
Sistemas Operativos

1

Pedro Corcuera
Dpto. Matemática Aplicada y
Ciencias de la Computación

Universidad de Cantabria

corcuerp@unican.es

Índice General

• Introducción

• Ecuaciones diferenciales

• Método Euler

• Método Runge Kutta

• Ejemplo de uso de librería NR

Sistemas Operativos 2

• Ejemplo de uso de librería NR

• Medida de tiempo y sleep

• Simulación de control PID

• Simulación de control de nivel

• Ajuste de controladores PID

• Simulación de circuitos lógicos combinacionales

What is an Operating System?

• A program that acts as an intermediary between a

user of a computer and the computer hardware

• Operating system goals:

– Execute user programs and make solving user problems

easier

Sistemas Operativos 3

easier

– Make the computer system convenient to use

– Use the computer hardware in an efficient manner

Operating System Definition

• OS is a resource allocator

– Manages all resources

– Decides between conflicting requests for efficient and fair

resource use

• OS is a control program

Sistemas Operativos 4

• OS is a control program

– Controls execution of programs to prevent errors and

improper use of the computer

• “The one program running at all times on the
computer” is the kernel. Everything else is either a
system program (ships with the operating system) or
an application program.

Computer-System Operation

• I/O devices and the CPU can execute concurrently

• Each device controller is in charge of a particular
device type

• Each device controller has a local buffer

• CPU moves data from/to main memory to/from local

Sistemas Operativos 5

• CPU moves data from/to main memory to/from local
buffers

• I/O is from the device to local buffer of controller

• Device controller informs CPU that it has finished its
operation by causing an interrupt

Common Functions of Interrupts

• Interrupt transfers control to the interrupt service

routine generally, through the interrupt vector, which

contains the addresses of all the service routines

• Interrupt architecture must save the address of the

interrupted instruction

Sistemas Operativos 6

interrupted instruction

• Incoming interrupts are disabled while another

interrupt is being processed to prevent a lost interrupt

• A trap is a software-generated interrupt caused either

by an error or a user request

• An operating system is interrupt driven

Interrupt Handling

• The operating system preserves the state of the CPU

by storing registers and the program counter

• Determines which type of interrupt has occurred:

– polling

Sistemas Operativos 7

– vectored interrupt system

• Separate segments of code determine what action

should be taken for each type of interrupt

Direct Memory Access Structure

• Used for high-speed I/O devices able to transmit

information at close to memory speeds

• Device controller transfers blocks of data from buffer

storage directly to main memory without CPU

intervention

Sistemas Operativos 8

intervention

• Only one interrupt is generated per block, rather than

the one interrupt per byte

Computer-System Architecture

• Most systems use a single general-purpose processor

• Multiprocessors systems growing in use and

importance

– Also known as parallel systems, tightly-coupled systems

– Advantages include:

Sistemas Operativos 9

– Advantages include:

1. Increased throughput

2. Economy of scale

3. Increased reliability – graceful degradation or fault tolerance

– Two types:

1. Asymmetric Multiprocessing

2. Symmetric Multiprocessing

How a Modern Computer Works

Sistemas Operativos 10

Symmetric Multiprocessing Architecture
A Dual-Core Design

Sistemas Operativos 11

Operating System Structure

• Multiprogramming needed for efficiency

– Single user cannot keep CPU and I/O devices busy
at all times

– Multiprogramming organizes jobs (code and data)
so CPU always has one to execute

Sistemas Operativos 12

so CPU always has one to execute

– A subset of total jobs in system is kept in memory

– One job selected and run via job scheduling

– When it has to wait (for I/O for example), OS
switches to another job

Operating System Structure

• Timesharing (multitasking) is logical extension in
which CPU switches jobs so frequently that users can
interact with each job while it is running, creating
interactive computing
– Response time should be < 1 second
– Each user has at least one program executing in

Sistemas Operativos 13

– Response time should be < 1 second
– Each user has at least one program executing in
memory �process

– If several jobs ready to run at the same time �
CPU scheduling

– If processes don’t fit in memory, swapping moves
them in and out to run

– Virtual memory allows execution of processes not
completely in memory

Process Management

• A process is a program in execution. It is a unit of
work within the system. Program is a passive entity,
process is an active entity.

