
1

Programación orientada a
objetos en C++

Pedro Corcuera
Dpto. Matemática Aplicada y
Ciencias de la Computación
Universidad de Cantabria

corcuerp@unican.es

Programación en C++

Table of Contents

1. Introduction to Classes
2. Inheritance, Polymorphism, and Virtual Functions
3. Exceptions and Templates
4. The Standard Template Library
5. Data Structures

Programación en C++ 2

1. Introduction to
Classes

Programación en C++ 3

Procedural and Object-Oriented
Programming

• Procedural programming focuses on the
process/actions that occur in a program, with function
as the basic unit. You need to first figure out all the
functions and then think about how to represent data.

• Object-Oriented programming is based on the data
and the functions that operate on it. Objects are
instances of ADTs that represent the data and its
functions

Programación en C++ 4

Limitations of Procedural Programming

• If the data structures change, many functions must
also be changed

• Programs that are based on complex function
hierarchies are:
– difficult to understand and maintain
– difficult to modify and extend
– easy to break

Programación en C++ 5

Benefits of OOP

• The object-oriented languages focus on components that the
user perceives, with objects as the basic unit. You figure out
all the objects by putting all the data and operations that
describe the user's interaction with the data.

• Object-Oriented technology has many benefits:
– Ease in software design: You are dealing with high-level concepts

and abstractions. Ease in design leads to more productive software
development.

– Ease in software maintenance: object-oriented software are easier
to understand, therefore easier to test, debug, and maintain.

– Reusable software: you don't need to keep re-inventing the wheels
and re-write the same functions for different situations. The fastest
and safest way of developing a new application is to reuse existing
codes - fully tested and proven codes.

Programación en C++ 6

Object-Oriented Programming
Terminology

• class: a class is a definition of objects of the same kind. A
class is a blueprint, template, or prototype that defines and
describes the static attributes and dynamic behaviors
common to all objects of the same kind.

• instance: An instance is a realization of a particular item of a
class. An instance is an instantiation of a class. All the
instances of a class have similar properties, as described in
the class definition.

• object: an instance of a class, in the same way that a
variable can be an instance of a struct
– attributes: members of a class
– methods or behaviors: member functions of a class

Programación en C++ 7

Object-Oriented Programming
Languages

• OOP languages permit higher level of abstraction for solving
real-life problems. The traditional procedural language (C and
Pascal) forces you to think in terms of the structure of the
computer (memory bits and bytes, array, decision, loop)
rather than thinking in terms of the problem you are trying to
solve.

• The OOP languages (Java, C++, C#) let you think in the
problem space, and use software objects to represent and
abstract entities of the problem space to solve the problem.

Programación en C++ 8

Object-Oriented Programming

Programación en C++ 9

Classes and Objects

• Class: A class is a definition of objects of the same kind. A
class is a blueprint, template, or prototype that defines and
describes the static attributes and dynamic behaviors
common to all objects of the same kind.

• Instance: An instance is a realization of a particular item of
a class. An instance is an instantiation of a class. All the
instances of a class have similar properties, as described in
the class definition.

• The term object usually refers to instance. But it is often
used quite loosely, which may refer to a class or an
instance.

Programación en C++ 10

More on Objects

• data hiding: restricting access to certain members of an object

• public interface: members of an object that are available
outside of the object. This allows the object to provide access
to some data and functions without sharing its internal details
and design, and provides some protection from data
corruption

Programación en C++ 11

A Class is a 3-Compartment Box
encapsulating Data and Functions

• A class can be visualized as a three-compartment box:
– Classname (or identifier): identifies the class.
– Data Members or Variables (or attributes, states, fields): contains

the static attributes of the class.
– Member Functions (or methods, behaviors, operations): contains

the dynamic operations of the class.
• A class encapsulates the static attributes (data) and dynamic

behaviors (operations that operate on the data) in a box.
• Class Members: The data members and member functions

are collectively called class members.

Programación en C++ 12

A Class is a 3-Compartment Box
encapsulating Data and Functions

Programación en C++ 13

The Unified Modeling Language

• UML stands for Unified Modeling Language.
• The UML provides a set of standard diagrams for graphically

depicting object-oriented systems. UML specification defines
two major kinds of UML diagram: structure diagrams and
behavior diagrams.
– Structure diagrams show the static structure of the system and its

parts on different abstraction and implementation levels and how
they are related to each other. The elements in a structure diagram
represent the meaningful concepts of a system, and may include
abstract, real world and implementation concepts.

– Behavior diagrams show the dynamic behavior of the objects in a
system, which can be described as a series of changes to the
system over time.

Programación en C++ 14

Classification of UML Diagrams

Programación en C++ 15

UML Class Diagram

• A UML diagram for a class has three main sections.

• Example

Programación en C++ 16

class Rectangle {
private:

double width; double length;
public:

bool setWidth(double);
bool setLength(double);
double getWidth() const;
double getLength() const;
double getArea() const;

};

UML Notation

• Access Specification
– In UML you indicate a private member with a minus (-) and a

public member with a plus(+)

• Data type
– To indicate the data type of a member variable, place a colon

followed by the name of the data type after the name of the
variable.

These member
variables are private.

These member functions
are public.

Programación en C++ 17

- width : double
- length : double

UML Notation

• Parameter Type
– To indicate the data type of a function’s parameter variable, place a

colon followed by the name of the data type after the name of the
variable

• Function Return Type
– To indicate the data type of a function’s return value, place a colon

followed by the name of the data type after the function’s parameter
list.

+ setWidth(w : double)

Programación en C++ 18

+ setWidth(w : double) : void

Classes

Programación en C++ 19

Rectangle Class InventoryItem Class

Constructors

Destructor

Class Definition

• Objects are created from a class
• Format:

class ClassName
{
private:

data member declaration;
public:

member functions declaration;
};

Programación en C++ 20

Class Example

class Rectangle
{

private:
double width;
double length;

public:
Rectangle(double, double);
void setWidth(double);
void setLength(double);
double getWidth() const;
double getLength() const;
double getArea() const;

};

Programación en C++ 21

Private Members

Public Members

Why Have Private Members?

• Making data members private provides data protection
• Data can be accessed only through public functions
• Public functions define the class’s public interface

Programación en C++ 22

Code outside the class
must use the class's public
member functions to
interact with the object.

Classes in C++

• Access Specifiers:
– Used to control access to members of the class
– public: the member (data or function) is accessible and

available to all in the system
– private: the member (data or function) is accessible and

available within this class only
– Can be listed in any order in a class
– Can appear multiple times in a class
– If not specified, the default is private

• Using const with Member Functions
– const appearing after the parentheses in a member function

declaration specifies that the function will not change any data in the
calling object

Programación en C++ 23

double getWidth() const;
double getLength() const;
double getArea() const;

Classes in C++

• When defining a member function:
– Put prototype in class declaration
– Define function using class name and scope resolution

operator (::)
int Rectangle::setWidth(double w)
{

width = w;
}

• Getters: function that read the value of a private data member
(ex. xxx named getXxx()). Getters do not change an object's
data, so they should be marked const.

• Setters: function that modify the value of a private data
member (ex. xxx setXxx)

Programación en C++ 24

Defining an Instance of a Class

• An object is an instance of a class
• To create an instance of a class, you have to:

– Declare an instance (name) identifier of a particular class
– Invoke a constructor to construct the instance (i.e., allocate

storage for the instance and initialize the variables).
• Defined like structure variables:

Rectangle r;

Programación en C++ 25

Class Naming Convention

• A classname shall be a noun or a noun phrase made up of
several words.

• All the words shall be initial-capitalized (camel-case).
• Use a singular noun for classname.
• Choose a meaningful and self-descriptive classname.
• Examples: Point, Rectangle, SoccerPlayer, HttpProxyServer,

FileInputStream, PrintStream, SocketFactory.

Programación en C++ 26

Dot (.) Operator

• To reference a member of a object (data member or
member function), you must:
– First identify the instance you are interested in, and then
– Use the dot operator (.) to reference the member, in the form of

instanceName.memberName.
• Access members using dot operator:

r.setWidth(5.2);
cout << r.getWidth();

• Compiler error if attempt to access private member
using dot operator

Programación en C++ 27

Keyword “this”

• You can use keyword "this" to refer to this instance inside a
class definition

• One of the main usage of keyword this is to resolve
ambiguity between the names of data member and function
parameter. Example:
class Circle {
private:

double radius; // Member variable "radius"
......

public:
void setRadius(double radius) {

this->radius = radius;
}
......

}

Programación en C++ 28

Data Members (Variables)

• A data member (variable) has a name (or identifier) and a
type; and holds a value of that particular type. A data
member can also be an instance of a certain class.

• Data Member Naming Convention: A data member name
shall be a noun or a noun phrase made up of several
words. The first word is in lowercase and the rest of the
words are initial-capitalized (camel-case). Example:
fontSize, roomNumber, xMax, yMin and xTopLeft.

• Take note that variable name begins with an lowercase,
while classname begins with an uppercase.

Programación en C++ 29

Member Functions

• A member function:
– receives parameters from the caller,
– performs the operations defined in the function body, and
– returns a piece of result (or void) to the caller.

• Member Function Naming Convention: A function name
shall be a verb, or a verb phrase made up of several words.
The first word is in lowercase and the rest of the words are
initial-capitalized (camel-case). Example: getRadius(),
getParameterValues().

• Take note that data member name is a noun (denoting a
static attribute), while function name is a verb (denoting an
action). They have the same naming convention.

Programación en C++ 30

Program CircleAIO.cpp
/* The Circle class (All source codes in one file) (CircleAIO.cpp) */
#include <iostream> // using IO functions
#include <string> // using string
using namespace std;

class Circle {
private:

double radius; // Data member (Variable)
string color; // Data member (Variable)

public:
// Constructor with default values for data members
Circle(double r = 1.0, string c = "red") {

radius = r;
color = c;

}

double getRadius() { // Member function (Getter)
return radius;

}

string getColor() { // Member function (Getter)
return color;

}

double getArea() { // Member function
return radius*radius*3.1416;

}
}; // need to end the class declaration with a semi-colon

Programación en C++ 31

Program CircleAIO.cpp
// Test driver function
int main() {

// Construct a Circle instance
Circle c1(1.2, "blue");
cout << "Radius=" << c1.getRadius() << " Area=" << c1.getArea()

<< " Color=" << c1.getColor() << endl;

// Construct another Circle instance
Circle c2(3.4); // default color
cout << "Radius=" << c2.getRadius() << " Area=" << c2.getArea()

<< " Color=" << c2.getColor() << endl;

// Construct a Circle instance using default no-arg constructor
Circle c3; // default radius and color
cout << "Radius=" << c3.getRadius() << " Area=" << c3.getArea()

<< " Color=" << c3.getColor() << endl;
return 0;

}

Programación en C++ 32

Program Rectangle.cpp
// This program demonstrates a simple class.
#include <iostream>
using namespace std;

// Rectangle class declaration.
class Rectangle
{

private:
double width;
double length;

public:
void setWidth(double);
void setLength(double);
double getWidth() const;
double getLength() const;
double getArea() const;

};
// setWidth assigns a value to the width member. *
void Rectangle::setWidth(double w) {

width = w;
}

// setLength assigns a value to the length member. *
void Rectangle::setLength(double len) {

length = len;
}
// getWidth returns the value in the width member. *
double Rectangle::getWidth() const {

return width;
}

Programación en C++ 33

Program Rectangle.cpp
// getLength returns the value in the length member. *
double Rectangle::getLength() const {

return length;
}
// getArea returns the product of width times length. *
double Rectangle::getArea() const {

return width * length;
}
// Function main *
int main()
{

Rectangle box; // Define an instance of the Rectangle class
double rectWidth; // Local variable for width
double rectLength; // Local variable for length
// Get the rectangle's width and length from the user.
cout << "This program will calculate the area of a\n";
cout << "rectangle. What is the width? ";
cin >> rectWidth;
cout << "What is the length? ";
cin >> rectLength;
// Store the width and length of the rectangle
// in the box object.
box.setWidth(rectWidth);
box.setLength(rectLength);
// Display the rectangle's data.
cout << "Here is the rectangle's data:\n";
cout << "Width: " << box.getWidth() << endl;
cout << "Length: " << box.getLength() << endl;
cout << "Area: " << box.getArea() << endl;
return 0;

}

Programación en C++ 34

Pointer to an Object and Dynamically
Allocating an Object

• Can define a pointer to an object:
Rectangle *rPtr = nullptr;

• Can access public members via pointer:
rPtr = &otherRectangle;
rPtr->setLength(12.5);
cout << rPtr->getLength() << endl;

• We can also use a pointer to dynamically allocate an object
Rectangle *rPtr = nullptr; // define pointer
rPtr = new Rectangle; // allocate object
rPtr->setWidth(10.0); // store values
rPtr->setLength(15.0);
delete rPtr; // delete object
rPtr = nullptr;

Programación en C++ 35

Separating Specification from
Implementation

– For better software engineering, it is recommended that
the class declaration and implementation be kept in two
separate files: declaration is a header file ".h"; while
implementation in a ".cpp".

