

Theorem 1.5.12 [28, Proposition 5] Let 𝐶 be a curve with kind equisingularity
type and consider a Zariski-general foliation F . Then the minimal reduction of
singularities 𝜋𝐶 of 𝐶 is also a reduction of singularities of PF ∪ 𝐶. Moreover,
the irreducible components of PF intersect an irreducible component 𝐸 of the
exceptional divisor 𝜋−1

𝐶
(0) as follows:

• if 𝐸 is a bifurcation divisor of 𝐺 (𝐶), the number of branches of PF that intersect
𝐸 is equal to 𝑏𝐸 − 2 if 𝐸 belongs to a dead arc and to 𝑏𝐸 − 1 otherwise;

• if 𝐸 is a terminal divisor of a dead arc of 𝐺 (𝐶), there is exactly one branch of
PF that intersects 𝐸;

• otherwise, no branches of PF intersect 𝐸 .

In the conditions of theorem above, we can obtain the dual graph 𝐺 (𝐶 ∪ PF) from
𝐺 (𝐶). We only need to add the arrows corresponding to the branches of PF as
shown in next example (see [27]).

The black arrows represents the branches of𝐶. The grey arrows correspond to the branches
of a generic polar curve.

In particular, a complete description of the characteristic exponents of the
branches of PF can be given in terms of the equisingularity data of 𝐶 as follows

Lemma 1.5.13 [28, Lemma 4] Let 𝐶 be a curve with kind equisingularity type and
consider a Zariski-general foliation F . Let PF = ∪𝐸∈𝐵(𝐶 )𝑃𝐸 be the decomposition
of PF given in Theorem 1.5.10. Then, for each 𝐸 ∈ 𝐵(𝐶), we have that
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(i) if𝐸 is a contact divisor, then the curve𝑃𝐸 has 𝑏𝐸−1 irreducible components. Each
irreducible component 𝜉 of 𝑃𝐸 has characteristic exponents {𝜈 𝜉0 , 𝜈

𝜉

1 , . . . , 𝜈
𝜉

𝑘𝐸
}

given by

𝜈
𝜉

0 = 𝑚0 (𝜉) = 𝑛𝐸 , 𝜈
𝜉

ℓ
= 𝑛

𝐸
𝛽𝑖ℓ/𝑛

𝑖 for ℓ = 1, 2, . . . , 𝑘𝐸 ,

where 𝐶𝑖 is any irreducible component of 𝐶 such that 𝐸 belongs to its geodesic;
(ii) if 𝐸 is a Puiseux divisor which belongs to a dead arc, the curve 𝑃𝐸 has one

irreducible component 𝜉0 with characteristic exponents {𝜈 𝜉0
0 , 𝜈

𝜉0
1 , . . . , 𝜈

𝜉0
𝑘𝐸
} given

by
𝜈
𝜉0
0 = 𝑚0 (𝜉0) = 𝑛𝐸 , 𝜈

𝜉0
ℓ

= 𝑛
𝐸
𝛽𝑖ℓ/𝑛

𝑖 for ℓ = 1, 2, . . . , 𝑘𝐸 ,

and 𝑏𝐸 − 2 irreducible components such that each branch 𝜉 of 𝑃𝐸 , 𝜉 ≠ 𝜉0, has
characteristic exponents {𝜈 𝜉0 , 𝜈

𝜉

1 , . . . , 𝜈
𝜉

𝑘𝐸
, 𝜈
𝜉

𝑘𝐸+1} given by

𝜈
𝜉

0 = 𝑚0 (𝜉) = 𝑛𝐸𝑛𝐸 , 𝜈
𝜉

ℓ
= 𝑛

𝐸
𝑛𝐸𝛽

𝑖
ℓ/𝑛

𝑖 for ℓ = 1, 2, . . . , 𝑘𝐸 + 1,

where 𝐶𝑖 is any irreducible component of 𝐶 such that 𝐸 belongs to its geodesic
and 𝜐(𝐸) = 𝛽𝑖

𝑘𝐸+1/𝛽
𝑖
0;

(iii) if 𝐸 is a bifurcation divisor which does not belong to a dead arc, then 𝑃𝐸

has 𝑏𝐸 − 1 irreducible components. Each irreducible component 𝜉 of 𝑃𝐸 with
characteristic exponents {𝜈 𝜉0 , 𝜈

𝜉

1 , . . . , 𝜈
𝜉

𝑘𝐸
, 𝜈
𝜉

𝑘𝐸+1} given by

𝜈
𝜉

0 = 𝑚0 (𝜉) = 𝑛𝐸𝑛𝐸 , 𝜈
𝜉

ℓ
= 𝑛

𝐸
𝑛𝐸𝛽

𝑖
ℓ/𝑛

𝑖 for ℓ = 1, 2, . . . , 𝑘𝐸 + 1,

where 𝐶𝑖 is any irreducible component of 𝐶 such that 𝐸 belongs to its geodesic
and 𝜐(𝐸) = 𝛽𝑖

𝑘𝐸+1/𝛽
𝑖
0.

Note that hamiltonian foliations 𝑑𝑓 = 0 have vector of exponents 𝜆 = 1 and it can
happen that 1 ∉ 𝑈𝐶 . For instance, if we consider 𝑓 (𝑥, 𝑦) = 𝑦(𝑦−𝑥2) (2𝑦−(1+

√
3𝑖)𝑥2),

then a generic polar curve P𝑑 𝑓 is an irreducible curve with a Puiseux pair (5, 2) (see
[27] for other examples).

Nevertheless, E. Casas-Alvero proved that it is possible to determine the equisin-
gularity type of generic polar curves of a plane curve 𝐶 provided that the curve 𝐶 is
generic in its equisingularity class (see [16] and [18, Section 6.6], for the irreducible
case and [17] for the general case). Recently, some papers also deal with the study
of the equisingularity type of generic polar curves of irreducible plane curves (see
[53, 50, 51, 52, 54]).

Moreover, with the hypothesis of Theorem 1.5.12, it is possible to describe the
minimal resolution of singularities 𝜎 : 𝑋 → (C2, 0) of the polar pencil {𝑎𝐴 + 𝑏𝐵 =

0 : 𝑎, 𝑏 ∈ C} of F , that is, 𝜎 is a morphism which gives a partial reduction
of singularities of the polar foliation defined by 𝑑 (𝐴/𝐵) = 0 in the sense that the
minimal reduction of singularities 𝜋 : 𝔛 → (C2, 0) of the polar foliation factorizes
as 𝜋 = 𝜎 ◦ 𝜏 where 𝜏 : 𝔛 → 𝑋 is a finite sequence of non-dicritical punctual
blow-ups (see [30, Theorem 1]).
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1.6 Topological properties of jacobian curves of foliations

The aim of this section is to describe properties of the equisingularity type of the
jacobian curve JF,G of two singular foliations F and G in terms of invariants of the
foliations. A first remark is that any curve ℎ(𝑥, 𝑦) = 0 can be the jacobian curve of
two non-singular foliations: it is enough to consider the foliations given by 𝑑𝑥 = 0
and 𝑑𝑥 + ℎ(𝑥, 𝑦)𝑑𝑦 = 0.

Let F and G be two singular foliations defined by the 1-forms 𝜔 = 𝐴(𝑥, 𝑦)𝑑𝑥 +
𝐵(𝑥, 𝑦)𝑑𝑦 and 𝜂 = 𝑃(𝑥, 𝑦)𝑑𝑦 + 𝑄(𝑥, 𝑦)𝑑𝑦 respectively. The jacobian curve JF,G is
the curve of contact of both foliations 𝜔 ∧ 𝜂 = 0, that is, the curve JF,G is given by
𝐽 (𝑥, 𝑦) = 0 where

𝐽 (𝑥, 𝑦) =
���� 𝐴(𝑥, 𝑦) 𝐵(𝑥, 𝑦)𝑃(𝑥, 𝑦) 𝑄(𝑥, 𝑦)

���� .
Note that if F and G have a common separatrix, then this invariant curve is a branch
of the jacobian curve JF,G . Hence, from now on, we will assume that F and G have
no common separatrix.

The topology of the jacobian curve JF,G depends on “how similar” are the
foliations F and G in terms of its singularities and Camacho-Sad indices at the
common singularities. Let us illustrate this fact explaining the behaviour of the
multiplicity 𝑚0 (JF,G).

