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Abstract. In this survey paper, we take the viewpoint of polar invariants to the
local and global study of non-dicritical holomorphic foliation in dimension two and
their invariant curves. It appears a characterization of second type foliations and
generalized curve foliations as well as a description of the GSV -index in terms of
polar curves. We also interpret the proofs concerning the Poincaré problem with
polar invariants.
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1. Introduction

In this paper, we give a look based on the study of intersection properties of polar
curves of a foliation to three subjects concerning non-dicritical singular holomorphic
foliations:

a) The characterization of second type foliations and generalized curves.
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b) A polar interpretation of the GSV-index.
c) The (non-dicritical) Poincaré problem for foliations in P2

C.

The polar curves of a singular holomorphic foliation F in dimension two have
been studied in a local way by P. Rouillé [27] and N. Corral [14] and in a global way
by R. Mol [25]. The definition is quite geometrical. Namely, the polar curve of F
with respect to another foliation L is just the curve of tangencies between F and
L. It generalizes a classical approach of polar curves by B. Teissier, Lê Dung Tràng,
E. Casas-Alvero, and others [29, 20, 10, 24, 17]. Usually L is a linear foliation of
parallel lines (or lines passing through a point of P2

C) and in this way the “generic
object” is well defined with respect to certain criteria, such as the equisingularity,
for instance.

Let us recall that the term generalized curve comes from the results in [5] and
denotes a local foliation without saddle-nodes in its desingularization. Such folia-
tions have the outstanding properties of being desingularized by the same sequence
of blow-ups that desingularizes the set of separatrices and minimizing Milnor num-
ber. The non-dicritical foliations whose reduction of singularities coincides with the
reduction of singularities of the set of formal separatrices are those that minimize
the algebraic multiplicity. This characterization is due to J.-F. Mattei and E. Salem
[23] and they use the terminology foliations of second type.

The intersection number of a generic polar curve of a non-dicritical foliation F
and a formal invariant curve S at 0 ∈ C2 is what we call polar intersection number
p0(F , S). We have that

p0(F , S) ≤ ν0(F) + µ0(F), (1)

where ν0(F) is the algebraic multiplicity and µ0(F) the Milnor number. Moreover,
equality holds if and only if F is of second type and S is its set of formal separatrices.

Take a germ of convergent invariant curve C ⊂ S and a generalized curve G such
that C is its set of separatrices. Then we have

p0(G, C) ≤ p0(F , S)

and equality holds if and only if F is a generalized curve and S = C is its set of
separatrices.

There is no obstruction to consider formal foliations and formal generalized curves.
In this context, we also have that for any formal generalized curve Ĝ such that S is
its set of separatrices and any formal foliation F̂ such that S is invariant, we have

∆0(F̂ , S) = p0(F̂ , S)− p0(Ĝ, S)0 ≥ 0

and equality holds if and only if F̂ is a generalized curve and S is its set of separa-
trices.

These results express a well known characterization of generalized curves in terms
of the Gómez-Mont-Seade-Verjovsky index. Take a convergent curve C and a gen-
eralized curve G such that C is its set of separatrices. Consider a non-dicritical
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foliation F such that C is invariant by F . We have that

GSV0(F , C) = ∆0(F , S) ≥ 0.

We recover in this way the known result that F is a generalized curve if and only
GSV0(F , C) = 0 ([2, 11]) and in this case C is its set of separatrices. Moreover,
the above formula gives a way of generalizing the GSV-index to formal invariant
curves, as well as another interpretation of the non-negativity of the GSV-index for
non-dicritical foliations (see Proposition 6 of [2]).

Let F be a holomorphic foliation on P2
C. The degree of F is the number deg(F)

of tangencies between F and a generic line L ⊂ P2
C. The question concerning the

existence of a bound for the degree of an algebraic curve S invariant by F in terms
of the degree of F is known in Foliation Theory as the Poincaré problem, being
proposed by Poincaré himself in [26] as a step in finding a rational first integral
for a polynomial differential equation in two complex variables. A first answer to
this problem was given by D. Cerveau and A. Lins Neto [12]: if S has at most
nodal singularities, then deg(S) ≤ deg(F) + 2. Besides, this bound is reached if
and only if F is a logarithmic foliation, that is, a foliation induced by a closed
meromorphic 1-form with simple poles. Later, M. Carnicer obtained in [9] the same
inequality, removing the hypothesis on the singularities of S, but admitting that
the singularities of F over S are all non-dicritical, meaning that the number of
local separatrices is finite. The Poincaré problem was put in a clearer setting by
M. Brunella in the works [1] and [2]. Brunella has shown that the bound deg(S) ≤
deg(F) + 2 occurs whenever the sum over S of the GSV -indices of F with respect
to the local separatrices contained in S is non-negative. This happens in the two
cases mentioned above. In the dicritical case, N. Corral and P. Fernández-Sánchez
[15] proved that the degree of an algebraic invariant curve S of F is bounded in
terms of the degree of F provided that the germ of S at each singular point of F is
a union of isolated separatrices of F .

The last section is devoted to give a proof of Carnicer’s bound in terms of local
and global polar curves. We end the paper by a remark on logarithmic foliations,
that corresponds to the limit case.

2. Recall on local invariants and reduction of singularities

We recall [7] that a germ of singular holomorphic foliation F in (C2, 0) is defined
by ω = 0, where ω is a 1-form

ω = P (x, y)dx+Q(x, y)dy (2)

or by the vector field v = −Q(x, y)∂/∂x + P (x, y)∂/∂y, where P,Q ∈ C{x, y} are
relatively prime. The origin 0 is a singular point if P (0, 0) = Q(0, 0) = 0. Note
that any nonzero 1-form defines in a unique way a germ of singular holomorphic
foliation, just by taking the common factor of the coefficients; same remark when
we consider a vector field.