– This is known as separating the public interface (header
declaration) and the implementation. Interface is defined
by the designer, implementation can be supplied by others.
While the interface is fixed, different vendors can provide
different implementations. Furthermore, only the header
files are exposed to the users, the implementation can be
provided in an object file ".o" (or in a library). The source
code needs not given to the users.

Programación en C++ 36

Separating Specification from
Implementation

– Place class declaration in a header file that serves as the
class specification file. Name the file ClassName.h,
for example, Rectangle.h, Circle.h

– Place member function definitions in
ClassName.cpp, for example, Rectangle.cpp,
Circle.cpp. File should #include the class
specification file

– Programs that use the class must #include the class
specification file, and be compiled and linked with the
member function definitions. Example:
TestCircle.cpp

Programación en C++ 37

Separating Specification from
Implementation – Example Circle Class

Instead of putting all the codes in a single file, we separate the interface
and implementation by placing the codes in 3 files:
1. Circle.h: defines the public interface of the Circle class
2. Circle.cpp: provides the implementation of the Circle class
3. TestCircle.cpp: A test driver program for the Circle class

Programación en C++ 38

Compiling multifile programs

• In Code::Blocks:
– Use Project

• Linux with GNU CC:
> g++ -o TestCircle.exe TestCircle.cpp Circle.cpp

Programación en C++ 39

#include Guard - #pragma once

• To prevent a header file from being included more than once:
• Use an include guard:
#ifndef / #define / #endif

• Or use #pragma once
#pragma once
// test.h
#ifndef TEST_H_
#define TEST_H_
………..
// Contents of the file go here
………..
#endif

Programación en C++ 40

Circle Class – Circle.h
/* The Circle class Header (Circle.h) */
#include <string> // using string
using namespace std;

// Circle class declaration
class Circle {
private: // Accessible by members of this class only

// private data members (variables)
double radius;
string color;

public: // Accessible by ALL
// Declare prototype of member functions
// Constructor with default values
Circle(double radius = 1.0, string color = "red");

// Public getters & setters for private data members
double getRadius() const;
void setRadius(double radius);
string getColor() const;
void setColor(string color);

// Public member Function
double getArea() const;

};

Programación en C++ 41

Circle Class – Circle.cpp
/* The Circle class Implementation (Circle.cpp) */
#include "Circle.h" // user-defined header in the same directory
// Constructor default values shall only be specified in the
// declaration, cannot be repeated in definition
Circle::Circle(double r, string c) {

radius = r;
color = c;

}
// Public getter for private data member radius
double Circle::getRadius() const {

return radius;
}
// Public setter for private data member radius
void Circle::setRadius(double r) {

radius = r;
}
// Public getter for private data member color
string Circle::getColor() const {

return color;
}
// Public setter for private data member color
void Circle::setColor(string c) {

color = c;
}
// A public member function
double Circle::getArea() const {

return radius*radius*3.14159265;
}

Programación en C++ 42

Circle Class – TestCircle.cpp
/* A test driver for the Circle class (TestCircle.cpp) */
#include <iostream>
#include "Circle.h" // using Circle class
using namespace std;

int main() {
// Construct an instance of Circle c1
Circle c1(1.2, "red");
cout << "Radius=" << c1.getRadius() << " Area=" << c1.getArea()

<< " Color=" << c1.getColor() << endl;

c1.setRadius(2.1); // Change radius and color of c1
c1.setColor("blue");
cout << "Radius=" << c1.getRadius() << " Area=" << c1.getArea()

<< " Color=" << c1.getColor() << endl;

// Construct another instance using the default constructor
Circle c2;
cout << "Radius=" << c2.getRadius() << " Area=" << c2.getArea()

<< " Color=" << c2.getColor() << endl;
return 0;

}

Programación en C++ 43

Inline Member Functions

• Member functions can be defined
– inline: in class declaration
– after the class declaration

• Inline appropriate for short function bodies:
int getWidth() const

{ return width; }

• Tradeoffs – Inline vs. Regular Member Functions:
– Regular functions – when called, compiler stores return address of

call, allocates memory for local variables, etc.
– Code for an inline function is copied into program in place of call –

larger executable program, but no function call overhead, hence
faster execution

Programación en C++ 44

Rectangle Class with Inline Member
Functions

// Specification file for the Rectangle class
// This version uses some inline member functions.
#ifndef RECTANGLE_H
#define RECTANGLE_H

class Rectangle
{

private:
double width;
double length;

public:
void setWidth(double);
void setLength(double);

double getWidth() const
{ return width; }

double getLength() const
{ return length; }

double getArea() const
{ return width * length; }

};
#endif

Programación en C++ 45

Constructors

• A constructor is a special function that has the
function name same as the class name

• A constructor function is different from an ordinary
function in the following aspects:
– The name of the constructor is the same as the class

name.
– Purpose is to construct an object
– Member function that is automatically called when an

object is created
– Constructor has no return type
– Constructors are not inherited

Programación en C++ 46

In-Place Initialization

• In C++11 or later, you can initialize a member variable in its
declaration statement, just as you can with a regular variable.

• This is known as in-place initialization. Example:
class Rectangle
{
private:
double width = 0.0;
double length = 0.0;

public:
Public member functions appear here…

};

Programación en C++ 47

Default Constructors

• A default constructor is a constructor that takes no arguments.
• If you write a class with no constructor at all, C++ will write a

default constructor for you, one that does nothing.
ClassName::ClassName() { }

• A simple instantiation of a class (with no arguments) calls the
default constructor: Rectangle r;

• If all of a constructor's parameters have default arguments,
then it is a default constructor. For example:
Rectangle(double = 0, double = 0);

• Creating an object and passing no arguments will cause this
constructor to execute:
Rectangle r;

Programación en C++ 48

Passing Arguments to Constructors

• To create a constructor that takes arguments:
– indicate parameters in prototype:
Rectangle(double, double);

– Use parameters in the definition:
Rectangle::Rectangle(double w, double len){

width = w;
length = len;

}
• You can pass arguments to the constructor when you create

an object: Rectangle r(10, 5);
• When all of a class's constructors require arguments, then

the class has NO default constructor. In this case, you must
pass the required arguments to the constructor when
creating an object.

Programación en C++ 49

Overloading Constructors

• A class can have more than one constructor

• Overloaded constructors in a class must have different
parameter lists:

Rectangle();
Rectangle(double);
Rectangle(double, double);

Programación en C++ 50

Constructor Delegation

• Sometimes a class will have multiple
constructors that perform a similar
set of steps. For example, look at the
following Contact class:

• Both constructors perform a similar
operation: They assign values to the
name, email, and phone member
variables.

• The default constructor assigns
empty strings to the members, and
the parameterized constructor
assigns specified values to the
members.

Programación en C++ 51

Constructor Delegation

• In C++ 11, it is possible for
one constructor to call
another constructor in the
same class.

• This is known as
constructor delegation.

Programación en C++ 52

Copy Constructors

• A copy constructor constructs a new object by copying an
existing object of the same type. In other words, a copy
constructor takes an argument, which is an object of the same
class.

• If you do not define a copy constructor, the compiler provides
a default which copies all the data members of the given
object. Example:

Circle c4(7.8, "blue");
cout << "Radius=" << c4.getRadius() << " Area=" << c4.getArea()

<< " Color=" << c4.getColor() << endl;
// Radius=7.8 Area=191.135 Color=blue

// Construct a new object by copying an existing object
// via the so-called default copy constructor
Circle c5(c4);
cout << "Radius=" << c5.getRadius() << " Area=" << c5.getArea()

<< " Color=" << c5.getColor() << endl;
// Radius=7.8 Area=191.135 Color=blue

Programación en C++ 53

Destructors

• Member function automatically called when an object is
destroyed

• Destructor name is ~classname, e.g., ~Rectangle
• Has no return type; takes no arguments
• Only one destructor per class, i.e., it cannot be overloaded
• If constructor allocates dynamic memory, destructor should

release it
• If you do not define a destructor, the compiler provides a

default, which does nothing
class MyClass {
public:
// The default destructor that does nothing

~MyClass() { }
......
}

Programación en C++ 54

Only One Default Constructor
and One Destructor

• Do not provide more than one default constructor for a
class: one that takes no arguments and one that has
default arguments for all parameters

Square();

Square(int = 0); // will not compile

• Since a destructor takes no arguments, there can only be
one destructor for a class

Programación en C++ 55

More features

• Constructors, Destructors, and Dynamically Allocated
Objects:
– When an object is dynamically allocated with the new operator, its

constructor executes:
Rectangle *r = new Rectangle(10, 20);

– When the object is destroyed, its destructor executes:
delete r;

• Member Function Overloading:
– Non-constructor member functions can also be overloaded:

void setCost(double);
void setCost(char *);

– Must have unique parameter lists as for constructors

Programación en C++ 56

Using Private Member Functions

• A private member function can only be called by another
member function

• It is used for internal processing by the class, not for use
outside of the class

• Example: createDescription function in
ContactInfo.h

Programación en C++ 57

Using Private Member Functions

• A private member function can only be called by another
member function

• It is used for internal processing by the class, not for use
outside of the class

• Example: createDescription function in
ContactInfo.h

Programación en C++ 58

Constructor Example (Rectangle.h)
// Specification file for the Rectangle class
// This version has a constructor.
#ifndef RECTANGLE_H
#define RECTANGLE_H

class Rectangle
{

private:
double width;
double length;

public:
Rectangle(); // Constructor
void setWidth(double);
void setLength(double);

double getWidth() const
{ return width; }

double getLength() const
{ return length; }

double getArea() const
{ return width * length; }

};
#endif

Programación en C++ 59

Constructor Example (Rectangle.cpp)
// Implementation file for the Rectangle class. This version has a constructor.
#include "Rectangle.h" // Needed for the Rectangle class
#include <iostream> // Needed for cout
#include <cstdlib> // Needed for the exit function
using namespace std;

// The constructor initializes width and length to 0.0. *
Rectangle::Rectangle() {

width = 0.0; length = 0.0;
}
// setWidth sets the value of the member variable width. *
void Rectangle::setWidth(double w) {

if (w >= 0)
width = w;

else {
cout << "Invalid width\n";
exit(EXIT_FAILURE);

}
}
// setLength sets the value of the member variable length. *
void Rectangle::setLength(double len) {

if (len >= 0)
length = len;

else {
cout << "Invalid length\n";
exit(EXIT_FAILURE);

}
}

Programación en C++ 60

Constructor Example (ProgRect.cpp)

// This program uses the Rectangle class's constructor.
#include <iostream>
#include "Rectangle.h" // Needed for Rectangle class
using namespace std;

int main()
{

Rectangle box; // Define an instance of the Rectangle class

// Display the rectangle's data.
cout << "Here is the rectangle's data:\n";
cout << "Width: " << box.getWidth() << endl;
cout << "Length: " << box.getLength() << endl;
cout << "Area: " << box.getArea() << endl;
return 0;

}

Programación en C++ 61

Example (InventoryItem.h)
// InventoryItem.h: This class has overloaded constructors
#ifndef INVENTORYITEM_H
#define INVENTORYITEM_H
#include <string>
using namespace std;

class InventoryItem {
private:

string description; // The item description
double cost; // The item cost
int units; // Number of units on hand

public:
// Constructor #1 (default constructor)
InventoryItem() { // Initialize description, cost, and units.