The first topological invariant of JF,G that we can consider is the multiplic-
ity 𝑚0 (JF,G). Note that 𝑚0 (JF,G) ≥ 𝜈0 (F ) + 𝜈0 (G). In particular, 𝑚0 (JF,G) >
𝜈0 (F ) + 𝜈0 (G) implies that the jets 𝑗 𝜈0 (F) (𝜔) and 𝑗 𝜈0 (G) (𝜂) are proportional since,
if we write 𝐽 (𝑥, 𝑦) = ∑

ℓ≥𝜈0 (F)+𝜈0 (G) 𝐽ℓ (𝑥, 𝑦) with 𝐽ℓ homogeneous polynomials of
degree ℓ or zero, we have that

𝐽𝜈0 (F)+𝜈0 (G) (𝑥, 𝑦) = 𝐴𝜈0 (F) (𝑥, 𝑦)𝑄𝜈0 (G) (𝑥, 𝑦) − 𝐵𝜈0 (F) (𝑥, 𝑦)𝑃𝜈0 (G) (𝑥, 𝑦)

where 𝑗 𝜈0 (F) (𝜔) = 𝐴𝜈0 (F) (𝑥, 𝑦)𝑑𝑥+𝐵𝜈0 (F) (𝑥, 𝑦)𝑑𝑦 and 𝑗 𝜈0 (G) (𝜂) = 𝑃𝜈0 (G) (𝑥, 𝑦)𝑑𝑥+
𝑄𝜈0 (G) (𝑥, 𝑦)𝑑𝑦. Consequently the condition 𝑚0 (JF,G) > 𝜈0 (F ) + 𝜈0 (G) also im-
plies that the tangent cones of the foliations F and G are equal (see Equation (1.3)).
Hence, if we consider the blow-up 𝜋1 : 𝑋1 → (C2, 0) of the origin, both foliations
have the same singularities in 𝐸1 = 𝜋−1 (0) and same Camacho-Sad indices (by Re-
mark 1.2.2 and Example 1.6.8) at these singularities provided that 𝜋1 is non-dicritical
(see Section 1.2). For this reason, if we want that the multiplicity of jacobian curve
JF,G is minimal we need that F and G have different Camacho-Sad index at any
singular point in the exceptional divisor 𝐸1 obtained after one blow-up (see [31,
Lemma 2.3]). This condition implies that the divisor 𝐸1 is a non-collinear divisor
following the notations in [31] (see also Definition 1.6.1 below). These are the type
of conditions that we need to impose over F and G in order to be able to describe
some properties of the topology type of JF,G . Let us introduce some notations to
state the result which gives such description (Theorem 1.6.12 below).

Consider two singular foliations F and G in (C2, 0) that are non-dicritical gene-
ralized curve foliations. Let 𝐶 and 𝐷 be the curves of separatrices of F and G
respectively and assume that 𝐶 and 𝐷 have no common branches. As in the study
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of polar curves of foliations, ramifications and logarithmic models will play a key
role in the study of jacobian curves. The strategy used in [31] is to study first the
case of F and G having separatrices with non-singular irreducible components and
the general case is reduced to this one using a ramification. Moreover, logarithmic
models will allow to control the influence of Camacho-Sad indices in the behaviour
of jacobian curves.

1.6.1 The case of non-singular separatrices

Let 𝐶 and 𝐷 be two plane curves in (C2, 0) without common branches and assume
that the curve 𝑍 = 𝐶∪𝐷 has only non-singular irreducible components. Consider two
foliations F ∈ G𝐶 and G ∈ G𝐷 . Let 𝜋𝑍 : 𝑋𝑍 → (C2, 0) be the minimal reduction
of singularities of 𝑍 . Note that 𝑍 gives a common reduction of singularities of the
foliations F and G.

We will use the notations introduced in Section 1.4 concerning the dual graph
𝐺 (𝑍) of 𝑍 . Let 𝐸 be an irreducible component of 𝜋−1

𝑍
(0) an denote by 𝜋𝐸 : 𝑋𝐸 →

(C2, 0) the morphism reduction of 𝜋𝑍 to 𝐸 . Denote 𝑏𝐸 = 𝑏𝑍
𝐸

the number associated
to each divisor 𝐸 of 𝐺 (𝑍) and let {𝑅𝐸1 , 𝑅

𝐸
2 , . . . , 𝑅

𝐸
𝑏𝐸
} be the infinitely near points

of 𝑍 in 𝐸 , that is, 𝜋∗
𝐸
𝑍 ∩ 𝐸𝑟𝑒𝑑 = {𝑅𝐸1 , 𝑅

𝐸
2 , . . . , 𝑅

𝐸
𝑏𝐸
} (see Remark 1.4.6). We denote

Δ𝐸 (𝑅𝐸𝑖 ) = Δ
F,G
𝐸
(𝑅𝐸𝑖 ) = I𝑅𝐸

𝑖
(𝜋∗𝐸G, 𝐸𝑟𝑒𝑑) − I𝑅𝐸

𝑖
(𝜋∗𝐸F , 𝐸𝑟𝑒𝑑)

where I𝑅𝐸
𝑖
(𝜋∗
𝐸
G, 𝐸𝑟𝑒𝑑) is the Camacho-Sad index of 𝜋∗

𝐸
G relative to 𝐸𝑟𝑒𝑑 at the

point 𝑅𝐸
𝑖

(whose definition was given in Section 1.2). Let us introduce some defini-
tions which will be essential in the rest of the section (see [31, Section 4] for more
details).

Definition 1.6.1 [31, Definition 4.2] An infinitely near point 𝑅𝐸
ℓ

of 𝑍 is a collinear
point for the foliations F and G in 𝐸 if Δ𝐸 (𝑅𝐸ℓ ) = 0; otherwise 𝑅𝐸

ℓ
is a non-collinear

point.
A divisor 𝐸 is collinear (for the foliations F and G) if Δ𝐸 (𝑅𝐸ℓ ) = 0 for all

ℓ = 1, 2, . . . , 𝑏𝐸 ; otherwise 𝐸 is a non-collinear divisor. A divisor 𝐸 is purely
non-collinear if Δ𝐸 (𝑅𝐸ℓ ) ≠ 0 for all ℓ ∈ {1, 2, . . . , 𝑏𝐸}.

The set of collinear points (resp. non-collinear points) of 𝐸 will be denoted by Col(𝐸)
(resp. NCol(𝐸)). Note that Col(𝐸)∪NCol(𝐸) = {𝑅𝐸1 , 𝑅

𝐸
2 , . . . , 𝑅

𝐸
𝑏𝐸
}. In [31, Section

4.1], it is explained the behaviour of collinear and non-collinear infinitely near points
by blow-up.

Remark 1.6.2 The definitions above coincide with the notions given by Kuo and
Parusiński in [56, 57] in the case of curves (see [31, Section 7.1]).

Let 𝐸 be an irreducible component of 𝜋−1
𝑍
(0) with 𝜐(𝐸) = 𝑝. We can take

coordinates (𝑥, 𝑦) in (C2, 0) and (𝑥𝑝 , 𝑦𝑝) in the first chart of 𝐸𝑟𝑒𝑑 such that
𝜋𝐸 (𝑥𝑝 , 𝑦𝑝) = (𝑥𝑝 , 𝑥𝑝𝑝 𝑦𝑝) and 𝐸𝑟𝑒𝑑 = (𝑥𝑝 = 0). The coordinates (𝑥, 𝑦) are called
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coordinates in (C2, 0) adapted to 𝐸 (see [31, Remark 4.1]). In these coordinates, the
infinitely near points of 𝐶 in 𝐸𝑟𝑒𝑑 are given by 𝑅𝐸

ℓ
= (0, 𝑐𝐸

ℓ
), ℓ = 1, 2, . . . , 𝑏𝐸 . We

define the rational functionM𝐸 (𝑧) =MF,G
𝐸
(𝑧) associated to the divisor 𝐸 (for the

foliations F and G by

M𝐸 (𝑧) =
𝑏𝐸∑︁
ℓ=1

Δ𝐸 (𝑅𝐸ℓ )
𝑧 − 𝑐𝐸

ℓ

.

We have that

• if 𝐸 is a non-collinear divisor, thenM𝐸 (𝑧) . 0;
• if L𝜆, 𝑓 , L𝜇,𝑔 are the logarithmic models of F , G respectively, then

Δ
F,G
𝐸
(𝑅𝐸ℓ ) = Δ

L𝜆, 𝑓 ,L𝜇,𝑔

𝐸
(𝑅𝐸ℓ ); MF,G

𝐸
(𝑧) =ML𝜆, 𝑓 ,L𝜇,𝑔

𝐸
(𝑧).