• Process needs resources to accomplish its task

– CPU, memory, I/O, files

Sistemas Operativos 14

– CPU, memory, I/O, files

– Initialization data

• Process termination requires reclaim of any reusable
resources

Process Management

• Single-threaded process has one program counter
specifying location of next instruction to execute

– Process executes instructions sequentially, one at a time,
until completion

• Multi-threaded process has one program counter per

Sistemas Operativos 15

• Multi-threaded process has one program counter per
thread

• Typically system has many processes, some user,
some operating system running concurrently on one
or more CPUs

– Concurrency by multiplexing the CPUs among the
processes / threads

Distributed Computing

• Collection of separate, possibly heterogeneous,

systems networked together
– Network is a communications path

– Local Area Network (LAN)

– Wide Area Network (WAN)

Sistemas Operativos 16

– Wide Area Network (WAN)

– Metropolitan Area Network (MAN)

• Network Operating System provides features between

systems across network
– Communication scheme allows systems to exchange

messages

– Illusion of a single system

Special-Purpose Systems

• Real-time embedded systems most prevalent form of

computers

– Vary considerable, special purpose, limited purpose OS,

real-time OS

• Multimedia systems

Sistemas Operativos 17

• Multimedia systems

– Streams of data must be delivered according to time

restrictions

• Handheld systems

– PDAs, smart phones, limited CPU, memory, power

– Reduced feature set OS, limited I/O

Web-Based Computing

• Web has become ubiquitous

• PCs most prevalent devices

• More devices becoming networked to allow web

access

Sistemas Operativos 18

access

• New category of devices to manage web traffic

among similar servers: load balancers

• Use of operating systems like Windows 95, client-

side, have evolved into Linux and Windows XP, which

can be clients and servers

System Calls

• Programming interface to the services provided by the
OS

• Typically written in a high-level language (C or C++)

• Mostly accessed by programs via a high-level
Application Program Interface (API) rather than

Sistemas Operativos 19

Application Program Interface (API) rather than
direct system call use

• Three most common APIs are Win32 API for
Windows, POSIX API for POSIX-based systems
(including virtually all versions of UNIX, Linux, and
Mac OS X), and Java API for the Java virtual machine
(JVM)

Example of Standard API

• Consider the ReadFile() function in the

• Win32 API—a function for reading from a file

Sistemas Operativos 20

• A description of the parameters passed to ReadFile()

– HANDLE file—the file to be read

– LPVOID buffer—a buffer where the data will be read into and written from

– DWORD bytesToRead—the number of bytes to be read into the buffer

– LPDWORD bytesRead—the number of bytes read during the last read

– LPOVERLAPPED ovl—indicates if overlapped I/O is being used

Types of System Calls

• Process control
– end, abort
– load, execute
– create process, terminate process
– get process attributes, set process attributes
– wait for time

Sistemas Operativos 21

– wait for time
– wait event, signal event
– allocate and free memory

• File management
– create file, delete file
– open, close file
– read, write, reposition
– get and set file attributes

System Calls

• Device management
– request device, release device
– read, write, reposition
– get device attributes, set device attributes
– logically attach or detach devices

• Information maintenance

Sistemas Operativos 22

• Information maintenance
– get time or date, set time or date
– get system data, set system data
– get and set process, file, or device attributes

• Communications
– create, delete communication connection
– send, receive messages
– transfer status information
– attach and detach remote devices

Examples of Windows and
Unix System Calls

Sistemas Operativos 23

Traditional UNIX System Structure

Sistemas Operativos 24

VMware Architecture

Sistemas Operativos 25

The Process

• Multiple parts
– The program code, also called text section

– Current activity including program counter, processor registers

– Stack containing temporary data

• Function parameters, return addresses, local variables

– Data section containing global variables

Sistemas Operativos 26

– Data section containing global variables

– Heap containing memory dynamically allocated during run time

• Program is passive entity, process is active
– Program becomes process when executable file loaded into memory

• Execution of program started via GUI mouse clicks,
command line entry of its name, etc

• One program can be several processes
– Consider multiple users executing the same program