description = "";
cost = 0.0;
units = 0; }

// Constructor #2
InventoryItem(string desc) { // Assign the value to description.

description = desc;
cost = 0.0; // Initialize cost and units.
units = 0; }

Programación en C++ 62

Example (InventoryItem.h)
// Constructor #3
InventoryItem(string desc, double c, int u) {

description = desc; // Assign values to desc., cost, and units.
cost = c;
units = u; }

// Destructor
~InventoryItem() {

delete description;}

// Mutator functions
void setDescription(string d) {

description = d; }
void setCost(double c) {

cost = c; }
void setUnits(int u){ units = u; }

// Accessor functions
string getDescription() const { return description; }

double getCost() const { return cost; }

int getUnits() const { return units; }
};
#endif

Programación en C++ 63

Example (InventoryItem.cpp)
// This program demonstrates a class with overloaded constructors.
#include <iostream>
#include <iomanip>
#include "InventoryItem.h"

int main() {
InventoryItem item1; // Create an InventoryItem obj. with const. #1.
item1.setDescription("Hammer"); // Set the description
item1.setCost(6.95); // Set the cost
item1.setUnits(12); // Set the units
InventoryItem item2("Pliers"); // Create InventoryItem obj. const. 2
InventoryItem item3("Wrench", 8.75, 20); // InventoryItem const 3
cout << "The following items are in inventory:\n";
cout << setprecision(2) << fixed << showpoint;
// Display the data for items 1, 2, 3
cout << "Description: " << item1.getDescription() << endl;
cout << "Cost: $" << item1.getCost() << endl;
cout << "Units on Hand: " << item1.getUnits() << endl << endl;
cout << "Description: " << item2.getDescription() << endl;
cout << "Cost: $" << item2.getCost() << endl;
cout << "Units on Hand: " << item2.getUnits() << endl << endl;
cout << "Description: " << item3.getDescription() << endl;
cout << "Cost: $" << item3.getCost() << endl;
cout << "Units on Hand: " << item3.getUnits() << endl;
return 0;

}

Programación en C++ 64

More Examples

Programación en C++ 65

More Examples

Programación en C++ 66

More Examples

Programación en C++ 67

aggregation (or has-a)
association relationship

More Examples

Programación en C++ 68

Arrays of Objects

• Objects can be the elements of an array:
InventoryItem inventory[40];

• Default constructor for object is used when array is defined
• Must use initializer list to invoke constructor that takes arguments:
InventoryItem inventory[3]={"Hammer","Wrench","Pliers"};

• If the constructor requires more than one argument, the initializer
must take the form of a function call:

• It isn't necessary to call the same constructor for each object in an
array:

Programación en C++ 69

Accessing Objects in an Array

• Objects in an array are referenced using subscripts

• Member functions are referenced using dot notation:

inventory[2].setUnits(30);
cout << inventory[2].getUnits();

Programación en C++ 70

Instance and Static Members

• instance variable: a member variable in a class. Each object
has its own copy.

• static variable: one variable shared among all objects of
a class

• static member function: can be used to access static
member variable; can be called before any objects are
defined

Programación en C++ 71

static member variable

Contents of Tree.h

// Tree class
class Tree
{
private:

static int objectCount; // Static member variable.
public:
// Constructor
Tree()

{ objectCount++; }

// Accessor function for objectCount
int getObjectCount() const

{ return objectCount; }
};

// Definition of the static member variable, written
// outside the class.
int Tree::objectCount = 0;

Static member declared here

Static member defined here

Programación en C++ 72

Three Instances of the Tree Class, But
Only One objectCount Variable

Programación en C++ 73

static member function

• Declared with static before return type:
static int getObjectCount() const
{ return objectCount; }

• Static member functions can only access static member
data

• Can be called independent of objects:

int num = Tree::getObjectCount();

Programación en C++ 74

static member function

Programación en C++ 75

Modified Version of Tree.h

// Tree class
class Tree
{
private:
static int objectCount; // Static member variable.

public:
// Constructor
Tree()

{ objectCount++; }

// Accessor function for objectCount
static int getObjectCount() const

{ return objectCount; }
};

// Definition of the static member variable, written
// outside the class.
int Tree::objectCount = 0;

Now we can call the function like this:
cout << "There are " << Tree::getObjectCount()

<< " objects.\n";

Friends of Classes

• Friend: a function or class that is not a member of a class,
but has access to private members of the class

• A friend function can be a stand-alone function or a
member function of another class

• It is declared a friend of a class with friend keyword in
the function prototype:
– Stand-alone function:
friend void setAVal(intVal&, int);
// declares setAVal function to be
// a friend of this class
– Member function of another class:
friend void SomeClass::setNum(int num)
// setNum function from SomeClass
// class is a friend of this class

Programación en C++ 76

friend Class Declarations

• Class as a friend of a class:
class FriendClass
{
...

};
class NewClass
{
public:
friend class FriendClass; // declares

// entire class FriendClass as a friend
// of this class
…

};

Programación en C++ 77

Memberwise Assignment

• Can use = to assign one object to another, or to initialize an
object with an object’s data

• Copies member to member. e.g.,
instance2 = instance1; means:
copy all member values from instance1 and assign to the
corresponding member variables of instance2

• Use at initialization:
Rectangle r2 = r1;

Programación en C++ 78

Copy Constructors

• Special constructor used when a newly created object is
initialized to the data of another object of same class

• Default copy constructor copies field-to-field
• Default copy constructor works fine in many cases
• Problem: what if object contains a pointer?
class SomeClass
{ public:

SomeClass(int val = 0)
{value=new int; *value = val;}

int getVal();
void setVal(int);

private:
int *value;

}

Programación en C++ 79

Copy Constructors

What we get using memberwise copy with objects
containing dynamic memory:

SomeClass object1(5);
SomeClass object2 = object1;
object2.setVal(13);
cout << object1.getVal(); // also 13

object1 object2

value value

13

Programación en C++ 80

Programmer-Defined Copy Constructor

• Allows us to solve problem with objects containing pointers:
SomeClass::SomeClass(const SomeClass &obj)
{

value = new int;
*value = obj.value;

}

• Copy constructor takes a reference parameter to an object of
the class

• Each object now points to separate dynamic memory:
SomeClass object1(5);
SomeClass object2 = object1;
object2.setVal(13);
cout << object1.getVal(); // still 5

Programación en C++ 81

object1 object2

value value

135

Programmer-Defined Copy Constructor

• Since copy constructor has a reference to the object it
is copying from,
SomeClass::SomeClass(SomeClass &obj)

it can modify that object.
• To prevent this from happening, make the object

parameter const:
SomeClass::SomeClass

(const SomeClass &obj)

StudentTestScores.h
Programación en C++ 82

Operator Overloading

• Operators such as =, +, and others can be redefined
when used with objects of a class

• The name of the function for the overloaded operator
is operator followed by the operator symbol, e.g.,
operator+ to overload the + operator, and
operator= to overload the = operator

• Prototype for the overloaded operator goes in the
declaration of the class that is overloading it

• Overloaded operator function definition goes with
other member functions

Programación en C++ 83

The this Pointer

• this: predefined pointer available to a class’s member
functions

• Always points to the instance (object) of the class whose
function is being called

• Is passed as a hidden argument to all non-static member
functions

• Example, student1 are StudentTestScores object
• The following statement causes the getStudentName

member function to operate on student1:
cout << student1.getStudentName() << endl;
• When getStudentName is operating on student1, the
this pointer is pointing to student1.

Programación en C++ 84

Operator Overloading and Invoking an
Overloaded Operator

• Prototype:
void operator=(const SomeClass &rval)

• Operator is called via object on left side
• Operator can be invoked as a member function:

object1.operator=(object2);

• It can also be used in more conventional manner:
object1 = object2;

return
type

function
name

parameter for
object on right

side of operator

Programación en C++ 85

Returning a Value

• Overloaded operator can return a value
class Point2d
{
private:

int x, y;

...
public:
double operator-(const point2d &right)
{ return sqrt(pow((x-right.x),2)

+ pow((y-right.y),2));
}

};
Point2d point1(2,2), point2(4,4);
// Compute and display distance between 2 points.
cout << point2 – point1 << endl; // displays 2.82843

Programación en C++ 86

Returning a Value

• Return type the same as the left operand supports
notation like:
object1 = object2 = object3;

• Function declared as follows:
const SomeClass operator=(const someClass &rval)

• In function, include as last statement:
return *this;

Programación en C++ 87

Notes on
Overloaded Operators

• Can change meaning of an operator
• Cannot change the number of operands of the

operator
• Only certain operators can be overloaded. Cannot

overload the following operators:
?: . .* :: sizeof

Programación en C++ 88

Overloading Types of Operators

• ++, -- operators overloaded differently for prefix
vs. postfix notation

• Overloaded relational operators should return a
bool value

• Overloaded stream operators >>, << must return
reference to istream, ostream objects and
take istream, ostream objects as parameters

Programación en C++ 89

Overloaded [] Operator

• Can create classes that behave like arrays, provide
bounds-checking on subscripts

• Must consider constructor, destructor
• Overloaded [] returns a reference to object, not an

object itself

Programación en C++ 90

Object Conversion

• Type of an object can be converted to another type
• Automatically done for built-in data types
• Must write an operator function to perform conversion
• To convert an FeetInches object to an int:
FeetInches::operator int()

{return feet;}
• Assuming distance is a FeetInches object, allows

statements like:
int d = distance;

Programación en C++ 91

Aggregation

• Aggregation: a class is a member of a class
• Supports the modeling of ‘has a’ relationship

between classes – enclosing class ‘has a’
enclosed class

• Same notation as for structures within structures

Programación en C++ 92

Aggregation

class StudentInfo
{

private:
string firstName, LastName;
string address, city, state, zip;

...
};
class Student
{

private:
StudentInfo personalData;

...
};

Programación en C++ 93

Aggregation

Programación en C++ 94

Lvalues and Rvalues

• Two types of values stored in memory during the execution of
a program:

– Values that persist beyond the statement that created them, and
have names that make them accessible to other statements in the
program. In C++, these values are called lvalues.

– Values that are temporary, and cannot be accessed beyond the
statement that created them. In C++, these values are called
rvalues.

Programación en C++ 95

Rvalue References

• Rvalue Reference: a reference variable that can refer only to
temporary objects that would otherwise have no name.

• Rvalue references are used to write move constructors and
move assignment operators (otherwise known as move
semantics).

• Anytime you write a class with a pointer or reference to a piece
of data outside the class, you should implement move
semantics.

• Move semantics increase the performance of these types of
classes.

Programación en C++ 96

2. Inheritance,
Polymorphism, and Virtual

Functions

Programación en C++ 97

What Is Inheritance?

• Provides a way to create a new class from an
existing class

• The new class is a specialized version of the
existing class

• Example:

Programación en C++ 98

“Is a” Relationship

Inheritance – Terminology and Notation

• Base class (or parent) – inherited from
• Derived class (or child) – inherits from the base class
• Notation:

class Student // base class

{

. . .

};

class UnderGrad : public student

{ // derived class

. . .

};

Programación en C++ 99

Back to the ‘is a’ Relationship

• An object of a derived class 'is a(n)' object of the
base class

• Example:
– an UnderGrad is a Student
– a Mammal is an Animal

• A derived object has all of the characteristics of
the base class

Programación en C++ 100

What Does a Child Have?

An object of the derived class has:
• all members defined in child class
• all members declared in parent class

An object of the derived class can use:
• all public members defined in child class
• all public members defined in parent class

Programación en C++ 101

Protected Members and Class Access

• protected member access specification: like
private, but accessible by objects of derived
class

• Class access specification: determines how
private, protected, and public members
of base class are inherited by the derived class

Programación en C++ 102

Class Access Specifiers

1) public – object of derived class can be treated as
object of base class (not vice-versa)

2) protected – more restrictive than public, but
allows derived classes to know details of parents

3) private – prevents objects of derived class from
being treated as objects of base class.