4 FELIPE CANO & NURIA CORRAL & ROGÉRIO MOL

A formal curve C in (C2, 0) is given by a reduced equation f(x, y) = 0 with
f ∈ C[[x, y]]. When f is irreducible, we say that C is a branch. If f = f1f2 · · · fe
is the decomposition of f as a product of irreducible factors, we say that each
Bi = (fi = 0) is one of the branches of C. If we can take a convergent equation
f ∈ C{x, y}, then C is a germ of analytic curve, in this case, the branches are also
analytic germs of curve.

Let σ : (M,σ−1(0)) → (C2, 0) be the blow-up of the origin. Given a branch B
with f(x, y) = 0, we know that f has the form

f(x, y) = (λx+ µy)r + f̃(x, y), (λ, µ) ̸= (0, 0),

where all the terms of f̃(x, y) have degree greater than r. We say that r is the
multiplicity of B at the origin and we put r = ν0(B). The line λx + µy = 0 is the
tangent cone of B at the origin and it determines a single point τ(B) in the projective

line σ−1(0). Up to a linear coordinate change, we can assume that f = yr + f̃(x, y)
and in this case, we have a branch B′ at τ(B) given by f ′(x′, y′) = 0, where

x′rf ′(x′, y′) = f(x′, x′y′).

We say that B′ is the strict transform of B. By taking the union of branches, we
define the strict transform of any formal curve C and, by iterating the procedure,
we can define the strict transform of C under any sequence

π : (M,E) → (C2, 0)

of punctual blow-ups. Note that each branch B of C gives a point τE(B) ∈ E in the
exceptional divisor E. We say that the sequence π is a reduction of singularities of
C if and only if

(1) For any two branches B1, B2 of C we have τE(B1) ̸= τE(B2).
(2) For any branch B of C, the exceptional divisor E has only one irreducible

component D through p = τE(B) and the strict transform B′ of B is non sin-
gular at p and transversal to E. In other words, there are formal coordinates
(x, y) at p such that E = (x = 0) and B′ = (y = 0).

It is known [30] that any formal curve has a reduction of singularities. Moreover,
there is a minimal one, and any other factorizes through the minimal one by making
additional punctual blow-ups. Let us note that doing a reduction of singularities
needs at least one blow-up, even in the case that we have a non-singular branch.

The transform π∗F of a foliation F by π is locally given by π∗ω. Note that this
definition is also valid for a formal foliation, that is, for a foliation given by ω̂ = 0,
where the coefficients of ω̂ are formal series without common factor.

Take a singular holomorphic foliation G in (M,E) and a point p ∈ E. We recall
[7] that p is a simple point for G, E if there are local coordinates (x, y) centered at
p such that E ⊂ (xy = 0) locally at p and one of the following properties holds

(1) G is locally given by dx = 0. This is the case when p is non singular. If
(x = 0) ⊂ E, we say that p is of corner type and otherwise p is of trace type.



LOCAL POLAR INVARIANTS FOR PLANE SINGULAR FOLIATIONS 5

(2) Corner type singular points: G is locally given by ω = xyη = 0 and the
divisor is E = (xy = 0), with

η = a(x, y)
dx

x
+ b(x, y)

dy

y
,

where (a(0, 0), b(0, 0)) = (−µ, λ), with µ ̸= 0 and λ/µ /∈ Q>0. We have two
possibilities
(a) λ ̸= 0. This is a complex hyperbolic singularity of corner type, following

the terminology of [8].
(b) λ = 0. This is a badly oriented saddle-node of corner type.

(3) Trace type singular points: G is locally given by ω = xη = 0 and the divisor
is E = (x = 0), with

η = a(x, y)
dx

x
+ b(x, y)dy,

where a(x, y) = −µy + αx + ã(x, y), with ã(x, y) having all terms of degree
at least two and b(0, 0) = λ. In addition, we ask that one of the following
situations holds
(a) λµ ̸= 0 and λ/µ /∈ Q>0. This is a complex hyperbolic trace singularity.
(b) µ ̸= 0 and λ = 0. This is a well oriented saddle node of trace type.
(c) µ = 0 and λ ̸= 0. This is a badly oriented saddle node of trace type.

In [23], badly oriented saddle nodes are called tangent saddle-nodes. An irreducible
component D of E may be invariant or dicritical. If we are dealing with a simple
point p ∈ M , a dicritical component D only exists when p is non singular and in
this case, up to choosing local coordinates (x, y), we have that G is given by dx = 0
and D = (y = 0).

As a direct consequence of Seidenberg’s Desingularization Theorem [28, 7] there
is a morphism π as above for which π∗F has only simple singularities. Such π is
called a reduction of the singularities of F . Note that there is a minimal such π
and any other reduction of singularities of F factorizes through the minimal one by
an additional sequence of blow-ups.

A separatrix for F in (C2, 0) is an invariant formal irreducible curve. Thus, it is
given by an equation f(x, y) = 0, where f ∈ C[[x, y]] is an irreducible formal series
such that f(0, 0) = 0 and there is a formal series h ∈ C[[x, y]] such that

ω ∧ df = (fh)dx ∧ dy.

If we can take f ∈ C{x, y}, the separatrix is convergent. We denote Sep(F) the set
of separatrices of F .

Consider a reduction of singularities π : (M,E) → (C2, 0) of F . The following
are equivalent

(1) There is a dicritical component D of E for π∗F .
(2) The foliation F has infinitely many separatrices.
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Such foliations are called dicritical. In this paper we deal with non-dicritical foli-
ations, that is foliations having only finitely many separatrices. In this case, the
union SF =

∪
{B;B ∈ Sep(F)} is a formal curve whose irreducible components are

the separatrices.
The separatrices of a non-dicritical F are in one to one correspondence with the

singular points of trace type in the reduction of singularities. To any separatrix
B we associate the singular trace point τE(B) ∈ E through which it passes the
strict transform of B. The separatrix B is called strong or of Briot and Bouquet
type (see [22], where this terminology is used) if and only if τE(B) is either a
complex hyperbolic singularity or a badly oriented saddle node. Such separatrices
are convergent by application of the classical Briot and Bouquet Theorem. Note
that in the classical Camacho-Sad paper [4] the authors show the existence of a
Briot and Bouquet separatrix in order to prove that any non-dicritical foliation has
at least one convergent separatrix.