Process State

• As a process executes, it changes state

– new: The process is being created

– running: Instructions are being executed

– waiting: The process is waiting for some event to occur

Sistemas Operativos 27

– ready: The process is waiting to be assigned to a

processor

– terminated: The process has finished execution

Diagram of Process State

Sistemas Operativos 28

Process Scheduling

• Maximize CPU use, quickly switch processes onto

CPU for time sharing

• Process scheduler selects among available

processes for next execution on CPU

Sistemas Operativos 29

• Maintains scheduling queues of processes

– Job queue – set of all processes in the system

– Ready queue – set of all processes residing in main

memory, ready and waiting to execute

– Device queues – set of processes waiting for an I/O device

– Processes migrate among the various queues

Schedulers

• Long-term scheduler (or job scheduler) – selects

which processes should be brought into the ready

queue

• Short-term scheduler (or CPU scheduler) – selects

which process should be executed next and allocates

Sistemas Operativos 30

which process should be executed next and allocates

CPU

– Sometimes the only scheduler in a system

Schedulers

• Short-term scheduler is invoked very frequently

(milliseconds) ⇒ (must be fast)

• Long-term scheduler is invoked very infrequently

(seconds, minutes) ⇒ (may be slow)

Sistemas Operativos 31

– The long-term scheduler controls the degree of

multiprogramming

• Processes can be described as either:
– I/O-bound process – spends more time doing I/O than
computations, many short CPU bursts

– CPU-bound process – spends more time doing
computations; few very long CPU bursts

Process Creation

• Parent process create children processes, which, in

turn create other processes, forming a tree of

processes

• Generally, process identified and managed via a

process identifier (pid)

Sistemas Operativos 32

process identifier (pid)

• Resource sharing

– Parent and children share all resources

– Children share subset of parent’s resources

– Parent and child share no resources

Process Creation

• Execution

– Parent and children execute concurrently

– Parent waits until children terminate

• Address space

Sistemas Operativos 33

– Child duplicate of parent

– Child has a program loaded into it

• UNIX examples

– fork system call creates new process

– exec system call used after a fork to replace the process’

memory space with a new program

C Program Forking Separate Process

#include <sys/types.h>
#include <studio.h>
#include <unistd.h>
int main() {
pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

Sistemas Operativos 34

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed"); return 1;

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process parent will wait for the child */

wait (NULL); printf ("Child Complete");
}
return 0;

}

Interprocess Communication

• Processes within a system may be independent or

cooperating. Cooperating process can affect or be

affected by other processes, including sharing data

• Reasons for cooperating processes:
– Information sharing

Sistemas Operativos 35

– Information sharing
– Computation speedup
– Modularity
– Convenience

• Cooperating processes need interprocess

communication (IPC). Two models of IPC
– Shared memory
– Message passing

Producer-Consumer Problem

• Paradigm for cooperating processes, producer process

produces information that is consumed by a consumer

process

– unbounded-buffer places no practical limit on the size of the

buffer

Sistemas Operativos 36

buffer

– bounded-buffer assumes that there is a fixed buffer size

• Examples: http://www.cs.cf.ac.uk/Dave/C/

Communications in Client-Server Systems

• Sockets

• Remote Procedure Calls

• Pipes

• Remote Method Invocation (Java)

Sistemas Operativos 37

• Remote Method Invocation (Java)

Sockets

• A socket is defined as an endpoint for communication

• Concatenation of IP address and port

• The socket 161.25.19.8:1625 refers to port 1625 on

host 161.25.19.8

Sistemas Operativos 38

host 161.25.19.8

• Communication consists between a pair of sockets

Socket Communication

Sistemas Operativos 39

Remote Procedure Calls

• Remote procedure call (RPC) abstracts procedure

calls between processes on networked systems

• Stubs – client-side proxy for the actual procedure on

the server

Sistemas Operativos 40

• The client-side stub locates the server and marshalls

the parameters

• The server-side stub receives this message, unpacks

the marshalled parameters, and performs the

procedure on the server

Single and Multithreaded Processes

Sistemas Operativos 41

User Threads

• Thread management done by user-level threads

library

• Three primary thread libraries:
– POSIX Pthreads

– Win32 threads

Sistemas Operativos 42

– Win32 threads

– Java threads

• Thread library provides programmer with API for

creating and managing threads

• Two primary ways of implementing
– Library entirely in user space

– Kernel-level library supported by the OS

Pthreads

• May be provided either as user-level or kernel-level

• A POSIX standard (IEEE 1003.1c) API for thread

creation and synchronization

• API specifies behavior of the thread library,

Sistemas Operativos 43

• API specifies behavior of the thread library,

implementation is up to development of the library

• Common in UNIX operating systems (Solaris, Linux,

Mac OS X)