Programación en C++ 103

Constructors and Destructors in Base and
Derived Classes

• Derived classes can have their own constructors
and destructors

• When an object of a derived class is created, the
base class’s constructor is executed first, followed
by the derived class’s constructor

• When an object of a derived class is destroyed, its
destructor is called first, then that of the base class

Programación en C++ 104

Passing Arguments to
Base Class Constructor

• Allows selection between multiple base class
constructors

• Specify arguments to base constructor on derived
constructor heading:

• Can also be done with inline constructors
• Must be done if base class has no default constructor

Programación en C++ 105

Square::Square(int side):Rectangle(side,side)

derived class constructor base class constructor

derived constructor
parameter base constructor

parameters

Constructor Inheritance

• In a derived class, some constructors can be inherited
from the base class.

• The constructors that cannot be inherited are:
– the default constructor
– the copy constructor
– the move constructor

Programación en C++ 106

Constructor Inheritance

• Consider the following:

Programación en C++ 107

Constructor Inheritance

• We can rewrite the MyDerived class as:

The using statement causes
the class to inherit the base

class constructors.

Programación en C++ 108

Redefining Base Class Functions

• Redefining function: function in a derived class that
has the same name and parameter list as a function
in the base class

• Typically used to replace a function in base class
with different actions in derived class

• Not the same as overloading – with overloading,
parameter lists must be different

• Objects of base class use base class version of
function; objects of derived class use derived class
version of function

Programación en C++ 109

Base Class

Note setScore function

Programación en C++ 110

Redefined setScore function

Derived Class

Programación en C++ 111

Invocation of redefined function

Programación en C++ 112

Invocation setScore function

Class Hierarchies

• A base class can be derived from another base class.

Programación en C++ 113

Example: Superclass Point and subclass
MovablePoint

Programación en C++ 114

Example: Shape and its Subclasses

Programación en C++ 115

Polymorphism and
Virtual Member Functions

• Virtual member function: function in base class that
expects to be redefined in derived class

• Function defined with key word virtual:
virtual void Y() {...}

• Supports dynamic binding: functions bound at run
time to function that they call

• Without virtual member functions, C++ uses static
(compile time) binding

Programación en C++ 116

Virtual Functions

• A virtual function is dynamically bound to calls at
runtime.

• At runtime, C++ determines the type of object making
the call, and binds the function to the appropriate
version of the function.

• To make a function virtual, place the virtual key word
before the return type in the base class's declaration:
virtual char getLetterGrade() const;

• The compiler will not bind the function to calls.
Instead, the program will bind them at runtime.

Programación en C++ 117

Updated Version of GradedActivity

The function
is now virtual.

The function also becomes
virtual in all derived classes
automatically!

Programación en C++ 118

Polymorphism Requires References or
Pointers

• Polymorphic behavior is only possible when an object
is referenced by a reference variable or a pointer, as
demonstrated in the displayGrade function.

Programación en C++ 119

Base Class Pointers

• Can define a pointer to a base class object
• Can assign it the address of a derived class object

• Base class pointers and references only know about
members of the base class
– So, you can’t use a base class pointer to call a derived class

function
• Redefined functions in derived class will be ignored unless

base class declares the function virtual
Programación en C++ 120

Redefining vs. Overriding

• In C++, redefined functions are statically bound and
overridden functions are dynamically bound.

• So, a virtual function is overridden, and a non-virtual
function is redefined.

Programación en C++ 121

Virtual Destructors

• It's a good idea to make destructors virtual if the class
could ever become a base class.

• Otherwise, the compiler will perform static binding on
the destructor if the class ever is derived from.

Programación en C++ 122

C++ 11's override and final Key
Words

• The override key word tells the compiler that the
function is supposed to override a function in the base
class.

• When a member function is declared with the final
key word, it cannot be overridden in a derived class.

Programación en C++ 123

Abstract Base Classes and Pure Virtual
Functions

• Pure virtual function: a virtual member function that must
be overridden in a derived class that has objects

• Abstract base class contains at least one pure virtual
function:

virtual void Y() = 0;

• The = 0 indicates a pure virtual function
• Must have no function definition in the base class
• Abstract base class: class that can have no objects.

Serves as a basis for derived classes that may/will have
objects

• A class becomes an abstract base class when one or
more of its member functions is a pure virtual function

Programación en C++ 124

Multiple Inheritance

• A derived class can have more than one base class
• Each base class can have its own access specification in

derived class's definition:
class cube : public square, public rectSolid;

• Arguments can be passed to both base classes' constructors:
cube::cube(int side) : square(side),

rectSolid(side, side, side);

• Base class constructors are called in order given in class
declaration, not in order used in class constructor

class
square

class
rectSolid

class
cube

Programación en C++ 125

Multiple Inheritance

• Problem: what if base classes have member
variables/functions with the same name?

• Solutions:
– Derived class redefines the multiply-defined function
– Derived class invokes member function in a particular base class

using scope resolution operator ::
• Compiler errors occur if derived class uses base class

function without one of these solutions

Programación en C++ 126

3. Exceptions and
Templates

Programación en C++ 127

Exceptions

• Indicate that something unexpected has occurred or
been detected

• Allow program to deal with the problem in a controlled
manner. Can be as simple or complex as program
design requires

• Terminology:
– Exception: object or value that signals an error
– Throw an exception: send a signal that an error has

occurred
– Catch/Handle an exception: process the exception; interpret

the signal
Programación en C++ 128

Exceptions – Key Words

• throw – followed by an argument, is used to throw an
exception

• try – followed by a block { }, is used to invoke code
that throws an exception

• catch – followed by a block { }, is used to detect and
process exceptions thrown in preceding try block.
Takes a parameter that matches the type thrown.

Programación en C++ 129

Exceptions – Flow of Control

1) A function that throws an exception is called from within a try block
2) If the function throws an exception, the function terminates and

the try block is immediately exited. A catch block to process the
exception is searched for in the source code immediately following
the try block.

3) If a catch block is found that matches the exception thrown, it is
executed. If no catch block that matches the exception is found,
the program terminates.

Programación en C++ 130

Exceptions – Example

// Example1: function that throws an exception
int totalDays(int days, int weeks) {

if ((days < 0) || (days > 7))
throw "invalid number of days";

// the argument to throw is the
// character string
else

return (7 * weeks + days);
}
// Example2: try catch
try { // block that calls function

totDays = totalDays(days, weeks);
cout << "Total days: " << days;

}
catch (char *msg) { // interpret exception

cout << "Error: " << msg;
}

Programación e C++ 131

Exceptions – What Happens

1) try block is entered. totalDays function is called
2) If 1st parameter is between 0 and 7, total number of days is

returned and catch block is skipped over (no exception
thrown)

3) If exception is thrown, function and try block are exited,
catch blocks are scanned for 1st one that matches the
data type of the thrown exception. catch block executes

Programación en C++ 132

Exceptions

Programación en C++ 133

What Happens in theTry/Catch Construct

What if no exception is thrown?

Exceptions - Notes

• Predefined functions such as new may throw
exceptions

• The value that is thrown does not need to be used in
catch block.
– in this case, no name is needed in catch parameter

definition
– catch block parameter definition does need the type of

exception being caught

Programación en C++ 134

Exception Not Caught?

• An exception will not be caught if
– it is thrown from outside of a try block
– there is no catch block that matches the data type of the

thrown exception
• If an exception is not caught, the program will

terminate

Programación en C++ 135

Exceptions and Objects

• An exception class can be defined in a class and
thrown as an exception by a member function

• An exception class may have:
– no members: used only to signal an error
– members: pass error data to catch block

• A class can have more than one exception class

Programación en C++ 136

What Happens After catch Block?

• Once an exception is thrown, the program cannot
return to throw point. The function executing throw
terminates (does not return), other calling functions in
try block terminate, resulting in unwinding the stack

• If objects were created in the try block and an
exception is thrown, they are destroyed.

Programación en C++ 137

Nested try Blocks

• try/catch blocks can occur within an enclosing try
block

• Exceptions caught at an inner level can be passed up to a
catch block at an outer level:

catch ()
{

...
throw; // pass exception up

} // to next level

Programación en C++ 138

Function Templates

• Function template: a pattern for a function that can
work with many data types

• When written, parameters are left for the data types
• When called, compiler generates code for specific

data types in function call

Programación en C++ 139

Function Template Example

template <class T>

T times10(T num)
{

return 10 * num;
}

template
prefix

generic
data type

type
parameter

What gets generated when
times10 is called with an int:

What gets generated when times10 is
called with a double:

int times10(int num)
{

return 10 * num;
}

double times10(double num)
{

return 10 * num;
}

Programación en C++ 140

Function Template Example

template <class T>

T times10(T num)
{

return 10 * num;
}

• Call a template function in the usual manner:
int ival = 3;
double dval = 2.55;
cout << times10(ival); // displays 30
cout << times10(dval); // displays 25.5

Programación en C++ 141

Function Template Notes

• Can define a template to use multiple data types:
template<class T1, class T2>

• Example:
template<class T1, class T2> // T1 and T2 will be

double mpg(T1 miles, T2 gallons) // replaced in the

{ // called function

return miles / gallons // with the data

} // types of the

// arguments

Programación en C++ 142

Function Template Notes

• Function templates can be overloaded Each template
must have a unique parameter list

template <class T>
T sumAll(T num) ...
template <class T1, class T2>
T1 sumall(T1 num1, T2 num2) ...

• All data types specified in template prefix must be used in
template definition

• Function calls must pass parameters for all data types
specified in the template prefix

• Like regular functions, function templates must be defined
before being called

Programación en C++ 143

Function Template Notes

• A function template is a pattern
• No actual code is generated until the function named in

the template is called
• A function template uses no memory
• When passing a class object to a function template,

ensure that all operators in the template are defined or
overloaded in the class definition

Programación en C++ 144

Where to Start
When Defining Templates

• Templates are often appropriate for multiple functions
that perform the same task with different parameter
data types

• Develop function using usual data types first, then
convert to a template:
– add template prefix
– convert data type names in the function to a type

parameter (i.e., a T type) in the template

Programación en C++ 145

Class Templates

• Classes can also be represented by templates.
When a class object is created, type information is
supplied to define the type of data members of the
class.

• Unlike functions, classes are instantiated by
supplying the type name (int, double,
string, etc.) at object definition

Programación en C++ 146

Class Template Example

template <class T>
class grade
{

private:
T score;

public:
grade(T);
void setGrade(T);
T getGrade()

};

Programación en C++ 147

Class Template Example

• Pass type information to class template when defining
objects:
grade<int> testList[20];

grade<double> quizList[20];

• Use as ordinary objects once defined

Programación en C++ 148

Class Templates and Inheritance

• Class templates can inherit from other class
templates:
template <class T>
class Rectangle
{ ... };

template <class T>
class Square : public Rectangle<T>
{ ... };

• Must use type parameter T everywhere base
class name is used in derived class

Programación en C++ 149

4. The Standard
Template Library

Programación en C++ 150

The Standard Template Library

• The Standard Template Library (STL): an extensive library
of generic templates for classes and functions.

• Categories of Templates:
– Containers: Class templates for objects that store and organize

data
– Iterators: Class templates for objects that behave like pointers, and

are used to access the individual data elements in a container
– Algorithms: Function templates that perform various operations on

elements of containers
– Function objects: are objects that act like functions

Programación en C++ 151

The Standard Template Library headers

• <vector>, <list>, <deque>, <queue>, <stack>, <map>, <set>,
<bitset>, <forward_list> (C++11), <unordered_map> (C++11),
<unordered_set> (C++11), <array> (C++11): Containers data
structures template classes.

• <iterator>: Iterator for transversing the elements in a
container.

• <algorithm>, <numeric>, <functional>, <utility>: Algorithm and
function objects.

• <initializer_list> (C++11), <memroy> (C++11).