Definition 1. Let F be a non-dicritical foliation in (C2, 0) and consider the minimal
desingularization π : (M,E) → (C2, 0) of F .

(a) The foliation F is a generalized curve (also complex hyperbolic) if all the
singularities of π∗F are of complex hyperbolic type.

(b) The foliation F is of second type if all the saddle nodes of π∗F are well
oriented with respect to E.

The terminology comes from previous papers [5, 23, 8]. Note that F is of second
type if and only if the strong separatrices correspond to complex hyperbolic trace
points and all the corners are also complex hyperbolic. The fact of being a general-
ized curve or a second type foliation is independent of considering another, may be
not minimal, reduction of singularities.

2.1. Local invariants. Let us recall now some of the local invariants frequently
used in the local study of singular foliations in dimension two, see also [7].

The algebraic multiplicity ν0(F) is the minimum of the orders ν0(P ), ν0(Q) at
the origin of the coefficients of a local generator of F . The Milnor number µ0(F) is
given by

µ0(F) = dimC
C[[x, y]]
(P,Q)

= i0(P,Q)

(where i0(P,Q) stands for the intersection multiplicity).
Take a primitive parametrization γ : (C, 0) → (C2, 0), γ(t) = (x(t), y(t)), of a

formal irreducible curve B = (f(x, y) = 0) at (C2, 0). Then B is a separatrix of F
if and only if γ∗ω = 0. In this case, we can consider the Milnor number µ0(F , B) of
F along B defined by

µ0(F , B) = ordtw(t),
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where w(t) is the unique vector field at (C, 0) such that γ∗w(t) = v ◦ γ(t) (this
number is also called multiplicity of F along B, see [5, 6]). We have that

µp(F , B) =

{
ordt(Q(γ(t)))− ordt(x(t)) + 1 if x(t) ̸= 0

ordt(P (γ(t)))− ordt(y(t)) + 1 if y(t) ̸= 0
(3)

If B is not a separatrix, we define the tangency order τ0(F , B) to be the ordta(t)
where γ∗w = a(t)dt.

These invariants have a behavior under blow-up that helps in many of the results
we are concerned here. For instance, if B is not a separatrix and we consider the
blow-up of the origin σ : (M,σ−1(0)) → (C2, 0), we have

τ0(F , B) = ν0(B)ν0(F) + τp′(σ
∗F , B′), (4)

where B′ is the strict transform of B by σ and {p′} = B′ ∩ σ−1(0).

Example 1. For a complex hyperbolic singularity with two transversal separatrices
B1 and B2, we have µ0(F , B1) = µ0(F , B2) = 1. For a saddle-node, up to reordering,
we have µ0(F , B1) = 1, µ0(F , B2) = k + 1 where B1 is the strong separatrix and
k ≥ 1 is the Poincaré order of the saddle node.

2.2. Comparison with the hamiltonian foliation. Let S be a formal curve and
f = 0 be a reduced equation for S. We denote Gf the “hamiltonian” foliation defined
by df = 0. Then Gf is non-dicritical and S is its curve of separatrices. Note that

ν0(Gf ) = ν0(S)− 1

and µ0(Gf ) corresponds exactly to the usual definition of the Milnor number of S
at the origin. We will frequently compare invariants of a non-dicritical F and Gf ,
where f = 0 is a reduced equation of SF .

Non-dicritical second type foliations minimize the algebraic multiplicity and have
the same reduction of singularities as SF . Moreover, generalized curves also minimize
the Milnor number. Let us state these results as Mattei-Salem in [23]

Theorem 1 ([5, 23]). Let F be a non-dicritical foliation and consider Gf where
f = 0 is a reduced equation of SF . Take the minimal reduction of singularities
π : (M,E) → (C2, 0) of F . Then

(1) π is a reduction of singularities of SF . Moreover π is the minimal reduction
of singularities of SF if and only if F is of second type.

(2) ν0(F) ≥ ν0(Gf ). Equality holds if and only if F is of second type.
(3) µ0(F) ≥ µ0(Gf ). Equality holds if and only if F is a generalized curve.

Next corollary is a more general version of a result in [27].

Corollary 1. Consider a non-dicritical foliation F and take a branch B which is
not a separatrix. Then

i0(SF , B) ≤ τ0(F , B) + 1

and equality holds if and only if F is of second type.
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Proof. We make induction on the number n of blow-ups needed to obtain the situ-
ation that F is non singular at the point p ∈ B we are considering, the branch B
is non singular and transversal to F . Note that this number n exists since B is not
a separatrix. If n = 0 we are done since we can assume that F is given by dx = 0
and B = (y = 0). Let σ : (M,σ−1(0)) → (C2, 0) be the blow-up of the origin, where
the exceptional divisor is the projective line D = σ−1(0). Denote by S ′

F , B
′ the

respective strict transforms of SF , B and let p′ be the point D ∩ B′. By Noether’s
formula, we have

i0(SF , B) = ν0(SF)ν0(B) + ip′(S
′
F , B

′). (5)

In view of Theorem 1 we have ν0(SF) ≤ ν0(F) + 1 and equality holds if and only F
is of second type. By the induction hypothesis and recalling that the separatrices of
σ∗F at p′ are given by S ′

F ∪D, we have that

ip′(S
′
F , B

′) + ν0(B) = ip′(S
′
F , B

′) + ip′(D,B′) = ip′(S
′
F ∪D,B′) ≤ τp′(σ

∗F , B′) + 1

where equality holds if and only if σ∗F is of second type at p′. Looking at Equa-
tion (4) we conclude that

i0(SF , B) = ν0(SF)ν0(B) + ip′(S
′
F , B

′) ≤
≤ (ν0(F) + 1)ν0(B) + τp′(σ

∗F , B′) + 1− ν0(B) =

= τ0(F , B) + 1

and equality holds if and only if F (and hence σ∗F) is of second type. �

3. Polar intersection numbers

Let F be a germ of singular foliation in (C2, 0) given by ω = Pdx+Qdy, where P,Q
are without common factors. The polar curve PF

(a:b) of F with respect to (a : b) ∈ P1
C

is defined by the equation aP + bQ = 0. In terms of differential forms, it is given by
ω∧ (bdx−ady) = 0. Note that PF

(a:b) has no invariant branches unless ax+ by = 0 is
an invariant line. The definition of polar curve also makes sense for formal foliations
and the invariants to be defined below can be extended to the formal world.