Let {𝑞1, . . . , 𝑞𝑠𝐸 } be the set of zeros ofM𝐸 (𝑧). We denote by𝑀 (𝐸) = {𝑄𝐸1 , . . . , 𝑄
𝐸
𝑠𝐸
}

the set of points in 𝐸𝑟𝑒𝑑 given by 𝑄𝐸
ℓ
= (0, 𝑞ℓ) in coordinates (𝑥𝑝 , 𝑦𝑝). If 𝑡𝑄𝐸

ℓ
is the

multiplicity of 𝑞ℓ as a zero ofM𝐸 (𝑧), we put 𝑡 (𝐸) = ∑𝑠𝐸
ℓ=1 𝑡𝑄𝐸

ℓ
the degree of the

numerator of the rational functionM𝐸 (𝑧). We put 𝑡𝑃 = 0 for any 𝑃 ∈ 𝐸 ∖ 𝑀 (𝐸).
Note that 𝑀 (𝐸) can be an empty set (see example in [57, p. 584]). Moreover, if 𝐸 is
a non-collinear divisor, we have ([31, Lemma 4.6])

(i) NCol(𝐸) ∩ 𝑀 (𝐸) = ∅
(ii) ♯NCol(𝐸) ≥ 1 + 𝑡 (𝐸).
(iii) if

∑
𝑅𝐸
ℓ
∈NCol(𝐸 ) Δ𝐸 (𝑅𝐸ℓ ) ≠ 0, then the equality in (ii) holds.

Consider a non-collinear divisor 𝐸 and a point 𝑃 ∈ 𝐸𝑟𝑒𝑑 , we put

𝜏𝐸 (𝑃) =

𝑡𝑃 , if 𝑃 ∈ 𝑀 (𝐸)
−1, if 𝑃 ∈ NCol(𝐸)
0, otherwise.

Then
∑
𝑃∈𝐸𝑟𝑒𝑑

𝜏𝐸 (𝑃) = 𝑡 (𝐸) − ♯NCol(𝐸) is a negative integer which coincides with
the degree of the rational functionM𝐸 (𝑧).

If 𝐸 is a non-collinear divisor with 𝜐(𝐸) = 𝑝 and (𝑥, 𝑦) are adapted coordinates
to 𝐸 , the weighted initial form In𝑝 (𝐽; 𝑥, 𝑦), where 𝐽 (𝑥, 𝑦) = 0 is an equation of the
jacobian curve JF,G , can be determined from the weighted initial forms In𝑝 (𝜔) and
In𝑝 (𝜂) of the 1-forms defining F and G respectively (see [31, Lema 4.13]). This is
a key property to determine the points 𝜋∗

𝐸
JF,G ∩ 𝐸𝑟𝑒𝑑 .

Hence, with the notations stated in this section, we can determine the infinitely
near points of the jacobian curve in a non-collinear divisor. More precisely, if we
denote by 𝐸∗

𝑟𝑒𝑑
the points in the first chart of 𝐸𝑟𝑒𝑑 (that is, all the points of 𝐸𝑟𝑒𝑑

except the corner one), we have

Theorem 1.6.3 [31, Theorem 5.2] Let F and G be two non-dicritical generalized
curve foliations with F ∈ G𝐶 and G ∈ G𝐷 . Assume that 𝑍 = 𝐶 ∪ 𝐷 has non-
singular irreducible components. Let 𝐸 be a non-collinear divisor of 𝜋−1

𝑍
(0). Given

any 𝑃 ∈ 𝐸∗
𝑟𝑒𝑑

, we have that
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𝑚𝑃 (𝜋∗𝐸JF,G) = 𝑚𝑃 (𝜋∗𝐸𝐶) + 𝑚𝑃 (𝜋∗𝐸𝐷) + 𝜏𝐸 (𝑃).

In particular, if 𝑃 ∈ 𝐸∗
𝑟𝑒𝑑

with 𝑚𝑃 (𝜋∗𝐸JF,G) > 0, then 𝑃 is either an infinitely near
point of 𝑍 or a point in 𝑀 (𝐸).

To prove this result, we first prove it for logarithmic foliations and the general case
for F ∈ G𝐶 and G ∈ G𝐷 is consequence of the facts ([31, Lemma 4.16])

𝜋∗𝐸JF,G ∩ 𝐸𝑟𝑒𝑑 = 𝜋∗𝐸JL𝜆, 𝑓 ,L𝜇,𝑔
∩ 𝐸𝑟𝑒𝑑

and
𝑚𝑃 (𝜋∗𝐸JF,G) = 𝑚𝑃 (𝜋∗𝐸JL𝜆, 𝑓 ,L𝜇,𝑔

) at each 𝑃 ∈ 𝜋∗𝐸JF,G ∩ 𝐸𝑟𝑒𝑑 ,

when 𝐸 is a non-collinear divisor and L𝜆, 𝑓 , L𝜇,𝑔 are the logarithmic models of F ,
G respectively.

Consider now two consecutive bifurcation divisors 𝐸 and 𝐸 ′ in𝐺 (𝑍), this means
that there exists a chain of consecutive divisors

𝐸0 = 𝐸 < 𝐸1 < · · · 𝐸𝑘−1 < 𝐸𝑘 = 𝐸
′

with 𝑏𝐸ℓ
= 1 for ℓ = 1, . . . , 𝑘 − 1 and the morphism 𝜋𝐸′ = 𝜋𝐸 ◦ 𝜎 with 𝜎 : 𝑋𝐸′ →

(𝑋𝐸 , 𝑃) a composition of 𝑘 punctual blow-ups

(𝑋𝐸 , 𝑃)
𝜎1←− (𝑋𝐸1 , 𝑃1)

𝜎2←− · · · 𝜎𝑘−1←− (𝑋𝐸𝑘−1 , 𝑃𝑘−1)
𝜎𝑘←− 𝑋𝐸′ . (1.12)

When 𝐸 and 𝐸 ′ are two consecutive bifurcation divisors as above, we say that 𝐸 ′
arises from 𝐸 at 𝑃 and we denote 𝐸 <𝑃 𝐸

′. Next result shows that, if 𝛿 is a branch
of the jacobian curve JF,G going through a non-collinear point 𝑃 in a bifurcation
divisor, then 𝛿 goes also through the points 𝑃1, 𝑃2, . . . , 𝑃𝑘−1 of the sequence (1.12),
that is, the divisor 𝐸 ′ is in the geodesic of the branches of JF,G going through 𝑃 in
𝐸𝑟𝑒𝑑 . More precisely, we have

Corollary 1.6.4 [31, Corollary 5.4] Let 𝐸 and 𝐸 ′ be two consecutive bifurcation
divisors in 𝐺 (𝑍) with 𝐸<𝑃𝐸 ′. If 𝑃 ∈ NCol(𝐸), we have that

𝑚𝑃 (𝜋∗𝐸JF,G) =
∑︁

𝑄∈𝐸′
𝑟𝑒𝑑

𝑚𝑄 (𝜋∗𝐸′JF,G).

In particular, there is no irreducible component 𝛿 of JF,G such that 𝜋∗
𝐸′𝛿 is attached

to some intermediate component 𝐸𝑖 , 1 ≤ 𝑖 ≤ 𝑘 − 1, in the chain 𝐸 < 𝐸1 < · · · <
𝐸𝑘−1 < 𝐸

′. Moreover, we have

1 +
∑︁

𝑄∈𝑀 (𝐸′ )
𝑡𝑄 = ♯NCol(𝐸 ′), (1.13)

and hence 𝐸 ′ is a non-collinear divisor.

From the previous result, we get that there is no irreducible component 𝛿 of JF,G
such that
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𝜐(𝐸) < C(𝛿, 𝛾𝐸′ ) < 𝜐(𝐸 ′)

where 𝛾𝐸′ is a 𝐸 ′-curvette.
Let us now explain the behaviour of the branches of the jacobian curve going

through a collinear point. We need to introduce the notion of cover of a divisor at a
point.

Definition 1.6.5 [31, Definition 5.6] Let 𝐸 be a bifurcation divisor of𝐺 (𝑍) and take
a collinear point 𝑃 of 𝐸 . A set of non-collinear bifurcation divisors {𝐸1, . . . , 𝐸𝑢} is
a (non-collinear) cover of 𝐸 at 𝑃 if:

(i) 𝐸 is in the geodesic of each 𝐸ℓ ;
(ii) if {𝐸ℓ1 , . . . , 𝐸

ℓ
𝑟 (ℓ ) } is the set of all bifurcation divisors in the geodesic of 𝐸ℓ with

𝐸 <𝑃 𝐸
ℓ
1 < . . . < 𝐸

ℓ
𝑟 (ℓ ) < 𝐸ℓ

then either 𝑟 (ℓ) = 0 or else each 𝐸ℓ
𝑗

is collinear;
(iii) if 𝑍 𝑗 is an irreducible component of 𝑍 with 𝜋∗

𝐸
𝑍 𝑗 ∩ 𝐸𝑟𝑒𝑑 = {𝑃}, then there

exists a divisor 𝐸ℓ in the cover such that 𝜋∗
𝐸ℓ
𝑍 𝑗 ∩𝐸ℓ ≠ ∅, that is, there is a divisor

𝐸ℓ in the cover which is in the geodesic of 𝑍 𝑗 .