Programación en C++ 152

Containers

• Sequence Containers: Stores data sequentially in memory
– vector: dynamically resizable array. Support fast insertion and deletion at back;

and direct access to its elements.
– deque: double-ended queue. Support fast insertion and deletion at front and back;

and direct access to its elements.
– list: double-linked list. Support fast insertion and deletion anywhere in the list; and

direct access to its elements.
• Associative Containers: nonlinear data structures storing

key-value pairs
– set: No duplicate element. Support fast lookup.
– multiset: Duplicate element allowed. Support fast lookup.
– map: One-to-one mapping (associative array) with no duplicate. Support fast key

lookup.
– multimap: One-to-many mapping, with duplicates allowed. Support fast key

lookup.
Programación en C++ 153

Containers

• Container Adapter Classes
– Stack: Last-in-first-out (LIFO) queue, adapted from deque (default), or vector, or

list. Support operations back, push_back, pop_back.
– queue: First-in-first-out (FIFO) queue, adapted from deque (default), or list.

Support operations front, back, push_back, pop_front.
– priority_queue: highest priority element at front of the queue. adapted from vector

(default) or deque. Support operations front, push_back, pop_front.

Programación en C++ 154

STL Header Files

Programación en C++ 155

The array Class Template

• An array object works very much like a regular array
• A fixed-size container that holds elements of the same data

type.
• array objects have a size() member function that returns the

number of elements contained in the object.
• The array class is declared in the <array> header file.
• When defining an array object, you specify the data type of

its elements, and the number of elements.
• Examples:

array<int, 5> numbers;
array<string, 4> names;

Programación en C++ 156

The array Class Template

• Initializing an array object:
array<int, 5> numbers = {1, 2, 3, 4, 5};

array<string, 4> names = {"Jamie", "Ashley", "Doug",
"Claire"};

• The array class overloads the [] operator.
• You can use the [] operator to access elements using a

subscript, just as you would with a regular array.
• The [] operator does not perform bounds checking. Be

careful not to use a subscript that is out of bounds.

Programación en C++ 157

Iterators

• An iterator behaves like a generic pointer, which can be used
to reference (point-to) individual element of a generic
container; and transverse through elements of a container.

• Five categories of iterators:

Programación en C++ 158

Similarities between Pointers and Iterators

Pointers Iterators
Use the * and -> operators to dereference Yes Yes
Use the = operator to assign to an element Yes Yes
Use the == and != operators to compare Yes Yes
Use the ++ operator to increment Yes Yes

Use the -- operator to decrement
Yes Yes

(bidirectional and
random-access iterators)

Use the + operator to move forward a specific
number of elements

Yes Yes

Use the - operator to move backward a specific
number of elements

Yes Yes Yes
(bidirectional and

random-access iterators)

Programación en C++ 159

Iterators

• To define an iterator, you must know what type of container you will be
using it with.

• The general format of an iterator definition:
containerType::iterator iteratorName;
Where containerType is the STL container type, and
iteratorName is the name of the iterator variable that you are
defining.

• For example, suppose we have defined an array object, as follows:
array<string, 3> names = {"Sarah", "William", "Alfredo"};
We can define an iterator that is compatible with the array object as
follows:
array<string, 3>::iterator it;
This defines an iterator named it. The iterator can be used with an
array<string, 3> object.

Programación en C++ 160

Iterators

• All of the STL containers have a begin() member function that
returns an iterator pointing to the container's first element.

• All of the STL containers have a end() member function that returns
an iterator pointing to the position after the container's last element.

Programación en C++ 161

Iterators

• You typically use the end() member function to know when
you have reached the end of a container.

• You can use the auto keyword to simplify the definition of an
iterator. Example:
array<string, 3> names = {"Sarah", "William", "Alfredo"};
auto it = names.begin();

Programación en C++ 162

Programación en C++ 163

Iterators

Programación en C++ 164

Iterators

Mutable Iterators

• An iterator of the iterator type gives you read/write
access to the element to which the iterator points.

• This is commonly known as a mutable iterator.

Programación en C++ 165

Constant Iterators

• An iterator of the const_iterator type provides read-
only access to the element to which the iterator points.

• The STL containers provide a cbegin() member function
and a cend() member function.
– The cbegin() member function returns a const_iterator

pointing to the first element in a container.
– The cend() member function returns a const_iterator

pointing to the end of the container.
– When working with const_iterators, simply use the container

class’s cbegin() and cend() member functions instead of the
begin() and end() member functions.

Programación en C++ 166

Reverse Iterators

• A reverse iterator works in reverse, allowing you to
iterate backward over the elements in a container.

• With a reverse iterator, the last element in a container
is considered the first element, and the first element is
considered the last element.

• The ++ operator moves a reverse iterator backward,
and the −− operator moves a reverse iterator forward.

Programación en C++ 167

Reverse Iterators

• The following STL containers support reverse iterators:
– array
– deque
– list
– map
– multimap
– multiset
– set
– vector

• All of these classes provide an rbegin() member
function and an rend() member function.

Programación en C++ 168

Reverse Iterators

• The rbegin() member function returns a reverse iterator
pointing to the last element in a container.

• The rend() member function returns an iterator pointing to
the position before the first element.

Programación en C++ 169

Reverse Iterators

• To create a reverse iterator, define it as
reverse_iterator

Programación en C++ 170

The vector Class

• A vector is a sequence container that works like an
array, but is dynamic in size.

• Overloaded [] operator provides access to existing
elements

• The vector class is declared in the <vector>
header file.

Programación en C++ 171

vector Class Constructors

Default Constructor vector<dataType> name;
Creates an empty vector.

Fill Constructor vector<dataType> name(size);
Creates a vector of size elements. If the elements are objects,
they are initialized via their default constructor. Otherwise, initialized
with 0.

Fill Constructor vector<dataType> name(size, value);
Creates a vector of size elements, each initialized with value.

Programación en C++ 172

Range Constructor vector<dataType> name(iterator1, iterator2);
Creates a vector that is initialized with a range of values from
another container. iterator1 marks the beginning of the range
and iterator2 marks the end.

Copy Constructor vector<dataType> name(vector2);
Creates a vector that is a copy of vector2.

Subscript notation

Range-based for loop

Programación en C++ 173

vector Class Example

Initializing a vector

• In C++ 11 and later, you can initialize a vector
object:

vector<int> numbers = {1, 2, 3, 4, 5};

or

vector<int> numbers {1, 2, 3, 4, 5};

Programación en C++ 174

Adding New Elements to a vector

• The push_back member function adds a new
element to the end of a vector:

vector<int> numbers;
numbers.push_back(10);
numbers.push_back(20);
numbers.push_back(30);

Programación en C++ 175

Accessing Elements with the at() Member
Function

• You can use the at() member function to retrieve a
vector element by its index with bounds checking:

vector<string> names = {"Joe", "Karen", "Lisa"};
cout << names.at(0) << endl;
cout << names.at(1) << endl;
cout << names.at(2) << endl;
cout << names.at(3) << endl; // Throws an exception

Throws an out_of_bounds exception
when given an invalid index

Programación en C++ 176

Using an Iterator With a vector

• vectors have begin() and end() member functions
that return iterators pointing to the beginning and end of the
container:

Defines an iterator that is compatible
with a vector<string> object

Displays the item that the iterator points to

Programación en C++ 177

Using an Iterator With a vector

• The begin() and end() member functions return a random-access
iterator of the iterator type

• The cbegin() and cend() member functions return a random-
access iterator of the const_iterator type

• The rbegin() and rend() member functions return a reverse
iterator of the reverse_iterator type

• The crbegin() and crend() member functions return a reverse
iterator of the const_reverse_iterator type

Programación en C++ 178

Inserting Elements with the insert()
Member Function

• You can use the insert() member function, along
with an iterator, to insert an element at a specific
position.

• General format:

vectorName.insert(it, value);

Iterator pointing to an
element in the vector Value to insert before

the element that it
points to

Programación en C++ 179

Programación en C++ 180

Inserting Elements Example

Overloaded Versions of the insert()
Member Function

insert(it, value) Inserts value just before the element pointed to by it. The
function returns an iterator pointing to the newly inserted element.

insert(it, n, value) Inserts n elements just before the element pointed to by it. Each of
the new elements will be initialized with value. The function returns
an iterator pointing to the first element of the newly inserted
elements.

insert(iterator1,
iterator2,
iterator3)

Inserts a range of new elements. iterator1 points to an existing
element in the container. The range of new elements will be inserted
before the element pointed to by iterator1. iterator2 and
iterator3 mark the beginning and end of a range of values that
will be inserted. (The element pointed to by iterator3 will not be
included in the range.) The function returns an iterator pointing to the
first element of the newly inserted range.

Programación en C++ 181

Storing Objects Of Your Own Classes in a
vector

• STL containers are
especially useful for storing
objects of your own classes.

• Consider this Product
class:

Programación en C++ 182

This program initializes a
vector with three Product
objects.

A range-based
for loop
iterates over the
vector.

Programación en C++ 183

Storing Objects Of Your Own Classes in a
vector

This program uses the
push_back member function
to store three Product
objects in a vector.

A for loop uses an
iterator to step through the
vector.

Programación en C++ 184

Storing Objects Of Your Own Classes in a
vector

Inserting Container Elements With
Emplacement

• Member functions such as insert() and push_back() can cause
temporary objects to be created in memory while the insertion is taking
place.

• This is not a problem in programs that make only a few insertions.
• However, these functions can be inefficient for making a lot of

insertions.
• C++11 introduced a new family of member functions that use a

technique known as emplacement to insert new elements.
• Emplacement avoids the creation of temporary objects in memory while

a new object is being inserted into a container.
• The emplacement functions are more efficient than functions such as

insert() and push_back()

Programación en C++ 185

Inserting Container Elements With
Emplacement

• The vector class provides two member functions that use
emplacement:
– emplace() - emplaces an element at a specific location
– emplace_back()- emplaces an element at the end of the vector

• With these member functions, it is not necessary to instantiate,
ahead of time, the object you are going to insert.

• Instead, you pass to the emplacement function any arguments that
you would normally pass to the constructor of the object you are
inserting.

• The emplacement function handles the construction of the object,
forwarding the arguments to its constructor.

Programación en C++ 186

Define a vector to hold
Product objects

Emplace three Product
objects at the end of the
vector

A for loop uses an
iterator to step through the
vector.

Programación en C++ 187

Inserting Container Elements With
Emplacement

Initializes a vector with
two Product objects

Gets an iterator pointing to
the 2nd element

Emplaces a new Product
object before the one
pointed to by the iterator

Programación en C++ 188

Inserting Container Elements With
Emplacement

Maps – General Concepts

• A map is an associative container.

• Each element that is stored in a map has two parts: a key and
a value.

• To retrieve a specific value from a map, you use the key that
is associated with that value.

• This is similar to the process of looking up a word in the
dictionary, where the words are keys and the definitions are
values.

Programación en C++ 189

Maps

• Example: a map in which employee IDs are the keys and
employee names are the values.

• You use an employee's ID to look up that employee's name.

Programación en C++ 190

The map Class

• You can use the STL map class to store key-value pairs.
• The keys that are stored in a map container are unique – no

duplicates.
• The map class is declared in the <map> header file.
• Example: defining a map container to hold employee ID

numbers (as ints) and their corresponding employee names
(as strings):
map<int, string> employees;

Programación en C++ 191

Key data type Value data type

map Class Constructors

Default Constructor map<keyDataType, valueDataType> name;
Creates an empty map.

Range Constructor map<keyDataType, valueDataType>
name(iterator1, iterator2);

Creates a map that is initialized with a range of values from another
map. iterator1 marks the beginning of the range and
iterator2 marks the end.

Copy Constructor map<keyDataType, valueDataType> name(map2);
Creates a map that is a copy of map2.

Programación en C++ 192

Initializing a map

map<int, string> employees =
{

{101, "Chris Jones"}, {102, "Jessica Smith"},
{103, "Amanda Stevens"}, {104, "Will Osborn"}

};

• In the first element, the key is 101 and the value is "Chris Jones".
• In the second element, the key is 102 and the value is "Jessica

Smith".
• In the third element, the key is 103 and the value is "Amanda

Stevens".
• In the fourth element, the key is 104 and the value is "Will Osborn".

Programación en C++ 193

The Overloaded [] Operator

• You can use the [] operator to add new elements to a map.
• General format:

mapName[key] = value;

• This adds the key-value pair to the map.

• If the key already exists in the map, it's associated value will
be changed to value.