Let us fix a formal curve C invariant by F . There is a non-empty Zariski open
set UC ⊂ P1

C such that for any (a : b) ∈ UC the polar PF
(a:b) has no common branches

with C and the equisingularity type of PF
(a:b) ∪ C is independent of (a : b) ∈ UC .

A formal curve Γ in (C2, 0) is of C-generic polar type iff Γ ∪ C is equisingular to
PF
(a:b) ∪ C for (a : b) ∈ UC (see [14]). The number

p0(F , C) = i0(Γ, C)

is independent of Γ and we call it the C-polar intersection number.

Remark 1. Note that, since (a : b) runs in a non empty Zariski open set, we have

ν0(Γ) = ν0(F) = min{ν0(P ), ν0(Q)},
for any Γ of C-generic polar type. Moreover, taking Γ = PF

(a:b) for (a : b) generic

enough we have p0(F , C) = min{i0(C,P ), i0(C,Q)}.
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Note that if C ⊂ C ′ are invariant formal curves, any formal curve Γ of C ′-generic
polar type is also of C-generic polar type. In the case that F is non-dicritical,
any invariant formal curve C is contained in the curve SF of separatrices. In this
situation, we say that Γ is of generic polar type if it is of SF -generic polar type.

In this section we give two results. The first one concerns the polar intersection
number with respect to a single separatrix and the second one relatively to the
biggest invariant curve SF . In next section we consider intermediate invariant curves.

Proposition 1. Consider a separatrix B of a non-dicritical foliation F . We have

p0(F , B) = µ0(F , B) + ν0(B)− 1.

Proof. Let γ(t) = (x(t), y(t)) be a Puiseux parametrization for B and assume with-
out loss of generality that x(t) ̸= 0 and hence ẋ(t) ̸= 0. Taking a generic polar
aP + bQ = 0 we know that p0(F , B) = ordt(aP (γ(t)) + bQ(γ(t))). Since B is
a separatrix, we have P (γ(t))ẋ(t) = −Q(γ(t))ẏ(t) and applying Equation (3) we
obtain

p0(F , B) = ordt

(
−a

Q(γ(t))ẏ(t)

ẋ(t)
+ bQ(γ(t))

)
= ordtQ(γ(t))− (ordtx(t)− 1) + ordt(−aẏ(t) + bẋ(t))

= µ0(F , B) + ordt(−ay(t) + bx(t))− 1

= µ0(F , B) + ν0(B)− 1.

�

Next result follows applying Corollary 1 to the proof of Proposition 3.7 in [14].
We include the proof for the sake of completeness.

Proposition 2. Let F be a non-dicritical foliation. Then

p0(F , SF) ≤ µ0(F) + ν0(F)

and equality holds if and only if F is of second type.

Proof. Let Γ = PF
(a:b) be a generic polar, with a = 1 and b generic enough. Denote

by B(Γ) the set of irreducible components of Γ. By Corollary 1, we know that

p0(F , SF) =
∑

B∈B(Γ)

i0(B, SF) ≤
∑

B∈B(Γ)

(τ0(F , B) + 1)

and equality holds if and only if F is of second type. Let us show that the last term
is equal to µ0(F)+ν0(F). Choose a primitive parametrization γB(t) = (xB(t), yB(t))
for each B ∈ B(Γ). If ω = Pdx+Qdy defines the foliation, we recall that P (γB(t)) =
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−bQ(γB(t)), since B is a branch of Γ. Now∑
B∈B(Γ)

(τ0(F , B) + 1) =
∑

B∈B(Γ)

(ordt{P (γB(t))ẋB(t) +Q(γB(t))ẏB(t)}+ 1)

=
∑

B∈B(Γ)

(ordt{Q(γB(t)}+ ordt{−bẋB(t) + ẏB(t)}+ 1)

=
∑

B∈B(Γ)

(ordt{Q(γB(t)}+ ordt{−bxB(t) + yB(t)})

= i0(Q,Γ = P + bQ) + ν0(Γ) = µ0(F) + ν0(F).

Note that b is generic. This ends the proof. �
Remark 2. Let C be a formal curve in (C2, 0) and f = 0 be a reduced equation of C.
Let us consider the hamiltonian foliation Gf given by df = 0. We know that Gf is a
generalized curve and C its curve of separatrices. Moreover, by definition of Milnor
number and multiplicity, we have that µ0(Gf ) = µ0(C) and ν0(Gf ) = ν0(C) − 1.
Then Proposition 2 gives that

p0(Gf , C) = µ0(C) + ν0(C)− 1, (6)

and p0(Gf , C) does not depend on the choice of the reduced equation f . More
generally, if G is a generalized curve such that C = SG we also have that p0(G, C) =
µ0(C) + ν0(C)− 1.

Remark 3. Following Theorem 1 and Proposition 2, we have

p0(F , SF) = µ0(F) + ν0(SF)− 1 (7)

for a non-dicritical foliation of second type F . Taking Equation (7) for Gf , where
f = 0 is a reduced equation of SF , we obtain that

p0(F , SF)− p0(Gf , SF) = µ0(F)− µ0(Gf ) = µ0(F)− µ0(SF) ≥ 0. (8)

Note the positivity of this difference. In particular, a non-dicritical foliation F of
second type is a generalized curve if and only if p0(F , SF) = p0(Gf , SF).

Corollary 2. For a non-dicritical foliation F of second type, we have

µ0(F) = 1− δF +
∑

B∈Sep(F)

µ0(F , B),

where δF is the number of separatrices of F .