Pthreads Example

Sistemas Operativos 44

Pthreads Example

Sistemas Operativos 45

Classical Problems of Synchronization

• Classical problems used to test newly-proposed

synchronization schemes

– Bounded-Buffer Problem

– Readers and Writers Problem

– Dining-Philosophers Problem

Sistemas Operativos 46

– Dining-Philosophers Problem

Dining-Philosophers Problem

• Philosophers spend their lives thinking

and eating

• Don’t interact with their neighbors,

occasionally try to pick up 2 chopsticks

(one at a time) to eat from bowl

– Need both to eat, then release both

Sistemas Operativos 47

– Need both to eat, then release both

when done

• In the case of 5 philosophers

– Shared data

• Bowl of rice (data set)

• Semaphore chopstick [5]

initialized to 1

Overview of Real-Time Systems

• A real-time system requires that results be produced

within a specified deadline period.

• An embedded system is a computing device that is

part of a larger system (i.e., automobile, airliner).

• A safety-critical system is a real-time system with

Sistemas Operativos 48

• A safety-critical system is a real-time system with

catastrophic results in case of failure.

• A hard real-time system guarantees that real-time

tasks be completed within their required deadlines.

• A soft real-time system provides priority of real-time

tasks over non real-time tasks.

Features of Real-Time Kernels

• Most real-time systems do not provide the features

found in a standard desktop system

• Reasons include

– Real-time systems are typically single-purpose

– Real-time systems often do not require interfacing with a

Sistemas Operativos 49

– Real-time systems often do not require interfacing with a

user

– Features found in a desktop PC require more substantial

hardware that what is typically available in a real-time

system

Implementing Real-Time Systems

• In general, real-time operating systems must provide:

1. Preemptive, priority-based scheduling

2. Preemptive kernels

3. Latency must be minimized

Sistemas Operativos 50

Minimizing Latency

• Event latency is the amount of time from when an

event occurs to when it is serviced.

Sistemas Operativos 51

Dispatch Latency

• Dispatch latency is the amount of time required for

the scheduler to stop one process and start another

Sistemas Operativos 52

Real-Time CPU Scheduling

• Periodic processes require the CPU at specified

intervals (periods)

• p is the duration of the period

• d is the deadline by when the process must be

serviced

Sistemas Operativos 53

serviced

• t is the processing time

Pthread Scheduling

• The Pthread API provides functions for managing real-

time threads

• Pthreads defines two scheduling classes for real-time

threads:

Sistemas Operativos 54

1. SCHED_FIFO - threads are scheduled using a

FCFS strategy with a FIFO queue. There is no time-

slicing for threads of equal priority

2. SCHED_RR - similar to SCHED_FIFO except time-

slicing occurs for threads of equal priority

RTOS example: FreeRTOS

• FreeRTOS (http://www.freertos.org/) is an free and

opensource RealTime Operating system developed by

Real Time Engineers Ltd.

• Its design has been developed to:

Sistemas Operativos 55

– fit on very small embedded systems

– implements only a very minimalist set of functions (basic

handle of tasks and memory management, just sufficient

API concerning synchronization)

FreeRTOS

• Among its features are the following characteristics:

– preemptive tasks, a support for 23 microcontroller

architectures1 by its developers, a small footprint2

(4.3Kbytes on an ARM7 after compilation3)

– written in C and compiled with various C compiler (some

Sistemas Operativos 56

– written in C and compiled with various C compiler (some

ports are compiled with gcc, others with openwatcom or

borland c++).

– Allows an unlimited number of tasks to run at the same time

and no limitation about their priorities as long as used

hardware can afford it. Finally, it implements queues, binary

and counting semaphores and mutexes.

Tasks in FreeRTOS

• FreeRTOS allows an unlimited number of tasks to be

run as long as hardware and memory can handle it

and is able to handle both cyclic and acyclic tasks.

• A task is defined by a simple C function, taking a void*

parameter and returning nothing (void).

Sistemas Operativos 57

parameter and returning nothing (void).

• Several functions are available to manage tasks:

– task creation (vTaskCreate()), destruction (vTaskDelete()),

priority management (uxTaskPriorityGet(), vTaskPrioritySet()) or

delay/resume ((vTaskDelay(), vTaskDelayUntil(),

vTaskSuspend(), vTaskResume(), vTaskResumeFromISR()).

Life cycle of a task

Sistemas Operativos 58

Tasks in FreeRTOS

• FreeRTOS allows an unlimited number of tasks to be

run as long as hardware and memory can handle it

and is able to handle both cyclic and acyclic tasks.