Programación en C++ 194

The Overloaded [] Operator

map<int, string> employees;
employees[110] = "Beth Young";
employees[111] = "Jake Brown";
employees[112] = "Emily Davis";

• After this code executes, the employees map will
contain the following elements:

• Key = 110, Value = "Beth Young"
• Key = 111, Value = "Jake Brown"
• Key = 112, Value = "Emily Davis"

Programación en C++ 195

The pair Type

• Internally, the elements of a map are stored as instances of the
pair type.

• pair is a struct that has two member variables: first and
second.

• The element’s key is stored in first, and the element’s value is
stored in second.

• The pair struct is declared in the <utility> header file.
When you #include the <map> header file, <utility> is
automatically included as well.

Programación en C++ 196

Inserting Elements with the insert()
Member Function

• The map class provides an insert() member function that
adds a pair object as an element to the map.

• You can use the STL function template make_pair to
construct a pair object.

• The make_pair function template is declared in the
<utility> header file.

Programación en C++ 197

Inserting Elements with the insert()
Member Function

map<int, string> employees;
employees.insert(make_pair(110, "Beth Young"));
employees.insert(make_pair(111, "Jake Brown"));
employees.insert(make_pair(112, "Emily Davis"));

• After this code executes, the employees map will
contain the following elements:

• Key = 110, Value = "Beth Young"
• Key = 111, Value = "Jake Brown"
• Key = 112, Value = "Emily Davis"

Note: If the element that you are inserting with the insert() member function
has the same key as an existing element, the function will not insert the new
element.

Programación en C++ 198

Inserting Elements with the emplace()
Member Function

• The map class also provides an emplace() member
function that adds an element to the map.

map<int, string> employees;
employees.emplace(110, "Beth Young");
employees.emplace(111, "Jake Brown");
employees.emplace(112, "Emily Davis");

• After this code executes, the employees map will
contain the following elements:

• Key = 110, Value = "Beth Young"
• Key = 111, Value = "Jake Brown"
• Key = 112, Value = "Emily Davis"

Note: If the element that you are inserting with the emplace() member function
has the same key as an existing element, the function will not insert the new
element.

Programación en C++ 199

Retrieving Elements with the at() Member
Function

• You can use the at() member function to retrieve a map
element by its key:

// Create a map containing employee IDs and names.
map<int, string> employees =
{

{101, "Chris Jones"}, {102, "Jessica Smith"},
{103, "Amanda Stevens"}, {104, "Will Osborn"}

};

// Retrieve a value from the map.
cout << employees.at(103) << endl;

Displays "Amanda Stevens"

Programación en C++ 200

Retrieving Elements with the at() Member
Function

• To prevent the at() member function from throwing an
exception (if the specified key does not exist), use the count
member function to determine whether it exists:
// Create a map containing employee IDs and names.
map<int, string> employees =
{

{101, "Chris Jones"}, {102, "Jessica Smith"},
{103, "Amanda Stevens"}, {104, "Will Osborn"}

};

// Retrieve a value from the map.
if (employees.count(103))

cout << employees.at(103) << endl;
else

cout << "Employee not found.\n";

The count() member function
returns 1 if the specified key
exists, or 0 otherwise.

Programación en C++ 201

Deleting Elements

• You can use the erase() member function to retrieve a
map element by its key:

// Create a map containing employee IDs and names.
map<int, string> employees =
{

{101, "Chris Jones"}, {102, "Jessica Smith"},
{103, "Amanda Stevens"}, {104, "Will Osborn"}

};

// Delete the employee with ID 102.
employees.erase(102);

Deletes Jessica Smith from the map

Programación en C++ 202

Stepping Through a map with the Range-
Based for Loop

// Create a map containing employee IDs and names.
map<int, string> employees =
{

{101, "Chris Jones"}, {102, "Jessica Smith"},
{103, "Amanda Stevens"}, {104, "Will Osborn"}

};

// Display each element.
for (pair<int, string> element : employees)
{

cout << "ID: " << element.first << "\tName: "
<< element.second << endl;

}

Remember, each element is a pair.

Programación en C++ 203

Stepping Through a map with the Range-
Based for Loop

// Create a map containing employee IDs and names.
map<int, string> employees =
{

{101, "Chris Jones"}, {102, "Jessica Smith"},
{103, "Amanda Stevens"}, {104, "Will Osborn"}

};

// Display each element.
for (auto element : employees)
{

cout << "ID: " << element.first << "\tName: "
<< element.second << endl;

}

auto simplifies this

Programación en C++ 204

Using an Iterator With a map

• The begin() and end() member functions return a bidirectional
iterator of the iterator type

• The cbegin() and cend() member functions return a bidirectional
iterator of the const_iterator type

• The rbegin() and rend() member functions return a reverse
bidirectional iterator of the reverse_iterator type

• The crbegin() and crend() member functions return a reverse
bidirectional iterator of the const_reverse_iterator type

• When an iterator points to a map element, it points to an instance of the
pair type.

• The element has two member variables: first and second.
• The element’s key is stored in first, and the element’s value is

stored in second.

Programación en C++ 205

Programación en C++ 206

Using an Iterator With a map

Storing Objects Of Your Own Classes as
Values in a map

• If you want to store an object as a value in a map,
there is one requirement for that object’s class:

It must have a default constructor.

• Consider the following Contact class…

Programación en C++ 207

Default constructor

Programación en C++ 208

Storing Objects Of Your Own Classes as
Values in a map

Continued…

In the map, the keys are
the contact names, and the
values are the Contact
objects.

Programación en C++ 209

Storing Objects Of Your Own Classes as
Values in a map

Programación en C++ 210

Storing Objects Of Your Own Classes as
Values in a map

Storing Objects Of Your Own Classes as
Keys in a map

• If you want to store an object as a key in a map, there
is one requirement for that object’s class:

It must overload the < operator.

• Consider the following Customer class…

Programación en C++ 211

Programación en C++ 212

Storing Objects Of Your Own Classes as
Keys in a map

This program assigns seats in a
theater to customers. The map
uses Customer objects as keys,

and seat numbers as values.

Programación en C++ 213

Storing Objects Of Your Own Classes as
Keys in a map

The unordered_map Class

• The unordered_map class is similar to the map class,
except in two regards:
– The keys in an unordered_map are not sorted
– The unordered_map class has better performance

• You should use the unordered_map class instead of the
map class if:
– You will be making a lot of searches on a large number of elements
– You are not concerned with retrieving them in key order

• The unordered_map class is declared in the
<unordered_map> header file

Programación en C++ 214

The multimap Class

• The multimap class is a map that allows duplicate keys
• The multimap class has most of the same member

functions as the map class
• The multimap class is declared in the <map> header file
• Consider a phonebook application where the key is a

person's name and the value is that person's phone number.
• A multimap container would allow each person to have

multiple phone numbers

Programación en C++ 215

Programación en C++ 216

The multimap Class

Adding Elements to a multimap

• The multimap class does not overload the [] operator.
– So, you cannot use an assignment statement to add a new element

to a multimap.
• Instead, you will use either the emplace() or the
insert() member functions.

Programación en C++ 217

Adding Elements to a multimap

Programación en C++ 218

Getting the Number of Elements With a
Specified Key

• The multimap class’s count() member function accepts
a key as its argument, and returns the number of elements
that match the specified key.

Programación en C++ 219

Retrieving Elements with a Specified Key

• The multimap class has a find() member function that
searches for an element with a specified key.

• The find() function returns an iterator to the first element
matching it.

• If the element is not found, the find() function returns an
iterator to the end of the multimap.

• To retrieve all elements matching a specified key, use the
equal_range member function.

• The equal_range member function returns a pair object.
– The pair object’s first member is an iterator pointing to the first

element that matches the specified key.
– The pair object’s second member is an iterator pointing to the position

after the last element that matches the specified key.

Programación en C++ 220

Programación en C++ 221

Retrieving Elements with a Specified Key

Deleting Elements with a Specified Key

• To delete all elements matching a specified key, use the
erase() member function.

Programación en C++ 222

The unordered_multimap Class

• The unordered_multimap class is similar to the
multimap class, except:
– The keys in an unordered_multimap are not sorted
– The unordered_multimap class has better performance

• You should use the unordered_multimap class instead
of the multimap class if:
– You will be making a lot of searches on a large number of elements
– You are not concerned with retrieving them in key order

• The unordered_multimap class is declared in the
<unordered_multimap> header file

Programación en C++ 223

Sets

• A set is an associative container that is similar to a
mathematical set.

• You can use the STL set class to create a set
container.

• All the elements in a set must be unique. No two
elements can have the same value.

• The elements in a set are automatically sorted in
ascending order.

• The set class is declared in the <set> header file.

Programación en C++ 224

The set Class

• You can use the STL set class to create a set
container.

• The keys that are stored in a map container are
unique – no duplicates.

• The map class is declared in the <map> header file.

Programación en C++ 225

set Class Constructors

Default
Constructor

set<dataType> name;
Creates an empty set.

Range
Constructor

set<dataType> name(iterator1,
iterator2);
Creates a set that is initialized with a range of
values. iterator1 marks the beginning of the
range and iterator2 marks the end.

Copy
Constructor

set<dataType> name(set2);
Creates a set that is a copy of set2.

Programación en C++ 226

The set Class

• Example: defining a set container to hold integers:
set<int> numbers;

• Example: defining and initializing a set container to hold
integers:
set<int> numbers = {1, 2, 3, 4, 5};

• A set cannot contain duplicate items.
• If the same value appears more than once in an initialization

list, it will be added to the set only one time.
• For example, the following set will contain the values 1, 2, 3,

4, and 5:
set<int> numbers = {1, 1, 2, 2, 3, 4, 5, 5, 5};

Programación en C++ 227

Adding New Elements to a set

• The insert() member function adds a new
element to a set:

set<int> numbers;
numbers.insert(10);
numbers.insert(20);
numbers.insert(30);

Programación en C++ 228

Stepping Through a set With the Range-
Based for Loop

Programación en C++ 229

Using an Iterator With a set

• The begin() and end() member functions return a
bidirectional iterator of the iterator type

• The cbegin() and cend() member functions return a
bidirectional iterator of the const_iterator type

• The rbegin() and rend() member functions return a
reverse bidirectional iterator of the reverse_iterator
type

• The crbegin() and crend() member functions return a
reverse bidirectional iterator of the
const_reverse_iterator type

Programación en C++ 230

Using an Iterator With a set

Programación en C++ 231

Determining Whether an Element Exists

• The set class’s count() member function accepts a value
as its argument, and returns 1 if that value exists in the set.
The function returns 0 otherwise.

Programación en C++ 232

Retrieving an Element

• The set class has a find() member function that
searches for an element with a specified value.

• The find() function returns an iterator to the
element matching it.

• If the element is not found, the find() function
returns an iterator to the end of the set.

Programación en C++ 233

Retrieving an Element

Programación en C++ 234

Storing Objects Of Your Own Classes in a
set

• If you want to store an object in a set, there is one
requirement for that object’s class:

It must overload the < operator.

• Consider the following Customer class…

Programación en C++ 235

Programación en C++ 236

Storing Objects Of Your Own Classes in a
set

Continued…

Programación en C++ 237

Storing Objects Of Your Own Classes in a
set

The multiset Class

• The mulitset class is a set that allows duplicate items.
• The mulitset class has the same member functions as the
set class.

• The multiset class is declared in the <set> header file.
• In the set class, the count() member function returns

either 0 or 1. In the multiset class, the count() member
function can return values greater than 1.

• In the set class, the equal_range() member function
returns a range with, at most, one element. In the multiset
class, the equal_range() member function can return a
range with multiple elements.

Programación en C++ 238

The unordered_set Class

• The unordered_set class is similar to the set class,
except in two regards:
– The values in an unordered_set are not sorted
– The unordered_set class has better performance

• You should use the unordered_set class instead of the
set class if:
– You will be making a lot of searches on a large number of elements
– You are not concerned with retrieving them in ascending order

• The unordered_set class is declared in the
<unordered_set> header file

Programación en C++ 239

The unordered_multiset Class

• The unordered_multiset class is similar to the
multiset class, except in two regards:
– The values in an unordered_multiset are not sorted
– The unordered_multiset class has better performance

• You should use the unordered_multiset class instead
of the multiset class if:
– You will be making a lot of searches on a large number of elements
– You are not concerned with retrieving them in ascending order

• The unordered_multiset class is declared in the
<unordered_set> header file

Programación en C++ 240

STL Algorithms

• The STL provides a number of algorithms, implemented as
function templates, in the <algorithm> header file.