Note that, given a collinear point 𝑃 in a divisor 𝐸 , there is a unique cover of 𝐸 at 𝑃.
To find it we take an irreducible component 𝑍ℓ of 𝑍 with 𝜋∗

𝐸
𝑍ℓ ∩𝐸𝑟𝑒𝑑 = {𝑃}. Let 𝐸 ′

be the first bifurcation divisor after 𝐸 in the geodesic of 𝑍ℓ (necessarily 𝐸 <𝑃 𝐸
′).

If 𝐸 ′ is a non-collinear divisor, then 𝐸 ′ is one of the divisors of the cover of 𝐸 at 𝑃.
Otherwise, we repeat the process (see [31] for more details). Then we have

Theorem 1.6.6 [31, Theorem 5.7] Consider a non-collinear bifurcation divisor 𝐸
of 𝐺 (𝑍) and a collinear point 𝑃 of 𝐸 . Let {𝐸1, . . . , 𝐸𝑢} be a cover of 𝐸 at 𝑃. Then

𝑚𝑃 (𝜋∗𝐸JF,G) −
𝑢∑︁
ℓ=1

∑︁
𝑄∈𝐸ℓ,𝑟𝑒𝑑

𝑚𝑄 (𝜋∗𝐸ℓ
JF,G) = 𝑡𝑃 +

𝑢∑︁
ℓ=1
(♯NCol(𝐸ℓ) − 𝑡 (𝐸ℓ)).

Consequently, there is a curve 𝐽𝐸
𝑃

composed by irreducible components of JF,G
such that, if 𝛿 is a branch of 𝐽𝐸

𝑃
,

• 𝜋∗
𝐸
𝛿 ∩ 𝐸𝑟𝑒𝑑 = {𝑃}

• C(𝛿, 𝛾𝐸ℓ
) < 𝜐(𝐸ℓ) for ℓ = 1, . . . , 𝑢, where 𝛾𝐸ℓ

is any 𝐸ℓ-curvette.

Moreover, we have that

𝑚0 (𝐽𝐸𝑃 ) = 𝑡𝑃 +
𝑢∑︁
ℓ=1
(♯NCol(𝐸ℓ) − 𝑡 (𝐸ℓ)).

The results in this section allow to give a decomposition of the jacobian curve JF,G
in the sense of the decomposition theorem for polar curves. Given any bifurcation
divisor 𝐸 ∈ 𝐵(𝑍) which is a non-collinear divisor for F and G, we define 𝐽𝐸𝑛𝑐 as the
union of the branches 𝜉 of JF,G such that
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• 𝜋∗
𝐸
𝜉 ∩ 𝜋∗

𝐸
𝑍 = ∅;

• if 𝐸 ′ < 𝐸 , then 𝜋∗
𝐸
𝜉 ∩ 𝜋′

𝐸
(𝐸 ′) = ∅;

• if 𝐸 ′ > 𝐸 , then 𝜋∗
𝐸′𝜉 ∩ 𝐸 ′𝑟𝑒𝑑 = ∅.

For a non-collinear bifurcation divisor 𝐸 , we denote 𝐽𝐸𝑐 = ∪𝑃∈Col(𝐸 ) 𝐽
𝐸
𝑃

(with 𝐽𝐸𝑐 = ∅
if Col(𝐸) = ∅).

Given a non-collinear bifurcation divisor 𝐸 of 𝐺 (𝑍), we denote

𝑡∗ (𝐸) =
∑︁

𝑄∈𝑀 (𝐸 )∖Col(𝐸 )
𝑡𝑄,

that is, the number of zeros ofM𝐸 (𝑧) (counting with multiplicities) which do not
correspond to collinear points. The previous results allow to give a decomposition
of JF,G as follows:
Theorem 1.6.7 [31, Theorem 5.8] Consider F ∈ G𝐶 and G ∈ G𝐷 such that 𝑍 =

𝐶∪𝐷 is a curve with only non-singular irreducible components. Let 𝐵𝑁 (𝑍) be the set
of non-collinear bifurcation divisors of 𝐺 (𝑍). Then there is a unique decomposition
JF,G = 𝐽∗ ∪ (∪𝐸∈𝐵𝑁 (𝑍 ) 𝐽

𝐸) where 𝐽𝐸 = 𝐽𝐸𝑛𝑐 ∪ 𝐽𝐸𝑐 with the following properties
(1) 𝑚0 (𝐽𝐸𝑛𝑐) = 𝑡∗ (𝐸). In particular, 𝑚0 (𝐽𝐸𝑛𝑐) ≤ ♯NCol(𝐸) − 1 ≤ 𝑏𝐸 − 1;
(2) 𝜋∗

𝐸
𝐽𝐸𝑛𝑐 ∩ 𝜋∗𝐸𝑍 = ∅;

(3) if 𝐸 ′ < 𝐸 , then 𝜋∗
𝐸
𝐽𝐸𝑛𝑐 ∩ 𝜋′𝐸 (𝐸 ′) = ∅;

(4) if 𝐸 ′ > 𝐸 , then 𝜋∗
𝐸′𝐽

𝐸
𝑛𝑐 ∩ 𝐸 ′𝑟𝑒𝑑 = ∅;

(5) if 𝛿 is a branch of 𝐽𝐸𝑐 , then 𝜋∗
𝐸
𝛿 ∩ 𝐸𝑟𝑒𝑑 is a point in Col(𝐸);

(6) 𝑚0 (𝐽𝐸𝑐 ) =
∑
𝑃∈𝐶 (𝐸 ) (𝑡𝑃 +

∑𝑢(𝑃)
ℓ=1 (♯NCol(𝐸𝑃

ℓ
) − 𝑡 (𝐸𝑃

ℓ
))) where {𝐸𝑃1 , . . . , 𝐸

𝑃
𝑢(𝑃) }

is a cover of 𝐸 at 𝑃.
Moreover, if 𝐸 is a purely non-collinear divisor with

∑
𝑅𝐸
ℓ
∈NCol(𝐸 ) Δ𝐸 (𝑅𝐸ℓ ) ≠ 0,

then
𝑚0 (𝐽𝐸) = 𝑚0 (𝐽𝐸𝑛𝑐) = 𝑏𝐸 − 1. (1.14)

Note that, in the decomposition above, there is a certain control of the topology of
the irreducible components of JF,G in terms of the data of the foliations F and G
when the component of JF,G is attached either to a non-collinear divisor or to a
chain of collinear divisors which are between two non-collinear bifurcation divisors.
The irreducible components corresponding to 𝐽∗ are the one attached to “isolated”
collinear divisors for which no control is possible.

Let us give some examples where we describe different possibilities of decompo-
sition of the jacobian curve although the curves of separatrices of the foliations are
fixed.

Example 1.6.8 Consider the curves 𝐶 = 𝐶1 ∪ 𝐶2 ∪ 𝐶3 and 𝐷 = 𝐷1 ∪ 𝐷2 ∪ 𝐷3 with
𝐶 = ( 𝑓 = 0) and 𝐷 = (𝑔 = 0) where

𝑓 = (𝑦 − 2𝑥2) (𝑦 − 𝑥2 + 𝑥3) (𝑦 + 𝑥2 + 𝑥3),

𝑔 = (𝑦 + 2𝑥2) (𝑦 − 𝑥2 − 𝑥3) (𝑦 + 𝑥2 − 𝑥3).

The reduction of singularities of the curve 𝐶 ∪ 𝐷 is given by
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C3

D3

C1 C2

C3

D1 D3

D2

E1 E2

E4

E3

E1 E1

C1

D1

E2 E1

C1

D1

E2

C2

D2
E3

C3

D3

C2

D2

The jacobian curve JG 𝑓 ,G𝑔 has three branches given by

JG 𝑓 ,G𝑔 :


𝑥 = 0

𝑦 = 𝑥2 + 𝑎𝑥5/2 + · · ·
𝑦 = −𝑥2 + 𝑏𝑥5/2 + · · ·

If we consider the logarithmic foliation L𝜆, 𝑓 given by

𝑓1 𝑓2 𝑓3

3∑︁
𝑖=1

𝜆𝑖
𝑑𝑓𝑖

𝑓𝑖
= 0

with 𝜆1 = 𝑖, 𝜆2 = 1 − 2𝑖, 𝜆3 = 2 + 𝑖, we get that the jacobian curve JL𝜆, 𝑓 ,G𝑔 has five
branches given by

JL𝜆, 𝑓 ,G𝑔 :



𝑥 = 0

𝑦 = 𝛼𝑥2 + · · ·
𝑦 = 𝛽𝑥2 + · · ·
𝑦 = 𝑥2 + 𝛾𝑥3 + · · ·
𝑦 = −𝑥2 + 𝛿𝑥3 + · · ·

Let us compute the Camacho-Sad indices of the foliations above. Consider the blow-
up of the origin 𝜋1 : 𝑋1 → (C2, 0) with 𝐸1 = 𝜋−1 (0) and put {𝑃1} = 𝜋∗1𝐶 ∩ 𝐸1 =

𝜋∗1𝐷 ∩ 𝐸1. Then I𝑃1 (𝜋∗1G 𝑓 , 𝐸1) = I𝑃1 (𝜋∗1G𝑔, 𝐸1) = I𝑃1 (𝜋∗1L𝜆, 𝑓 , 𝐸1) = −1.
In particular, this implies all the foliations G 𝑓 , G𝑔 L𝜆, 𝑓 have the same tangent

cone and that the divisor 𝐸1 is a collinear divisor for G 𝑓 and G𝑔 (and also for L𝜆, 𝑓
and G𝑔). Moreover, note that 𝜈0 (G 𝑓 ) = 𝜈0 (G𝑔) = 𝜈0 (L𝜆, 𝑓 ) = 2 but 𝑚0 (JG 𝑓 ,G𝑔 ) =
𝑚0 (JL𝜆, 𝑓 ,G𝑔 ) = 5.