Proof. By summing up polar intersection numbers over all separatrices we get

p0(F , SF) =
∑

B∈Sep(F)

p0(F , B) =
∑

B∈Sep(F)

µ0(F , B) + ν0(SF)− δF ,

Since F is of second type we have ν0(SF) = ν0(F) + 1 = p0(F , SF)− µ0(F) + 1 and
we are done. �
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4. The formal GSV-index and polar intersection numbers

In this section we give a formal extension of the GSV-index introduced by X.
Gómez-Mont, J. Seade and A. Verjovsky in [18].

Definition 2. Take a germ of singular foliation F and a formal curve C invariant
by F . We define the C-polar excess ∆0(F , C) by

∆0(F , C) = p0(F , C)− p0(G, C) = p0(F , C)− µ0(C)− ν0(C) + 1,

where G is any generalized curve such that C = SG.

Take a non-dicritical foliation F and a germ of (convergent) curve C invariant by
F . Following Brunella [2] we know that GSV (F , C) ≥ 0 and it is equal to 0 in the
case of a generalized curve. This positivity is a key argument in bounding degrees
for Poincaré Problem in [9]. In this section, we show that

GSV (F , C) = ∆0(F , C).

Thus, the polar excess gives a formal extension of the GSV-index.
We start the section by proving that ∆0(F , C) ≥ 0 for any non-dicritical F .

4.1. Positivity of the polar excess. Before proving the positivity of ∆0(F , C)
we consider the behavior of polar intersection numbers under blow-up.

Consider the blow-up π : (M,E) → (C2, 0) of the origin of (C2, 0). Note that if F
is a non-dicritical foliation, then the exceptional divisor E = π−1(0) is an invariant
projective line for π∗F .

Proposition 3. Let B ∈ Sep(F) be a separatrix of a non-dicritical foliation F in

(C2, 0) and let p̃ ∈ E be the only point in B̃ ∩E, where B̃ is the strict transform of
B. We have

pp̃(π
∗F , B̃) = p0(F , B) + νp̃(B̃)− ν0(F)ν0(B). (9)

Proof. Up to a linear change of coordinates, we suppose that the tangent cone of B
is y = 0 and thus we have local coordinates (x, v) around p̃ given by v = y/x. Take a
Puiseux parametrization γ(t) = (tn, ϕ(t)) of B, where n = ν0(B) and ordt(ϕ(t)) > n.

Then, a primitive parametrization of B̃ is given by γ̃(t) = (tn, ϕ̃(t) = ϕ(t)/tn). If F
is given by ω = Pdx+Qdy = 0, then π∗F is locally given at p̃ by

ω′ = x−ν0(F){(P (x, xv) + vQ(x, xv))dx+ xQ(x, xv)dv}.

We have

pp̃(π
∗F , B̃) = ordt{P (γ(t)) + ϕ̃(t)Q(γ(t)) + btnQ(γ(t))} − nν0(F),

where b is generic. Since B is invariant, we have that ntn−1P (γ(t)) = −ϕ′(t)Q(γ(t))
and thus

pp̃(π
∗F , B̃) = ordt{Q(γ(t))}+ ordt

{
−tϕ′(t) + nϕ(t)

ntn
+ btn

}
− nν0(F).
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For b generic, we have

ordt

{
−tϕ′(t) + nϕ(t)

ntn
+ btn

}
= νp̃(B̃).

Moreover, noting that ntn−1P (γ(t)) = −ϕ′(t)Q(γ(t)) and ordt(ϕ(t)) > n we have

ordt(P (γ(t))) > ordt(Q(γ(t)))

and hence ordt(Q(γ(t))) = p0(F , B). This ends the proof. �
Remark 4. If we consider a polar curve PF

(a:b) for a dicritical foliation F and we

define p0(F , B) = i0(P
F
(a:b), B) for generic (a : b), we obtain

pp̃(π
∗F , B̃) = p0(F , B) + νp̃(B̃)− (ν0(F) + 1)ν0(B),

when the blow-up of the origin is dicritical for the foliation F .

Remark 5. Take a curve Γ of generic polar type and consider the situation of
Proposition 3. Denote by Γ̃ the strict transform of Γ by π. We recall that

p0(F , B) = i0(Γ, B).

By Noether’s formula, we also have

ip̃(Γ̃, B̃) = i0(Γ, B)− ν0(Γ)ν0(B) = p0(F , B)− ν0(F)ν0(B).

We obtain that pp̃(π
∗F , B̃)− ip̃(Γ̃, B̃) = νp̃(B̃). In particular, the strict transform of

a curve of generic polar type is not a curve of generic polar type for the transformed
foliation.

Theorem 2. Consider a non-dicritical foliation F in (C2, 0) and an invariant curve
C ⊂ SF . For any branch B ∈ B(C), we have

p0(Gf , B) ≤ p0(F , B),

where f = 0 is a reduced equation of C. Moreover, the following statements are
equivalent

(1) There is B ∈ B(C) such that p0(Gf , B) = p0(F , B).
(2) The foliation F is of second type with C = SF .

Finally, if F is of second type with C = SF , a separatrix B ∈ B(SF) is of Briot and
Bouquet type if and only if p0(Gf , B) = p0(F , B).

Note that in Lemma 2.2. of [9] it is proved that µ0(F , B) ≥ µ0(G, B) and hence
the first statement is a consequence of Proposition 1. Anyway we give a complete
proof below.

Proof. Consider a sequence of local blow-ups

πk : (Mk, qk) → (Mk−1, qk−1), k = 1, 2, . . . , N

described as follows. First (M0, q0) = (C2, 0) and π1 is the blow-up of the origin.
Next πk : (Mk, qk) → (Mk−1, qk−1) is the blow-up centered at qk−1, where qk−1 is the
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only point in the strict transform Bk−1 ⊂ Mk−1 of B, followed by the localization
at the new “infinitesimal near point” qk of Bk. We denote by Ek ⊂ Mk the total
exceptional divisor, starting with E0 = ∅. Denote by Ck ⊂ Mk the strict transform
of C in Mk (localized around qk) and by Fk, respectively Gk, the transforms of F ,
respectively Gf , at Mk. At the final step N ≥ 1 we ask that C is desingularized at
qN , that is BN = CN locally at qN and BN has normal crossings with EN at qN .
In particular, there are local coordinates (x, y) at qN such that EN = (x = 0) and
BN = (y = 0). The existence of this sequence is an immediate consequence of the
reduction of singularities of plane curves.