• These functions perform various operations on ranges of
elements.

• A range of elements is a sequence of elements denoted by
two iterators:
– The first iterator points to the first element in the range
– The second iterator points to the end of the range (the element to

which the second iterator points is not included in the range).

Programación en C++ 241

Categories of Algorithms in the STL

• Min/max algorithms
• Sorting algorithms
• Search algorithms
• Read-only sequence

algorithms
• Copying and moving

algorithms
• Swapping algorithms
• Replacement algorithms
• Removal algorithms
• Reversal algorithms
• Fill algorithms

• Rotation algorithms
• Shuffling algorithms
• Set algorithms
• Transformation algorithm
• Partition algorithms
• Merge algorithms
• Permutation algorithms
• Heap algorithms
• Lexicographical comparison

algorithm

Programación en C++ 242

Sorting

• The sort function:

sort(iterator1, iterator2);

iterator1 and iterator2 mark the beginning
and end of a range of elements. The function sorts the
range of elements in ascending order.

Programación en C++ 243

Searching

• The binary_search function:

binary_search(iterator1, iterator2, value);

iterator1 and iterator2 mark the beginning
and end of a range of elements that are sorted in
ascending order. value is the value to search for. The
function returns true if value is found in the range,
or false otherwise.

Programación en C++ 244

Programación en C++ 245

Searching

Detecting Permutations

• If a range has N elements, there are N! possible
arrangements, or permutations, of those elements.

• For example, the range of integers 1, 2, 3 has six possible
permutations:

Programación en C++ 246

Detecting Permutations

• The is_permutation() function determines whether
one range of elements is a permutation of another range of
elements.

is_permutation(iterator1, iterator2, iterator3)

– iterator1 and iterator2 mark the beginning and end of the first range of
elements.

– iterator3 marks the beginning of the second range of elements, assumed to
have the same number of elements as the first range.

– The function returns true if the second range is a permutation of the first range,
or false otherwise.

Programación en C++ 247

Plugging Your Own Functions into an
Algorithm

• Many of the function templates in the STL are designed to accept
function pointers as arguments.

• This allows you to “plug” one of your own functions into the
algorithm.

• For example:
for_each(iterator1, iterator2, function)

– iterator1 and iterator2 mark the beginning and end of a range of
elements.

– function is the name of a function that accepts an element as its
argument.

– The for_each() function iterates over the range of elements, passing
each element as an argument to function.

Programación en C++ 248

Plugging Your Own Functions into an
Algorithm

• For example, consider this function:

• And this code snippet:

Programación en C++ 249

This passes each
element of the

numbers vector to
the doubleNumber

function.

Plugging Your Own Functions into an
Algorithm

• Another example:

count_if(iterator1, iterator2, function)

– iterator1 and iterator2 mark the beginning and end of a
range of elements.

– function is the name of a function that accepts an element as its
argument, and returns either true or false.

– The count_if() function iterates over the range of elements,
passing each element as an argument to function.

– The count_if function returns the number of elements for which
function returns true.

Programación en C++ 250

1 #include <iostream>
2 #include <vector>
3 #include <algorithm>
4 using namespace std;
5
6 // Function prototypes
7 bool isNegative(int);
8
9 int main()
10 {
11 // Create a vector of ints.
12 vector<int> numbers = { 0, 99, 120, -33, 10, 8, -1, 101 };
13
14 // Get the number of elements that are negative.
15 int negatives = count_if(numbers.begin(), numbers.end(), isNegative);
16
17 // Display the results.
18 cout << "There are " << negatives << " negative elements.\n";
19 return 0;
20 }
21
22 // isNegative function
23 bool isNegative(int n)
24 {
25 bool status = false;
26
27 if (n < 0)
28 status = true;
29
30 return status;
31 }

Programación en C++ 251

Plugging Your Own Functions into an
Algorithm

Algorithms for Set Operations

• The STL provides function templates for basic mathematical
set operations.

STL Function Template Description

set_union Finds the union of two sets, which is a set that contains all the elements of both
sets, excluding duplicates.

set_intersection Finds the intersection of two sets, which is a set that contains only the elements
that are found in both sets.

set_difference Finds the difference of two sets, which is the set of elements that appear in one
set, but not the other.

set_symmetric_difference Finds the symmetric difference of two sets, which is the set of elements that
appear in one set, but not both.

set_includes Determines whether one set includes another.

Programación en C++ 252

Function Objects

• A function object is an object that acts like a function.
– It can be called
– It can accept arguments
– It can return a value

• Function objects are also known as functors

Programación en C++ 253

Function Objects

• To create a function object, you write a class that
overloads the () operator.

Accepts two int arguments

Returns an int

Programación en C++ 254

Programación en C++ 255

Function Objects

Anonymous Function Objects

• Function objects can be called at the point of their creation,
without being given a name. Consider this class:

Programación en C++ 256

An IsEven object is created
here, but not given a name.

It is anonymous.

Programación en C++ 257

Anonymous Function Objects

Predicate Terminology

• A function or function object that returns a Boolean value is
called a predicate.

• A predicate that takes only one argument is called a unary
predicate.

• A predicate that takes two arguments is called a binary
predicate.

• This terminology is used in much of the available C++
documentation and literature.

Programación en C++ 258

Lambda Expressions

• A lambda expression is a compact way of creating a function
object without having to write a class declaration.

• It is an expression that contains only the logic of the object’s
operator() member function.

• When the compiler encounters a lambda expression, it
automatically generates a function object in memory, using
the code that you provide in the lambda expression for the
operator() member function.

Programación en C++ 259

Lambda Expressions

• General format:

[](parameter list) { function body }

• The [] is known as the lambda introducer. It marks the
beginning of a lambda expression.

• parameter list is a list of parameter declarations for the
function object’s operator() member function.

• function body is the code that should be the body of the
object’s operator() member function.

Programación en C++ 260

Lambda Expressions

• Example: a lambda expression for a function object that
computes the sum of two integers:
[](int a, int b) { return x + y; }

• Example: a lambda expression for a function object that
determines whether an integer is even is:
[](int x) { return x % 2 == 0; }

• Example: a lambda expression for a function object that takes
an integer as input and prints the square of that integer:
[](int a) { cout << a * a << " "; }

Programación en C++ 261

Lambda Expressions

• When you call a lambda expression, you write a list of
arguments, enclosed in parentheses, right after the
expression.

• For example, the following code snippet displays 7, which is
the sum of the variables x and y:
int x = 2;
int y = 5;
cout << [](int a, int b) {return a + b;}(x, y) << endl;

Programación en C++ 262

Lambda Expressions

• The following code segment counts the even numbers in a
vector:
// Create a vector of ints.
vector<int> v = { 1, 2, 3, 4, 5, 6, 7, 8 };
// Get the number of elements that are even.
int evenNums = count_if(v.begin(), v.end(), [](int x) {return x % 2 == 0;});
// Display the results.
cout << "The vector contains " << evenNums << " even numbers.\n";

• Because lambda expressions generate function objects, you
can assign a lambda expression to a variable and then call it
through the variable’s name:
auto sum = [](int a, int b) {return a + b;};
int x = 2;
int y = 5;
int z = sum(x, y);

Programación en C++ 263

Programación en C++ 264

Lambda Expressions

Functional Classes in the STL

• The STL library defines a number of classes that you can
instantiate to create function objects in your program.

• To use these classes, you must #include the
<functional> header file.

• Table 17-15 lists a few of the functional classes:

Programación en C++ 265

5. Data Structures

Programación en C++ 266

Linked List ADT

• Linked list: set of data structures (nodes) that
contain references to other data structures

• References may be addresses or array indices
• Data structures can be added to or removed from

the linked list during execution

null

list
head

Programación en C++ 267
null

list
head

newNode

Linked Lists vs. Arrays and Vectors

• Linked lists can grow and shrink as needed, unlike
arrays, which have a fixed size

• Linked lists can insert a node between other nodes
easily

null

list
head

Programación en C++ 268

Node Organization - Declaring a Node

• A node contains:
– data: one or more data fields – may be organized as

structure, object, etc.
– a pointer that can point to another node

• Declare a node:
struct ListNode {

int data;
ListNode *next;

};

• No memory is allocated at this time

pointer
data

Programación en C++ 269

Linked List Organization

• Linked list contains 0 or more nodes:

• Has a list head to point to first node
• Last node points to null(address 0)

null

list
head

Programación en C++ 270

Empty List

• If a list currently contains 0 nodes, it is the empty
list

• In this case the list head points to null

NULL

list
head

Programación en C++ 271

Defining a Linked List

• Define a pointer for the head of the list:
ListNode *head = nullptr;

• Head pointer initialized to nullptr to indicate an
empty list

null

head

Programación en C++ 272

The Null Pointer

• Is used to indicate end-of-list
• Should always be tested for before using a pointer:

ListNode *p;
while (!p)

Programación en C++ 273

Linked List Operations

• Basic operations:
– append a node to the end of the list
– insert a node within the list
– traverse the linked list
– delete a node
– delete/destroy the list

Programación en C++ 274

1 // Specification file for the NumberList class
2 #ifndef NUMBERLIST_H
3 #define NUMBERLIST_H
4
5 class NumberList
6 {
7 private:
8 // Declare a structure for the list
9 struct ListNode
10 {
11 double value; // The value in this node
12 struct ListNode *next; // To point to the next node
13 };
14
15 ListNode *head; // List head pointer
16
17 public:
18 // Constructor
19 NumberList()
20 { head = nullptr; }
21
22 // Destructor
23 ~NumberList();
24
25 // Linked list operations
26 void appendNode(double);
27 void insertNode(double);
28 void deleteNode(double);
29 void displayList() const;
30 };
31 #endif

Programación en C++ 275

Linked List Example - NumberList.h

Create a New Node

• Allocate memory for the new node:
newNode = new ListNode;

• Initialize the contents of the node:
newNode->value = num;

• Set the pointer field to nullptr:
newNode->next = nullptr;

newNode

newNode

23

null

newNode

23

Programación en C++ 276

Appending a Node

• Add a node to the end of the list
• Basic process:

– Create the new node (as already described)
– Add node to the end of the list:

• If list is empty, set head pointer to this node
• Else,

– traverse the list to the end
– set pointer of last node to point to new node

Programación en C++ 277

Appending a Node

null

list
head

5 13 19

newNode

23 null

nodePtr

New node created, end of list located

Programación en C++ 278

list
head

5 13 19

newNode

23 null

nodePtr

New node added to end of list

11 void NumberList::appendNode(double num)
12 {
13 ListNode *newNode; // To point to a new node
14 ListNode *nodePtr; // To move through the list
15
16 // Allocate a new node and store num there.
17 newNode = new ListNode;
18 newNode->value = num;
19 newNode->next = nullptr;
20
21 // If there are no nodes in the list
22 // make newNode the first node.
23 if (!head)

C++ code for Appending a Node

Programación en C++ 279

24 head = newNode;
25 else // Otherwise, insert newNode at end.
26 {
27 // Initialize nodePtr to head of list.
28 nodePtr = head;
29
30 // Find the last node in the list.
31 while (nodePtr->next)
32 nodePtr = nodePtr->next;
33
34 // Insert newNode as the last node.
35 nodePtr->next = newNode;
36 }
37 }

C++ code for Appending a Node
(Continued)

Programación en C++ 280

Programación en C++ 281

Appending a Node

Inserting a Node into a Linked List

• Used to maintain a linked list in order
• Requires two pointers to traverse the list:

– pointer to locate the node with data value greater than that
of node to be inserted

– pointer to 'trail behind' one node, to point to node before
point of insertion

• New node is inserted between the nodes pointed at
by these pointers

Programación en C++ 282

Inserting a Node into a Linked List

null

list
head

5 13 19

newNode

18 null

nodePtrpreviousNode

New node created, correct position located

Programación en C++ 283

Inserting a Node into a Linked List

null

list
head

5 13 19

newNode

18

nodePtrpreviousNode

New node inserted in order in the linked list

Programación en C++ 284

Programación en C++ 285

Programación en C++ 286

Programación en C++ 287

Traversing a Linked List

• Visit each node in a linked list: display contents,
validate data, etc.