Take now 𝜋2 : 𝑋2 → (𝑋1, 𝑃1) the blow-up with center at 𝑃1 and put 𝜎2 = 𝜋1 ◦𝜋2.
Denote 𝑅𝐸2

1 the infinitely near point of 𝐶1 in 𝐸2, 𝑅𝐸2
2 the infinitely near point of

𝐷1 in 𝐸2 and 𝑅𝐸2
3 = 𝑃2 the point where the branches 𝐶2 and 𝐷2 intersect 𝐸2 and

𝑅
𝐸2
4 = 𝑃3 the point where the branches 𝐶3 and 𝐷3 meet 𝐸2. For the logarithmic

foliation L𝜆, 𝑓 we have that (see [26, Proposition 4.4])
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I
𝑅
𝐸2
1
(𝜎∗2L𝜆, 𝑓 , 𝐸2) = − 𝜆1

2(𝜆1+𝜆2+𝜆3 ) = −
𝑖
6 ;

I
𝑅
𝐸2
2
(𝜎∗2L𝜆, 𝑓 , 𝐸2) = 0;

I
𝑅
𝐸2
3
(𝜎∗2L𝜆, 𝑓 , 𝐸2) = − 𝜆2

2(𝜆1+𝜆2+𝜆3 ) = −
1−2𝑖

6 ;

I
𝑅
𝐸2
4
(𝜎∗2L𝜆, 𝑓 , 𝐸2) = − 𝜆3

2(𝜆1+𝜆2+𝜆3 ) = −
2+𝑖
6 .

Taking into account that hamiltonian foliations are logarithmic foliations with expo-
nent vector equal to 𝜆(G 𝑓 ) = 𝜆(G𝑔) = (1, 1, 1), similar computations give that

I
𝑅
𝐸2
1
(𝜎∗2G 𝑓 , 𝐸2) = I𝑅𝐸2

3
(𝜎∗2G 𝑓 , 𝐸2) = I𝑅𝐸2

4
(𝜎∗2G 𝑓 , 𝐸2) = − 1

6 ; I
𝑅
𝐸2
2
(𝜎∗2G 𝑓 , 𝐸2) = 0;

I
𝑅
𝐸2
1
(𝜎∗2G𝑔, 𝐸2) = 0; I

𝑅
𝐸2
2
(𝜎∗2G𝑔, 𝐸2) = I𝑅𝐸2

3
(𝜎∗2G𝑔, 𝐸2) = I𝑅𝐸2

4
(𝜎∗2G𝑔, 𝐸2) = − 1

6 .

Consider now the blow-up 𝜋3 : 𝑋3 → (𝑋2, 𝑃2) with center at 𝑃2 and let 𝑅𝐸3
1 (resp.

𝑅
𝐸3
2 ) be the point where 𝐶2 (resp. 𝐷2 intersects 𝐸3). Put 𝜎3 = 𝜎2 ◦ 𝜋3, then

I
𝑅
𝐸3
1
(𝜎∗3L𝜆, 𝑓 , 𝐸3) = − 𝜆2

2(𝜆1+𝜆3 )+3𝜆2
= − 1−2𝑖

7−2𝑖 ; I
𝑅
𝐸3
2
(𝜎∗3L𝜆, 𝑓 , 𝐸3) = 0;

I
𝑅
𝐸3
1
(𝜎∗3G 𝑓 , 𝐸3) = − 1

7 ; I
𝑅
𝐸3
2
(𝜎∗3G 𝑓 , 𝐸3) = 0;

I
𝑅
𝐸3
1
(𝜎∗3G𝑔, 𝐸3) = 0; I

𝑅
𝐸3
2
(𝜎∗3G𝑔, 𝐸3) = − 1

7 .

Finally, if 𝜋4 : 𝑋4 → (𝑋3, 𝑃3) is the blow-up with center at 𝑃3, the point 𝑅𝐸4
1 (resp.

𝑅
𝐸4
2 ) is intersection of 𝐶3 (resp. 𝐷3) with 𝐸4 and we put 𝜎4 = 𝜎3 ◦ 𝜋4, then

I
𝑅
𝐸4
1
(𝜎∗4L𝜆, 𝑓 , 𝐸4) = − 𝜆3

2(𝜆1+𝜆2 )+3𝜆3
= − 2+𝑖

8+𝑖 ; I
𝑅
𝐸4
2
(𝜎∗4L𝜆, 𝑓 , 𝐸4) = 0;

I
𝑅
𝐸4
1
(𝜎∗4G 𝑓 , 𝐸4) = − 1

7 ; I
𝑅
𝐸4
2
(𝜎∗4G 𝑓 , 𝐸4) = 0;

I
𝑅
𝐸4
1
(𝜎∗4G𝑔, 𝐸4) = 0; I

𝑅
𝐸4
2
(𝜎∗4G𝑔, 𝐸4) = − 1

7 .

For the foliations G 𝑓 and G𝑔 we have that 𝐸1 is a collinear divisor, 𝐸2, 𝐸3, 𝐸4
are non-collinear bifurcation divisors. In the divisor 𝐸2, the points 𝑅𝐸2

1 and 𝑅
𝐸2
2

are non-collinear points while 𝑅
𝐸2
3 and 𝑅

𝐸2
4 are collinear points. The points

𝑅
𝐸3
1 , 𝑅

𝐸3
2 , 𝑅

𝐸4
1 , 𝑅

𝐸4
2 are non-collinear. Let us compute the rational function asso-

ciated to the non-collinear divisors for G 𝑓 and G𝑔. We have that

M𝐸2 (𝑧) =
1
6

1
𝑧 − 2

− 1
6

1
𝑧 + 2

=
2

3(𝑧2 − 4)
;

M𝐸3 (𝑧) =M𝐸4 (𝑧) =
1
7

1
𝑧 + 1

− 1
7

1
𝑧 − 1

= − 2
7(𝑧2 − 1)

.

Hence 𝑀 (𝐸2) = 𝑀 (𝐸3) = 𝑀 (𝐸4) = ∅ and then in the decomposition of JG 𝑓 ,G𝑔
we have that 𝐽𝐸2

𝑛𝑐 = 𝐽
𝐸3
𝑛𝑐 = 𝐽

𝐸4
𝑛𝑐 = ∅. We have that JG 𝑓 ,G𝑔 = 𝐽∗ ∪ 𝐽𝐸2

𝑐 where
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𝐽∗ = (𝑥 = 0) and 𝐽𝐸2
𝑐 is the union of the other two branches. Note that 𝑚0 (𝐽𝐸2

𝑐 ) =
♯NCol(𝐸3) + ♯NCol(𝐸4) = 4 as shown in (6) of Theorem 1.6.7.

For the foliations L𝜆, 𝑓 and G𝑔 we have that 𝐸1 is a collinear divisor, 𝐸2, 𝐸3, 𝐸4
are purely non-collinear bifurcation divisors since all the infinitely near points of
𝐶∪𝐷 in these divisors are non-collinear points. Let us compute the rational function
associated to the non-collinear divisors for L𝜆, 𝑓 and G𝑔. We have that

M𝐸2 (𝑧) =
𝑖

6
1

𝑧 − 2
− 1

6
1

𝑧 + 2
+

(
−1

6
+ 1 − 2𝑖

6

)
1

𝑧 − 1
+

(
−1

6
+ 2 + 𝑖

6

)
1

𝑧 + 1

=
(1 − 𝑖)𝑧2 + 3(𝑖 − 1)𝑧 + 10𝑖 + 2

6(𝑧2 − 4) (𝑧2 − 1)
;

M𝐸3 (𝑧) =
1 − 2𝑖
7 − 2𝑖

1
𝑧 + 1

− 1
7

1
𝑧 − 1

=
−12𝑖𝑧 + 16𝑖 − 14
7(7 − 2𝑖) (𝑧2 − 1)

;

M𝐸4 (𝑧) =
2 + 𝑖
8 + 𝑖

1
𝑧 + 1

− 1
7

1
𝑧 − 1

=
6(𝑖 + 1)𝑧 − 2(4𝑖 + 11)

7(7 + 𝑖) (𝑧2 − 1)
.