Let us denote ∆k = pqk(Fk, Bk)−pqk(Gk, Bk). Note that GN is a generalized curve
at qN with separatrices xy = 0, that is, up to a coordinate change, it is given by
a linear form ydx + rxdy with r ∈ Q>0. In particular, we have pqN (GN , BN) = 1.
Moreover, qN is a singular point for FN , since xy = 0 are also invariant curves for
FN . Hence pqN (FN , BN) ≥ 1 and thus ∆N ≥ 0. Let us show that

∆0 ≥ ∆1 ≥ ∆2 ≥ · · · ≥ ∆N ≥ 0. (10)

Invoking Proposition 3, we have

∆k−1 = ∆k +mk−1(νqk−1
(Fk−1)− νqk−1

(Gk−1)), (11)

where mk−1 = νqk−1
(Bk−1) ≥ 1. Since Gk−1 is a generalized curve at qk−1 whose

separatrices are the irreducible components of Ck−1∪Ek−1 and Ck−1∪Ek−1 ⊂ SFk−1
,

we have that
νqk−1

(Fk−1)− νqk−1
(Gk−1) ≥ 0.

This already shows the statement of Equation (10) and in particular ∆0 ≥ 0.
Now, assume ∆0 = 0. This implies that ∆k = 0 for all k = 0, 1, . . . , N . In

particular, by Equation (11) applied to k = 1 we deduce that ν0(F) = ν0(Gf ), since
C ⊂ SF , by Theorem 1, this is only possible if C = SF and F is of second type.

Conversely, assume that F is of second type with C = SF . Take a branch B ∈
B(SF) and let us consider the local situation at qN where BN = (y = 0) and
EN = (x = 0). Write a generator of FN as ωN = g(x, y)ydx + h(x, y)xdy. Then
pqN (FN , BN) ≥ 1 and pqN (FN , BN) = 1 if and only if h(0, 0) ̸= 0, this is equivalent
to say that B is a Briot and Bouquet separatrix. That is we have shown that B is a
Briot and Bouquet separatrix if and only if ∆N = 0. Moreover, at an intermediate
point qk we have that both Fk and Gk are of second type with

SFk
= SGk

= Ck ∪ Ek.

In particular νqk−1
(Fk−1)− νqk−1

(Gk−1) = 0 and thus we have that

∆0 = ∆1 = ∆2 = · · · = ∆N ≥ 0.

Finally, note that by Camacho and Sad arguments in [5] there is always a Briot and
Bouquet separatrix. This ends the proof. �
Corollary 3. We have ∆0(F , C) ≥ 0 for any non-dicritical foliation F in (C2, 0)
and any curve C ⊂ SF .
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Proof. It follows from the additivity of the polar intersection indices, by applying
Theorem 2 to all the branches B ∈ B(C). �

Corollary 4. A non-dicritical foliation F in (C2, 0) is a generalized curve if and
only if

∆0(F , SF) = 0.

In this case we have p0(F , SF) = µ0(SF) + ν0(SF)− 1.

Proof. In view of Theorem 2 and the additivity of the polar intersection numbers
the stated equality is equivalent to say that

p0(Gf , B) = p0(F , B)

for any separatrix B ∈ Sep(F). This is also equivalent to say that F is of second
type and all the separatrices are of Briot and Bouquet, what is the same to say that
F is a generalized curve. The second part is a consequence of Proposition 2 (see
also [14]). �

4.2. Computation of GSV-index. Let us recall the definition in [2] of the GSV-
index. Let C be a germ of (convergent) curve invariant by a foliation F in (C2, 0).
Take a reduced equation f = 0 of C for f ∈ C{x, y} and a 1-form ω that defines F .
There is a decomposition

gω = kdf + fη, g, k ∈ C{x, y}, (12)

where η is a holomorphic 1-form.

Definition 3. The GSV -index of F with respect to C at the origin is defined by

GSV0(F , C) =
1

2πi

∫
∂C

g

k
d

(
k

g

)
.

Here ∂C = C ∩ S3
ϵ , where S3

ϵ is a small sphere centered at 0 ∈ C2, oriented as the
boundary of C ∩B4

ϵ , for a ball B4
ϵ such that S3

ϵ = ∂B4
ϵ .

Next Lemma 1 remakes the behavior of the CSV-index for the union of two sets
of separatrices (see [2], section 3).

Lemma 1. Let F be a non-dicritical foliation and consider two curves C1, C2 ⊂ SF
without common branches. Then

∆0(F , C1 ∪ C2) = ∆0(F , C1) + ∆0(F , C2)− 2i0(C1, C2).

Proof. In view of the definition of the polar excess and the additivity of the multi-
plicity of a curve, the statement is equivalent to say that

µ0(C1 ∪ C2) = µ0(C1) + µ0(C2) + 2i0(C1, C2)− 1.

This is a classical property of Milnor number of curves (see [10], Prop. 6.4.4). �
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Proposition 4. Let F be a non-dicritical foliation in (C2, 0) and C ⊂ SF be a curve
union of convergent separatrices of F . Then

GSV0(F , C) = ∆0(F , C).

Proof. It is enough to consider the case that C is a single separatrix. The general
case follows from Lemma 1 and the similar statement for the GSV-indices.

Take a reduced equation f = 0 for C and γ = γ(t) a Puiseux parametrization.
For a decomposition gω = kdf + fη such as in (12), we have

GSV0(F , C) =
1

2πi

∫
∂C

g

k
d

(
k

g

)
=

1

2πi

∫
∂Dϵ

γ∗
(
g

k
d

(
k

g

))
= ordt

(
(k/g) ◦ γ

)
,

where ∂Dϵ is a small circle around 0 ∈ C. But, if (a : b) ∈ P1
C, we get from (12) that

aP + bQ =

(
k

g

)
(afx + bfy) +

f

g
h

for some h ∈ C{x, y}. This gives
ordt

(
(aP + bQ) ◦ γ

)
= ordt

(
(k/g) ◦ γ

)
+ ordt

(
(afx + bfy) ◦ γ

)
.