• A task is defined by a simple C function, taking a void*

parameter and returning nothing (void).

Sistemas Operativos 59

parameter and returning nothing (void).

• Several functions are available to manage tasks:

– task creation (vTaskCreate()), destruction (vTaskDelete()),

priority management (uxTaskPriorityGet(), vTaskPrioritySet()) or

delay/resume ((vTaskDelay(), vTaskDelayUntil(),

vTaskSuspend(), vTaskResume(), vTaskResumeFromISR()).

Creating a task

• A task can be created using vTaskCreate()
– pvTaskCode: a pointer to the function where the task is implemented.

– pcName: given name to the task. This is intented to debugging purpose.

– usStackDepth: length of the stack for this task in words. The actual size of

the stack depends on the micro controller. If stack is 32 bits (4 bytes) and

usStackDepth is 100, then 400 bytes (4 times 100) will be allocated.

Sistemas Operativos 60

usStackDepth is 100, then 400 bytes (4 times 100) will be allocated.

– pvParameters: a pointer to arguments given to the task. A good practice

consists in creating a dedicated structure, instantiate and fill it then give its

pointer to the task.

– uxPriority: priority given to the task, a number between 0 and

MAX_PRIORITIES – 1.

– pxCreatedTask: a pointer to an identifier that allows to handle the task. If

the task does not have to be handled in the future, this can be leaved NULL.

Creating a task

portBASE_TYPE xTaskCreate(pdTASK_CODE pvTaskCode,

const signed portCHAR * const pcName,

unsigned portSHORT usStackDepth,

void *pvParameters,

unsigned portBASE_TYPE uxPriority,

xTaskHandle *pxCreatedTask

);

void ATaskFunction(void *pvParameters)

{

/* Variables can be declared just as per a normal function. Each instance

Sistemas Operativos 61

/* Variables can be declared just as per a normal function. Each instance

of a task created using this function will have its own copy of the

iVariableExample variable. If the variable is declared static only one

copy of the variable would exist and would be shared by each task. */

int iVariableExample = 0;

/* A task will normally be implemented as in infinite loop. */

for(;;)

{

/* The code to implement the task functionality will go here. */

}

/* Should the task implementation ever break out of the above loop

then the task must be deleted before reaching the end of this function.

The NULL parameter passed to the vTaskDelete() function indicates that

the task to be deleted is the calling (this) task. */

vTaskDelete(NULL);

}

Deleting a task

• A task is destroyed using xTaskDestroy() routine. It

takes as argument pxCreatedTask which is given

when the task was created.
void vTaskDelete(xTaskHandle pxTask);

• When a task is deleted, it is responsibility of idle task

Sistemas Operativos 62

• When a task is deleted, it is responsibility of idle task

to free all allocated memory to this task by kernel.

Notice that all memory dynamically allocated must be

manually freed.

FreeRTOS example: installation & PC
Demo

• Descargar FreeRTOS [FreeRTOSV7.3.0.exe] de

http://www.freertos.org ,e instalar .

• Ir a la página de http://www.openwatcom.org y

descargar open-watcom-c-win32-1.9.exe , instalar en

la ruta sugerida [C:\WATCOM]

Sistemas Operativos 63

la ruta sugerida [C:\WATCOM]

– Cuando el instalador pregunte sobre el tipo de instalacion,

seleccionar Full installation.

• Abrir proyecto dirFreeRTOS\Demo\PC\rtosdemo.wpj

y en el archivo main.c comentar la linea 193, así:
//vStartComTestTasks(mainCOM_TEST_PRIORITY, serCOM1, ser115200);

FreeRTOS example: installation & PC
Demo

• Abrir el IDE de Watcom, presionar F5 (make). Si todo

va bien, se debe generar el archivo ejecutable

rtosdemo.exe. Ejecutar

• Analizar resultado y código

Sistemas Operativos 64

FreeRTOS example: installation & PC
Demo

Sistemas Operativos 65

FreeRTOS example: Simulator

• Ejecutar Visual C++ 2010 Express

• Abrir solución en Demo\Win32-MSVC\WIN32.sln

• Seleccionar Debug->Build Solution o tecla F7

• Seleccionar Debug->Start Debug

Sistemas Operativos 66

• Seleccionar Debug->Start Debug

• Analizar resultado y código

FreeRTOS example: simulator

Sistemas Operativos 67