Now we have that the decomposition of the jacobian curve is given by JL𝜆, 𝑓 ,G𝑔 =

𝐽∗ ∪ 𝐽𝐸2
𝑛𝑐 ∪ 𝐽𝐸3

𝑛𝑐 ∪ 𝐽𝐸4
𝑛𝑐 with 𝐽∗ = (𝑥 = 0), the curve 𝐽𝐸2

𝑛𝑐 is the union of the branches
𝑦 = 𝛼𝑥2 + · · · and 𝑦 = 𝛽𝑥2 + . . . and 𝐽𝐸3

𝑛𝑐 and 𝐽𝐸4
𝑛𝑐 are non-singular curves which

correspond to the other two branches of JL𝜆, 𝑓 ,G𝑔 .

1.6.2 Jacobian curve: general case

The strategy to prove the decomposition result of JF,G in the general case is to
consider a ramification such that 𝜌∗F and 𝜌∗G are foliations which satisfy the
hypothesis of the previous section. First, let us study the relationship between the
curves J̃F,G = 𝜌−1JF,G and J𝜌∗F,𝜌∗G .

Consider F and G two foliations in (C2, 0) given by𝜔 = 0 and 𝜂 = 0 respectively,
with

𝜔 = 𝐴(𝑥, 𝑦)𝑑𝑥 + 𝐵(𝑥, 𝑦)𝑑𝑦; 𝜂 = 𝑃(𝑥, 𝑦)𝑑𝑥 +𝑄(𝑥, 𝑦)𝑑𝑦.

If 𝜌 : (C2, 0) → (C2, 0) is a ramification given in coordinates by 𝜌(𝑢, 𝑣) = (𝑢𝑛, 𝑣),
then the foliations 𝜌∗F and 𝜌∗G are given by 𝜌∗𝜔 = 0 and 𝜌∗𝜂 = 0 respectively,
where

𝜌∗𝜔 = 𝐴(𝑢𝑛, 𝑣)𝑛𝑢𝑛−1𝑑𝑢 + 𝐵(𝑢𝑛, 𝑣)𝑑𝑣; 𝜌∗𝜂 = 𝑃(𝑢𝑛, 𝑣)𝑛𝑢𝑛−1𝑑𝑢 +𝑄(𝑢𝑛, 𝑣)𝑑𝑣.

Then the curve JF,G is defined by 𝐽 (𝑥, 𝑦) = 0, with 𝐽 (𝑥, 𝑦) = 𝐴(𝑥, 𝑦)𝑄(𝑥, 𝑦) −
𝐵(𝑥, 𝑦)𝑃(𝑥, 𝑦), and consequently, the curve J̃F,G = 𝜌−1JF,G is given by 𝐽 (𝑢𝑛, 𝑣) =
0 while the curve J𝜌∗F,𝜌∗G is given by 𝑛𝑢𝑛−1𝐽 (𝑢𝑛, 𝑣) = 0.

Assume that F ∈ G𝐶 and G ∈ G𝐷 with 𝐶 = ∪𝑟
𝑖=1𝐶𝑖 and 𝐷 = ∪𝑠

𝑗=1𝐷 𝑗 two
plane curves in (C2, 0) that can have singular branches. Denote 𝑍 = 𝐶 ∪ 𝐷 and take
𝜌 : (C2, 0) → (C2, 0) a 𝑍-transversal ramification such that 𝑍 = 𝜌−1𝑍 has non-



1 Jacobian and polar curves of singular foliations 47

singular irreducible components. Let us study the relationship between the infinitely
near points of J̃F,G and J𝜌∗F,𝜌∗G which appear when we consider the reduction of
singularities of the curve 𝑍 .

Lemma 1.6.9 [31, Lemma 6.1] Let 𝜋
𝑍

: 𝑋
𝑍
→ (C2, 0) be the minimal reduction

of singularities of 𝑍 . Take 𝐸 an irreducible component of 𝜋−1
𝑍
(0) and consider

𝜋
𝐸

: 𝑋
𝐸
→ (C2, 0) the morphism reduction of 𝜋

𝑍
to 𝐸 . Then we have that

𝜋∗
𝐸
J̃F,G ∩ 𝐸∗𝑟𝑒𝑑 = 𝜋∗

𝐸
J𝜌∗F,𝜌∗G ∩ 𝐸∗𝑟𝑒𝑑 ,

where 𝐸∗
𝑟𝑒𝑑

denote the points in the first chart of 𝐸𝑟𝑒𝑑 . Moreover, for each 𝑃 ∈
𝜋∗
𝐸
J̃F,G ∩ 𝐸∗𝑟𝑒𝑑 , we have

𝑚𝑃 (𝜋∗
𝐸
J̃F,G) = 𝑚𝑃 (𝜋∗

𝐸
J𝜌∗F,𝜌∗G).

In particular, if we consider a non-collinear divisor 𝐸 of 𝜋−1
𝑍
(0) for the foliations

𝜌∗F and 𝜌∗G, the curve J𝜌∗F,𝜌∗G satisfies Theorem 1.6.3 with respect to the curve
𝑍 = 𝜌−1𝑍 . Thus, the previous lemma implies the following result

Corollary 1.6.10 [31, Corollary 6.2] Take 𝐸 an irreducible component of 𝜋−1
𝑍
(0)

which is a non-collinear divisor for the foliations 𝜌∗F and 𝜌∗G. Given any 𝑃 ∈ 𝐸∗
𝑟𝑒𝑑

,
we have that

𝑚𝑃 (𝜋∗
𝐸
J̃F,G) = 𝑚𝑃 (𝜋∗

𝐸
𝐶) + 𝑚𝑃 (𝜋∗

𝐸
𝐷) + 𝜏

𝐸
(𝑃).

In particular, if 𝑃 ∈ 𝐸∗
𝑟𝑒𝑑

with 𝑚𝑃 (𝜋∗
𝐸
J̃F,G) > 0, then 𝑃 is an infinitely near point

of 𝑍 or a point in 𝑀 (𝐸).

The relationship among the bifurcation divisors of 𝐺 (𝑍) and the ones of 𝐺 (𝑍), the
infinitely near points of 𝑍 and 𝑍 and the Camacho-Sad indices of F , G and the
ones of 𝜌∗F , 𝜌∗G allows to give the following definition (see Section 1.4.3 and [31,
Appendix A.2 and A3])

Definition 1.6.11 A bifurcation divisor 𝐸 of 𝐺 (𝑍) is collinear (resp. non-collinear)
for the foliations F and G when any of its associated divisors 𝐸ℓ is collinear (resp.
non-collinear) for the foliations 𝜌∗F and 𝜌∗G.

An infinitely near point 𝑅𝐸 of 𝑍 in 𝐸𝑟𝑒𝑑 is a collinear point (resp. non-collinear
point) for the foliations F and G if for any associated divisor 𝐸ℓ and any infinitely
near point 𝑅𝐸ℓ

𝑡 of 𝜌−1𝑍 in 𝐸ℓ
𝑟𝑒𝑑

associated to 𝑅𝐸 , the point 𝑅𝐸ℓ

𝑡 is collinear (resp.
non-collinear) for the foliations 𝜌∗F and 𝜌∗G.