Hence

GSV0(F , C) = ordt

(
(aP + bQ) ◦ γ

)
− ordt

(
(afx + bfy) ◦ γ

)
= ∆0(F , C).

�
Remark 6. In view of this interpretation of the GSV -index in terms of polar in-
tersection numbers, Corollary 4 says that a non-dicritical foliation F in (C2, 0) is a
generalized curve if and only if SF is convergent and GSV0(F , SF) = 0. This char-
acterization of non-dicritical generalized curves was already known: its necessity has
been proved in [2], whereas its sufficiency in [11].

Remark 7. The GSV -index of a foliation F in (C2, 0) with respect to a (convergent)
curve C ⊂ SF is also equal to

GSV0(F , C) = dimC
C{x, y}
(f, P,Q)

− dimC
C{x, y}
(f, fx, fy)

(see [19, 21]). Thus, from Proposition 4 and Definition 2, we get that

p0(F , C)− dimC
C{x, y}
(f, P,Q)

= µ0(C)− τ0(C) + ν0(C)− 1

where τ0(C) = dimC
C{x,y}
(f,fx,fy)

is the Tjurina number of C. If SF is convergent and we

define the Tjurina number τ0(F) of the foliation F as

τ0(F) = dimC
C{x, y}
(f, P,Q)

with f = 0 an equation of SF , we obtain that

GSV0(F , SF) = τ0(F)− τ0(SF).
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Hence, we have that F is a generalized curve if and only if τ0(F) = τ0(SF).

5. The Poincaré problem and polar multiplicities

The notion of polar curve of a foliation has a global counterpart. Let F be a
foliation on P2

C with singular set Sing(F) and degree deg(F). Given q ∈ P2
C, the

polar curve of F with center q is the closure of the set of tangencies of F with the
lines containing q. That is:

PF
q = {p ∈ P2

C \ Sing(F); q ∈ T P
p F},

where T P
p F is the line through p with direction TpF . This is a curve of degree

deg(F) + 1, except for the unique degenerate case where F is the radial foliation
centered at q (see [25]). This curve contains all points in Sing(F), as well as the
center q. As long as q varies through P2

C, the curves PF
q form a two-dimensional

linear system, the polar net of F . Its base locus is precisely Sing(F).
A foliation F on P2

C is induced in affine coordinates C2 by a polynomial 1-form
ω = P (x, y)dx+Q(x, y)dy. The curves with equation aP (x, y)+bQ(x, y) = 0, where
(a : b) ∈ P1

C, are polar curves PF
q with q ∈ L∞ = P1

C, where L∞ denotes the line at
infinity with respect to these affine coordinates. Thus the local polar curves can be
seen as germs of global polar curves.

In this Section, we revisit the known proofs of the degree bound for Poincaré
problem in terms of polar curves. Namely, we will show that if an algebraic curve S
is invariant by a foliation F on P2

C then deg(S) ≤ deg(F) + 2 in the following cases:

(a) The singularities of F over S are non-dicritical (Carnicer’s paper [9]).
(b) The curve S has at most nodal singularities (Cerveau-Lins Neto’s paper [12]).

Let S ⊂ P2
C be a projective curve of degree d invariant by a singular foliation F of

P2
C. Choose a line at infinity L∞ transversal to S that avoids Sing(F) and Sing(S).

Consider affine coordinates in C2 = P2
C \ L∞ and fix an affine reduced polynomial

equation f(x, y) = 0 for S \ L∞. Let G be the foliation on P2
C defined by df = 0 in

the affine part. The foliation G is the foliation of reference in [9].
Notice that deg(G) = d− 1 and L∞ is G-invariant. The only singularities of G on

L∞ are the d points in S ∩ L∞. In all such points G is analytically equivalent to
a radial foliation. To see this, it is enough to observe that G has the rational first
integral F (X,Y, Z)/Zd, where X, Y, Z are homogeneous coordinates and F is the
homogeneous polynomial of degree d such that F (x, y, 1) = f(x, y).

Given q ∈ P2
C, let us denote Γq = PF

q and Σq = P G
q . There is a nonempty Zariski

open set U ⊂ P2
C such that the following properties hold for any q ∈ U :

(1) For any r ∈ S∩L∞ we have that r /∈ Γq and Σq is non singular and transversal
to S and L∞ in r. In particular ir(Σq, S) = 1 and ir(Γq, S) = 0.

(2) For any r ∈ S \(L∞∪Sing(F)) we have that either r /∈ Γq∪Σq or r ∈ Γq∩Σq

and then ir(Γq, S) = ir(Σq, S) = 1.
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(3) For any r ∈ S \ (L∞ ∪ Sing(S)) we have that either ir(Σq, S) = 0 or

ir(Γq, S) ≥ ir(Σq, S) = 1.

In the case ir(Γq, S) = ir(Σq, S) then F is non-singular at r.
(4) For any r ∈ S∩Sing(F) we have that Γq, respectively Σq, is a S-polar generic

curve for F , respectively for G. In particular, when F is non-dicritical at r
we have

∆r(F , S) = ir(Γq, S)− ir(Σq, S) ≥ 0,

in view of Corollary 3. If r is a nodal singularity of S, we have ir(Σq, S) = 2
(note that S has two branches at r) and thus ir(Γq, S)− ir(Σq, S) ≥ 0.

For the second statement, let us note that up to choosing a generic q, the line
joining q and r, for r ∈ S \ (L∞ ∪ Sing(F)) is either transversal to S of tangent
with intersection multiplicity equal to 2. In the first case we have that r /∈ Γq ∪Σq.
Consider the second case. Let us choose affine coordinates (x, y) centered at r such
that the lines passing through q are the leaves of dx = 0. Moreover, the curve
S is locally given at r as y2 + xg(x, y) = 0 where g(x, y) ∈ C{x, y} is such that
g(0, 0) ̸= 0. Since F is non singular at r, it is locally given at r by η = 0 where

η = d(U(x, y)(y2 + xg(x, y))), U(0, 0) ̸= 0.

Hence Γq is given at r by h(x, y) = 0, for dx ∧ η = h(x, y)dx ∧ dy. That is

h(x, y) =
∂(U(x, y)(y2 + xg(x, y)))

∂y
= 2yU(x, y) + y2

∂U(x, y)

∂y
+ x(· · · ).

This implies that ir(Γq, S) = 1. Same argument to see that ir(Σq, S) = 1. These
kind of computations also show the third statement.

Now, let us consider a generic q as above. By Bézout’s theorem applied to the
curves S and Σq, we have

d2 =
∑
r∈A

ir(Σq, S) +
∑
r∈B

ir(Σq, S) +
∑
r∈C

ir(Σq, S),

where A = S ∩ L∞, B = S \ (L∞ ∪ Sing(F)) and C = S ∩ Sing(F). We obtain that

d(d− 1) =
∑
r∈B

ir(Σq, S) +
∑
r∈C

ir(Σq, S).

By Bézout’s theorem applied to the curves S and Γq, we obtain

d(deg(F) + 1) =
∑
r∈B

ir(Γq, S) +
∑
r∈C

ir(Γq, S).

Taking the difference, we have

deg(F) + 2− d =
1

d

∑
r∈S∩Sing(F)

(ir(Γq, S)− ir(Σq, S)) ≥ 0. (13)
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Note that in the non-dicritical case this equation reads as

deg(F) + 2− d =
1

d

∑
r∈S∩Sing(F)

∆r(F , S). (14)

Remark 8. By Proposition 4, the number in the right part of Equation (13) is
(1/d)

∑
p∈Sing(F)∩S GSVp(F , S), which is obtained in [1] and [2] as c1(NF) ·S−S ·S,

where NF = O(d+ 2) is the normal bundle of F .

5.1. Logarithmic foliations. The limit case for the bound of degrees is closely
related with logarithmic forms, as shown in the following statement

Theorem 3 ([12], [2]). Take a curve S ⊂ P2
C given by a homogeneous polynomial

equation P = P1P2 · · ·Pn = 0, where each polynomial Pi is irreducible of degree di.
Suppose that S is invariant for a foliation F of P2

C that is non-dicritical at each
point q ∈ S. The following statements are equivalent

(1) deg(S) = deg(F) + 2.
(2) There are residues λi ∈ C∗ with

∑n
i=1 λidi = 0 such that F is given by

W = 0, where W is the global closed logarithmic 1-form in P2
C defined by

W =
n∑

i=1

λi
dPi

Pi

.

(3) The foliation F is a generalized curve at any q ∈ S and S contains all the
separatrices of F at q.

The case of nodal singularities has been proved by D. Cerveau and A. Lins Neto
in [12] and it is also valid in a dicritical situation. Later, the result was extended by
M. Brunella to the non-dicritical case in ([2], Proposition 10). His proof relies on
computations involving indices of vector fields for a subsequent application of the
following result of Deligne:

Theorem (Deligne [16]). Let ω be a logarithmic 1-form on a projective variety M
whose polar divisor has normal crossings. Then ω is closed (and hence it defines a
codimension one logarithmic foliation on M).

Recently D. Cerveau gave a very short and elegant proof of Theorem 3 in [13].
This approach is based on the fact that a non-dicritical logarithmic meromorphic
1-form ω (that is ω and dω have at most simple poles) has also this property after
a blow-up.

Concerning polar invariants, we can see as a consequence of Corollary 4 and
Equation (14) that the statements (1) and (3) of Theorem 3 are equivalent.

Let us end these notes by providing a proof that (1) implies (2) following the
arguments in [13], [2] and [3] of D. Cerveau, M. Brunella and L. G. Mendes, but
avoiding the direct use of Deligne’s statement.
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Let us consider a homogeneous 1-form

T =
2∑

i=0

Ai(X0, X1, X2)dXi;
2∑

i=0

XiAi = 0

defining F (see [7]), where degAi = degF+1 and consider the meromorphic 1-form
Ω = T/P . Since deg(P ) = degF + 2, we see that Ω defines a global meromorphic
1-form ω on P2

C. Looking at each point p ∈ S, by Proposition 2.1 in [13], the form ω
is logarithmic at p. We apply the stability by non-dicritical blowing-up (Proposition
2.2 in [13]) of being logarithmic, to see that after a reduction of singularities

π : P̃2
C → P2

C

of F along S, we obtain a logarithmic 1-form π∗ω that has locally one of the following
expressions at a point p in the total transform S̃ of S:

U(x, y)(λp
dx

x
+ b(x, y)dy); U(x, y)(λp

dx

x
+ b(x, y)

dy

y
)

with U(0, 0) = 1, where x = 0 is a selected irreducible component of the total
transform S̃ of S. The first case corresponds to a non-singular point in S̃ and in the
second one we have S = (xy = 0) (note that we can do the same argument for the
component y = 0). The functions λp are holomorphic, hence they are constant. So
we can attach a residue λi to each irreducible component Pi = 0 of S. Moreover,
taking a general line ℓ in P2

C avoiding the singular locus of P , the sum of residues in
ω|ℓ gives

n∑
i=1

λi deg(P1) = 0.

Now, we consider the global meromorphic 1-form

W =
n∑

i=1

λi
dPi

Pi

.

It follows that Ω−W is holomorphic (the residues coincide) and hence Ω = cW for
a non-null constant c ∈ C.
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[22] L. López-Hernanz: Summable formal invariant curves of diffeomorphisms. Ergodic Theory
Dynam. Systems, 32, 1 (2012), 211–221. doi: 10.1017/S0143385710000805

[23] J.-F. Mattei, E. Salem: Modules formels locaux de feuilletages holomorphes.
arXiv:math/0402256 (2004).

[24] M. Merle: Invariants polaires des courbes planes. Invent. Math. 41, 2 (1977), 103–111.
[25] R. Mol: The polar curve of a foliation on P2. Ann. Fac. Sci. Toulouse Math. (6), 19, 3-4

(2010), 849–863.
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