By Corollary 1.6.10, we get a decomposition of J̃F,G as the one given in Theo-
rem 1.6.7. Thus we can write

J̃F,G = 𝐽∗ ∪ (∪
𝐸∈𝐵𝑁 (𝑍 ) 𝐽

𝐸)
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with 𝐽𝐸 = 𝐽𝐸𝑛𝑐 ∪ 𝐽𝐸𝑐 .
In order to obtain the decomposition result for JF,G , given a non-collinear bifur-

cation divisor 𝐸 of 𝐺 (𝑍), we define 𝐽𝐸 = 𝐽𝐸𝑛𝑐 ∪ 𝐽𝐸𝑐 to be the curve with

𝜌−1𝐽𝐸𝑛𝑐 =

𝑛𝐸⋃
ℓ=1

𝐽𝐸
ℓ

𝑛𝑐 ; 𝜌−1𝐽𝐸𝑐 =

𝑛𝐸⋃
ℓ=1

𝐽𝐸
ℓ

𝑐 ,

where {𝐸ℓ }𝑛𝐸
ℓ=1 are the divisors of 𝐺 (𝑍) associated to 𝐸 and 𝐽∗ to be such that

𝜌−1𝐽∗ = 𝐽∗. Hence, the decomposition theorem for the jacobian curve can be stated
as follows

Theorem 1.6.12 [31, Theorem 6.4] Consider two generalized curve foliations F ∈
G𝐶 and G ∈ G𝐷 and denote 𝑍 = 𝐶 ∪𝐷. Let us write 𝑍 = ∪𝑟+𝑠

𝑖=1 𝑍𝑖 with 𝑍𝑖 irreducible
and denote by 𝐵𝑁 (𝑍) the set of non-collinear bifurcation divisors of 𝐺 (𝑍). Then
there is a decomposition

JF,G = 𝐽∗ ∪ (∪𝐸∈𝐵𝑁 (𝑍 ) 𝐽
𝐸)

with 𝐽𝐸 = 𝐽𝐸𝑛𝑐 ∪ 𝐽𝐸𝑐 such that

(i) 𝑚0 (𝐽𝐸𝑛𝑐) ≤
{
𝑛
𝐸
𝑛𝐸 (𝑏𝐸 − 1), if 𝐸 does not belong to a dead arc;

𝑛
𝐸
𝑛𝐸 (𝑏𝐸 − 1) − 𝑛

𝐸
, otherwise.

(ii) For each irreducible component 𝛿 of 𝐽𝐸𝑛𝑐 we have that

– C(𝛿, 𝑍𝑖) = 𝜐(𝐸) if 𝐸 belongs to the geodesic of 𝑍𝑖;
– C(𝛿, 𝑍 𝑗 ) = C(𝑍𝑖 , 𝑍 𝑗 ) if 𝐸 belongs to the geodesic of 𝑍𝑖 but not to the one of
𝑍 𝑗 .

(iii) For each irreducible component 𝛿 of 𝐽𝐸𝑐 , there exists an irreducible component
𝑍𝑖 of 𝑍 such that 𝐸 belongs to its geodesic and

C(𝛿, 𝑍𝑖) > 𝜐(𝐸).

Moreover, if 𝐸 ′ is the first non-collinear bifurcation divisor in the geodesic of 𝑍𝑖
after 𝐸 , then

C(𝛿, 𝑍𝑖) < 𝜐(𝐸 ′).

In particular, this theorem implies the results of T.-C. Kuo and A. Parusińki for the
jacobian curve of two plane curves (see [56, 57]) or the result of E. Garcı́a Barroso
and J. Gwoździewicz (see [41, Theorem 1]) about the jacobian curve of a plane curve
and its characteristic approximate roots. In [72, 38], the authors proved a particular
case of Theorem 1.6.12 when F has only an irreducible separatrix 𝐶 = ( 𝑓 = 0) and
G is a hamiltonian foliation associated to a characteristic approximate root of 𝐶. In
[31, Section 7], we explain in a detailed way how to recover all these results from
Theorem 1.6.12.
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1.7 Analytic invariants of irreducible plane curves

The study of the analytic classification of plane curves in a systematic way started
with the work of O. Zariski in [82] although some previous works were published
before (see [20] for references about the subject). The complete classification for the
irreducible case was first given by A. Hefez and M. Hernandes in [48] (see also [49]
for a more detailed description of the results concerning the analytic classification
of irreducible plane branches). There are two types of invariants which appear in the
classification given in [48, 49]: discrete invariants provided by the set of differential
values of the curve and continuous invariants given by some coefficients in a Puiseux
parametrization of the curve.

As we mention in the introduction, given a plane curve 𝐶, the topological type
of a generic polar curve P = P𝐶 of 𝐶 depends on the analytic type of 𝐶. We have
showed that, if 𝐶 is irreducible, the set of quotient polars Q(𝐶) can be computed in
terms of the equisingularity data of 𝐶 and that the set Q(𝐶) ∪ {𝑚0 (P)} determines
the topological type of 𝐶, where 𝑚0 (P) is the multiplicity of a generic polar curve
of 𝐶. Moreover, let us see that there are some analytic invariants of the curve 𝐶 that
can easily be obtained from a generic polar curve.

If {𝛽0, 𝛽1, . . . , 𝛽𝑔} are the characteristic exponents of the curve 𝐶, by Merle’s
decomposition theorem, we know that the number of irreducible components 𝛿(P)
of P verifies that 𝑔 ≤ 𝛿(P) ≤ 𝑚0 (𝐶) − 1 = 𝛽0 − 1 but 𝛿(P) depends on the analytic
type of𝐶. Moreover, if we write P = ∪𝛿

𝑖=1𝛾𝑖 the decomposition of P into irreducible
components, the set of polar quotients Q(𝐶) =

{
(𝛾𝑖 ,𝐶 )0
𝑚0 (𝛾𝑖 ) : 𝑖 = 1, . . . , 𝛿

}
is equal to{

𝛽1,
𝛽2
𝑛1
, . . . ,

𝛽𝑔

𝑛1 · · ·𝑛𝑔−1

}
where {𝛽0, 𝛽1, . . . , 𝛽𝑔} is the minimal system of generators

of the semigroup Γ𝐶 of𝐶 (see Section 1.4). Moreover, if we denote by 𝑡𝑖 the number
of branches 𝛾 𝑗 such that (𝛾 𝑗 ,𝐶 )0

𝑚0 (𝛾 𝑗 ) =
𝛽𝑖

𝑛1 · · ·𝑛𝑖−1
then the vector (𝑡1, 𝑡2, . . . , 𝑡𝑔) is also an

analytic invariant of the curve 𝐶.
By the results of P. Rouillé (see [71, Corollary 4.5]) and Lemma 1.3.10, we have

that if 𝐶 is an irreducible curve, F ∈ G𝐶 and PF is a generic polar curve of F , the
set of polar quotients Q(F ) for the foliation F can be computed as

Q(F ) =
{ (𝐶, 𝜉 𝑗 )0
𝑚0 (𝜉 𝑗 )

: 𝜉 𝑗 is an irreducible component of PF
}

=

{
𝜏0 (F , 𝜉 𝑗 ) + 1
𝑚0 (𝜉 𝑗 )

: 𝜉 𝑗 is an irreducible component of PF
}

where 𝜏0 (F , 𝜉) denotes the tangency order of F with 𝜉 (see page 16) and the set
Q(F ) is also equal to

{
𝛽1,

𝛽2
𝑛1
, . . . ,

𝛽𝑔

𝑛1 · · ·𝑛𝑔−1

}
. Hence, we can associate to F a vector

𝑡 (F ) = (𝑡F1 , 𝑡
F
2 , . . . , 𝑡

F
𝑔 ) where 𝑡F

𝑖
is the number of branches 𝜉 𝑗 of PF such that

𝜏0 (F, 𝜉 𝑗 )+1
𝑚0 ( 𝜉 𝑗 ) =

𝛽𝑖
𝑛1 · · ·𝑛𝑖−1

. Note that 𝑡 (F ) is not determined by 𝐶, it depends on the
foliation: if we consider the foliations in Example 1.5.11, we have that 𝑡F1

1 = 𝑡
F2
1 = 2

but 𝑡F3
1 = 1. Consequently 𝑡 (F ) is an analytic invariant of the foliation F .
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As we mentioned before, one of the main ingredients in the analytic classification
of plane curves is the set of values of differentials (see [82, 48, 49]). Let 𝐶 be a germ
of irreducible plane curve in (C2, 0) and let 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) be a parametrization
of the curve 𝐶. The set of differential values Λ𝐶 of the curve 𝐶 is given by

Λ𝐶 = {ord𝑡 (𝛾∗𝜔) + 1 : 𝜔 ∈ Ω1},

where Ω1 is the C{𝑥, 𝑦}-module of 1-forms in (C2, 0).
Note that if F is the foliation defined by 𝜔 = 0 and 𝐶 is not a separatrix of F ,

then ord𝑡 (𝛾∗𝜔) coincides with the tangency order 𝜏0 (F , 𝐶) defined in Section 1.3.
Moreover, if F is non-dicritical and G 𝑓 is the hamiltonian foliation defined by
𝑑𝑓 = 0, where 𝑓 is a reduced equation of the curve 𝑆F of separatrices of F , then we
have that

𝜏0 (F , 𝐶) ≥ 𝜏0 (G 𝑓 , 𝐶) = (𝑆F , 𝐶)0 − 1 (1.15)

and the equality holds if and only if F is a non-dicritical second type foliation (see
Lemma 1.3.10 and [14, Corollary 1]).

In particular, if we consider 1-forms 𝜔 which define non-dicritical second type
foliations, the values ord𝑡 (𝛾∗𝜔) + 1 allow to recover the values of the semigroup Γ𝐶
of the curve. Thus, if we want to describe the set Λ𝐶 ∖ Γ𝐶 , we have to study the
values ord𝑡 (𝜑∗𝜔) + 1 for 1-forms such that the foliation defined by 𝜔 = 0 is either
dicritical or it is not a second type foliation.

Note that given ℎ ∈ C{𝑥, 𝑦} and a 1-form 𝜔, we have that ord𝑡 (𝛾∗ (ℎ𝜔)) =

ord𝑡 (ℎ(𝛾(𝑡))) + ord𝑡 (𝛾∗𝜔), then we obtain Λ𝐶 + Γ𝐶 ⊂ Λ𝐶 : this property means that
the set of differential values Λ𝐶 is a Γ𝐶 -semimodule.

If 𝐶 is a curve with only one Puiseux pair {(𝑚, 𝑛)} (we will refer to this type of
curves as cusps) there exists a unique sequence of increasing non-negative integer
numbers (𝑛, 𝑚, 𝜆1, . . . , 𝜆𝑠), called a basis of Λ𝐶 , with Λ𝐶 = ∪𝑠

𝑖=1 (𝜆𝑖 + Γ𝐶 ) and
𝜆 𝑗 ∉ ∪ 𝑗−1

𝑖=1 (𝜆𝑖 + Γ𝐶 ) ([15, Proposition 6.2]). In [35], C. Delorme gives a description
of the structure of the semimodule of differential values when 𝐶 is a cusp. In [15,
Appendices B and C], some of the results of Delorme concerning the structure of
Λ𝐶 are proved with a different approach.

As well properties of the foliations defined by the 1-forms𝜔𝑖 with ord𝑡 (𝛾∗𝜔𝑖)+1 =

𝜆𝑖 are described in [15] for cusps. In particular, the bifurcation divisor 𝐸 of 𝐺 (𝐶)
is dicritical for these foliations defined by 𝜔𝑖 = 0. For any free point 𝑃 ∈ 𝐸 , let
C𝑖
𝑃

be the invariant curve of 𝜔𝑖 = 0 corresponding to the dicritical component and
passing through 𝑃. Then C𝑖

𝑃
is also an irreducible curve with only one Puiseux

pair {(𝑚, 𝑛)} and semimodule of differentials values given by ∪ 𝑗−1
𝑖=1 (𝜆𝑖 + Γ𝐶 ) ([15,

Theorem 8.8]). If 𝑃𝐶 is the infinitely near point of 𝐶 in 𝐸 , the curves C𝑖
𝑃𝐶

are called
analytic semiroots of the cusp 𝐶.

There are two recent papers by E. Casas-Alvero addressing the study of the
continuous analytic invariants in the classification of irreducible plane curves with
only one Puiseux pair. In [20], E. Casas-Alvero presents some results determining
which coefficients of the Puiseux series of the Puiseux parametrization affect the
analytic type of an irreducible plane curve with only one Puiseux pair; he uses
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the Newton polygon of the curve 𝐶 in order to determine which coefficients of the
equation of 𝐶 are “relevant” for the analytic classification of the curve. In [21],
the author tries to go deeper in the relationship between polar curves and analytic
classification of irreducible curves with only one Puiseux pair showing that the
topological type of generic polars and base points of polar curves provide only
partial information on the analytic type of the curve, and that generalized polars
contain more information.

Another recent paper [33] presents a method to construct dicritical foliations at
the bifurcation divisors of the reduction of singularities of an irreducible curve 𝐶
using the semiroots of the curve 𝐶. Moreover, the authors describe the relationship
between the 1-forms defining these foliations and the semimodule of differential
values Λ𝐶 . It is also shown (Proposition 4.9) how to compute the Zariski invariant
𝜆 of Λ𝐶 , that is, 𝜆 = min(Λ𝐶 ∖ Γ𝐶 ) − 𝑛, considering dicritical foliations in the
first triple point of the resolution dual graph of 𝐶 (this proposition extends a result
proved by O. Gómez-Martı́nez [44] for cusps). Recall that the Zariski invariant is an
analytic invariant introduced by O. Zariski in [80].

We would like to mention as well the paper [2] where the authors study the
relationship between analytic invariants, as the set of differential values Λ𝐶 and the
Tjurina number 𝜏(𝐶) of a plane irreducible curve 𝐶, and the corresponding analytic
invariants of its semiroots. In particular, they show how to determine part of Λ𝐶
from the sets of differential values Λ𝐶𝑘

of its semiroots 𝐶𝑘 .
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(2009), 633-640. 17, 18

30. N. Corral: Polar pencil of curves and foliations. Astérisque 323 (2009), 161-179. 37
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58. Lê Dũng Tráng; C. Weber: Équisingularité dans les pinceaux de germes de courbes planes et
𝐶0-suffisance. L’Enseignenment Mathématique, 43 (1997), 355-380. 2
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73. A. Seidenberg: Reduction of Singularities of the Differentiable Equation 𝐴𝑑𝑌 = 𝐵𝑑𝑋. Amer.

J. Math. 90, (1968) 248–269. 5
74. T. Suwa: Indices of holomorphic vector fields relative to invariant curves on surfaces. Proc.

Am. Math. Soc. 123, No. 10 (1995), 2989-2997. 11, 14
75. B. Teissier: Introduction to equisingularity problems. Proc. Symp. Pure Math. 19 (1975),

593-632. 2
76. B. Teissier: Variétés polaires. I. Invariants polaires des singularités d’hypersurfaces. Inv.

Math. 40, (1977), 267-292. 2
77. B. Teissier: Complex curve singularities: a biased introduction. World Scientific Publishing

Co. Pte. Ltd., Hackensack, NJ, 2007, 825–887. 18
78. C. T. C. Wall: Singular points of plane curves. London Math. Soc. Stud. Texts, 63. Cambridge

University Press, Cambridge, 2004, xii+370 pp. 18, 19, 22
79. O. Zariski: Studies in Equisingularity I. Equivalent Singularities of Plane Algebroid Curves.

Amer. J. of Math. 87, No. 2 (1965), 507-536. 18
80. O. Zariski: Characterization of plane algebroid curves whose module of differentials has

maximum torsion. Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 781–786. 51
81. O. Zariski: Studies in Equisingularity III. Saturation of local rings and equisingularity. Amer.

J. of Math. 90, (1968), 961-1023. 21
82. O. Zariski: The moduli problem for plane branches. With an appendix by Bernard Teissier.

Translated from the 1973 French original by Ben Lichtin. University Lecture Series, 39.
American Mathematical Society, Providence, RI, 2006. 19, 21, 49, 50



Index

𝐶0-sufficiency degree, 2

analytic
equivalence, 18
semiroot, 50

branch, 19

characteristic exponents, 20
collinear

divisor, 39
point, 39

conductor of the semigroup, 21
cover of a divisor, 42
curvette, 25
cusp, 50

dicritical
blow-up, 5
foliation, 6

differential values, 50
dual graph, 23

equisingular, 18, 22

foliation
generalized curve, 6
logarithmic, 8
logarithmic model of a, 9
resonant logarithmic, 8
second type, 6

geodesic
of a divisor, 23

holonomy, 10

index

Camacho-Sad, 7, 11
GSV, 13

invariant
analytic, 49
Zariski, 51

invariant curve, 6

jacobian curve, 3, 38

kind equisingularity type, 36

Milnor number, 7
along a separatrix, 16

multiplicity
of a curve, 19
of a foliation, 5

Newton polygon, 29
contribution of a vertex, 31

polar
curve, 2, 29
excess, 12
quotients, 2, 49

Puiseux
pairs, 20
series, 19

ramification, 27, 33
reduction of singularities, 5

semigroup
generators of the, 21
of an irreducible curve, 21

semimodule, 50
semiroot, 21
separatrix, 6

55



56 Index

isolated, 14
non-dicritical, 14

singular point, 5
singularity

saddle-node, 5
simple, 5

tangency order, 16
tangent cone

of a curve, 19
of a foliation, 8

topological equivalence, 18


	Jacobian and polar curves of singular foliations
	Nuria Corral
	Contents
	Introduction
	Generalized curve foliations and logarithmic models
	Logarithmic models
	Camacho-Sad index relative to singular separatrices

	Polar and jacobian intersection multiplicities
	Equisingularity data of a plane curve
	Equisingularity data of an irreducible curve
	Equisingularity data of a curve with several branches
	Ramification

	Topological properties of polar curves of foliations
	The case of non-singular separatrices
	General case

	Topological properties of jacobian curves of foliations
	The case of non-singular separatrices
	Jacobian curve: general case

	Analytic invariants of irreducible plane curves
	References

	Index