• Basic process:
– set a pointer to the contents of the head pointer
– while pointer is not a null pointer

• process data
• go to the next node by setting the pointer to the pointer field of

the current node in the list
– end while

Programación en C++ 288

Traversing a Linked List

null

list
head

5 13 19

nodePtr

nodePtr points to the node containing 5, then the
node containing 13, then the node containing 19,
then points to the null pointer, and the list traversal stops

Programación en C++ 289

Deleting a Node

• Used to remove a node from a linked list
• If list uses dynamic memory, then delete node from

memory
• Requires two pointers: one to locate the node to be

deleted, one to point to the node before the node to
be deleted

Programación en C++ 290

Deleting a Node

null

list
head

5 13 19

nodePtrpreviousNode

Locating the node containing 13

Programación en C++ 291

Adjusting pointer around the node to be deleted

null

list
head

5 13 19

nodePtrpreviousNode

Deleting a Node

null

list
head

5 19

nodePtrpreviousNode

Linked list after deleting the node containing 13

Programación en C++ 292

Programación en C++ 293

Deleting a Node

Programación en C++ 294

Deleting a Node

Destroying a Linked List

• Must remove all nodes used in the list

• To do this, use list traversal to visit each node

• For each node,
– Unlink the node from the list

– If the list uses dynamic memory, then free the node’s memory

• Set the list head to nullptr

Programación en C++ 295

Programación en C++ 296

A Linked List Template

• When declaring a linked list, must specify the type of
data to be held in each node

• Using templates, can declare a linked list that can
hold data type determined at list definition time

Programación en C++ 297

Variations of the Linked List

• Other linked list organizations:
– doubly-linked list: each node contains two pointers: one

to the next node in the list, one to the previous node in
the list

null

list
head

5 13 19

null

Programación en C++ 298

Variations of the Linked List

• Other linked list organizations:
– circular linked list: the last node in the list points back to

the first node in the list, not to the null pointer

list
head

5 13 19

Programación en C++ 299

The STL list Container

• Template for a doubly linked list
• Member functions for

– locating beginning, end of list: front, back, end
– adding elements to the list: insert, merge,
push_back, push_front

– removing elements from the list: erase, pop_back,
pop_front, unique

• See this link for a list of constructors and member functions

Programación en C++ 300

https://en.cppreference.com/w/cpp/container/list

The STL forward_list Container

• Template for a singly linked list

• You can only step forward in a forward_list.

• A forward_list uses slightly less memory than a
list, and has takes slightly less time for inserting and
removing nodes.

• Provides most, but not all, of the same member functions as
the list container

Programación en C++ 301

Introduction to the Stack ADT

• Stack: a LIFO (last in, first out) data structure
• Examples:

– plates in a cafeteria
– return addresses for function calls

• Implementation:
– static: fixed size, implemented as array
– dynamic: variable size, implemented as linked list

Programación en C++ 302

Stack Operations and Functions

• Operations:
– push: add a value onto the top of the stack
– pop: remove a value from the top of the stack

• Functions:
– isFull: true if the stack is currently full, i.e., has no

more space to hold additional elements
– isEmpty: true if the stack currently contains no

elements

Programación en C++ 303

Dynamic Stacks

• Grow and shrink as necessary

• Can't ever be full as long as memory is available

• Implemented as a linked list

Programación en C++ 304

Implementing a Stack

• Programmers can program their own routines to
implement stack functions

• See DynIntStack class for an example.

• Can also use the implementation of stack available in
the STL

Programación en C++ 305

The STL stack container

• Stack template can be implemented as a vector,
a linked list, or a deque

• Implements push, pop, and empty member
functions

• Implements other member functions:
– size: number of elements on the stack
– top: reference to element on top of the stack

Programación en C++ 306

Defining a stack

• Defining a stack of chars, named cstack, implemented
using a vector:
stack< char, vector<char>> cstack;

• implemented using a list:
stack< char, list<char>> cstack;

• implemented using a deque:
stack< char > cstack;

• When using a compiler that is older than C++ 11, be sure to
put spaces between the angled brackets that appear next to
each other.

stack< char, vector<char> > cstack;

Programación en C++ 307

Introduction to the Queue ADT

• Queue: a FIFO (first in, first out) data structure.
• Examples:

– people in line at the theatre box office
– print jobs sent to a printer

• Implementation:
– static: fixed size, implemented as array
– dynamic: variable size, implemented as linked list

Programación en C++ 308

Queue Locations and Operations

• rear: position where elements are added
• front: position from which elements are removed
• enqueue: add an element to the rear of the queue
• dequeue: remove an element from the front of a

queue

Programación en C++ 309

Queue Operations - Example

• A currently empty queue that can hold char values:

• enqueue('E');

• enqueue('K');

• enqueue('G');

// remove E
• dequeue();

// remove K
• dequeue();

Efront rear

19-310

E K

E K Gfront rear

front rear

K Gfront rear

Gfront rear

dequeue Issue, Solutions

• When removing an element from a queue, remaining
elements must shift to front

• Solutions:
– Let front index move as elements are removed (works as long as

rear index is not at end of array)
– Use above solution, and also let rear index "wrap around" to front

of array, treating array as circular instead of linear (more complex
enqueue, dequeue code)

Programación en C++ 311

Dynamic Queues

• Like a stack, a queue can be implemented using a
linked list

• Allows dynamic sizing, avoids issue of shifting
elements or wrapping indices

front rear

null

Programación en C++ 312

Implementing a Queue

• Programmers can program their own routines to
implement queue operations

• See the DynIntQue class in the book for an
example of a dynamic queue

• Can also use the implementation of queue and
dequeue available in the STL

Programación en C++ 313

The STL deque
and queue Containers

• deque: a double-ended queue. Has member
functions to enqueue (push_back) and dequeue
(pop_front)

• queue: container ADT that can be used to provide
queue as a vector, list, or deque. Has member
functions to enque (push) and dequeue (pop)

Programación en C++ 314

Defining a queue

• Defining a queue of chars, named cQueue,
implemented using a deque:
deque<char> cQueue;

• implemented using a queue:
queue<char> cQueue;

• implemented using a list:
queue<char, list<char>> cQueue;

Programación en C++ 315

Definition and Application of
Binary Trees

• Binary tree: a nonlinear linked list in which each
node may point to 0, 1, or two other nodes

• Each node contains
one or more
data fields and
two pointers

null null

null null null null

Programación en C++ 316

Binary Tree Terminology

• Tree pointer: like a head
pointer for a linked list, it
points to the first node in the
binary tree

• Root node: the node at the
top of the tree

null null

null null null null

Programación en C++ 317

Binary Tree Terminology

• Leaf nodes: nodes that
have no children

The nodes containing 7
and 43 are leaf nodes

null null7

19

31

43

59

null null null null

Programación en C++ 318

Binary Tree Terminology

• Child nodes, children:
nodes below a given
node
The children of the node
containing 31 are the
nodes containing 19 and
59

null null7

19

31

43

59

null null null null

Programación en C++ 319

Binary Tree Terminology

• Parent node: node above a
given node

The parent of the node
containing 43 is the node
containing 59

null null7

19

31

43

59

null null null null

Programación en C++ 320

Binary Tree Terminology

• Subtree: the portion of a
tree from a node down to
the leaves

The nodes containing 19
and 7 are the left subtree of
the node containing 31 null null7

19

31

43

59

null null null null

Programación en C++ 321

Uses of Binary Trees

• Binary search tree: data
organized in a binary tree
to simplify searches

• Left subtree of a node
contains data values < the
data in the node

• Right subtree of a node
contains values > the data
in the node

null null7

19

31

43

59

null null null null

Programación en C++ 322

Searching in a Binary Tree

1) Start at root node
2) Examine node data:

a) Is it desired value? Done
b) Else, is desired data < node data?

Repeat step 2 with left subtree
c) Else, is desired data > node data?

Repeat step 2 with right subtree
3) Continue until desired value

found or a null pointer reached
null null7

19

31

43

59

null null null null

Programación en C++ 323

Searching in a Binary Tree

To locate the node containing 43,
– Examine the root node (31) first
– Since 43 > 31, examine the right

child of the node containing 31, (59)
– Since 43 < 59, examine the left child

of the node containing 59, (43)
– The node containing

43 has been found
null null7

19

31

43

59

null null null null

Programación en C++ 324

Binary Search Tree Operations

• Create a binary search tree – organize data into a binary
search tree

• Insert a node into a binary tree – put node into tree in its
correct position to maintain order

• Find a node in a binary tree – locate a node with
particular data value

• Delete a node from a binary tree – remove a node and
adjust links to maintain binary tree

Programación en C++ 325

Binary Search Tree Node

• A node in a binary tree is like a node in a linked
list, with two node pointer fields:
struct TreeNode
{

int value;
TreeNode *left;
TreeNode *right;

}

Programación en C++ 326

Creating a New Node

• Allocate memory for new node:
newNode = new TreeNode;

• Initialize the contents of the node:
newNode->value = num;

• Set the pointers to nullptr:
newNode->Left
= newNode->Right
= nullptr; newNode

23

nullnull

newNode

newNode

23

Programación en C++ 327

Inserting a Node in a Binary Search Tree

1) If tree is empty, insert the new node as the root node
2) Else, compare new node against left or right child,

depending on whether data value of new node is < or >
root node

3) Continue comparing and choosing left or right subtree unitl
null pointer found

4) Set this null pointer to point to new node

Programación en C++ 328

Inserting a Node in a Binary Search Tree

null null7

19

31

43

59

root

Examine this node first –
value is < node, so go to
left subtree

Examine this
node second –
value is > node,
so go to right
subtree

Since the right subtree
is null, insert here

null null null null

newNode

23

nullnull

Programación en C++ 329

Traversing a Binary Tree

Three traversal methods:
1) Inorder:

a) Traverse left subtree of node
b) Process data in node
c) Traverse right subtree of node

2) Preorder:
a) Process data in node
b) Traverse left subtree of node
c) Traverse right subtree of node

3) Postorder:
a) Traverse left subtree of node
b) Traverse right subtree of node
c) Process data in node

Programación en C++ 330

Traversing a Binary Tree

TRAVERSAL
METHOD

NODES
VISITED IN
ORDER

Inorder 7, 19, 31,
43, 59

Preorder 31, 19, 7,
59, 43

Postorder 7, 19, 43,
59, 31

null null7

19

31

43

59

null null null null

Programación en C++ 331

Searching in a Binary Tree

• Start at root node,
traverse the tree looking
for value

• Stop when value found or
null pointer detected

• Can be implemented as a
bool function null null7

19

31

43

59

null null null null

Search for 43? return true
Search for 17? return false

Programación en C++ 332

Deleting a Node from a
Binary Tree – Leaf Node

• If node to be deleted is a leaf node, replace parent node’s
pointer to it with the null pointer, then delete the node

null7

19

null null

Deleting node with 7
– before deletion

null

19

null

Deleting node with 7
– after deletion

Programación en C++ 333

Deleting a Node from a
Binary Tree – One Child

• If node to be deleted has one child node, adjust pointers
so that parent of node to be deleted points to child of
node to be deleted, then delete the node

Programación en C++ 334

null null7

19

31

43

59

null null null null

Deleting node with 19
– before deletion

null

7

31

43

59

null null

null null

Deleting node with 19
– after deletion

Deleting a Node from a
Binary Tree – Two Children

• If node to be deleted has left and right children,
– ‘Promote’ one child to take the place of the deleted node
– Locate correct position for other child in subtree of promoted

child
• Convention in text: promote the right child, position left

subtree underneath

Programación en C++ 335

Deleting a Node from a
Binary Tree – Two Children

null null7

19

31

43

59

null null null null

Deleting node with 31
– before deletion Deleting node with 31

– after deletion

43

59

null

null

7

19

null null

null

Programación en C++ 336

Template Considerations for
Binary Search Trees

• Binary tree can be implemented as a template,
allowing flexibility in determining type of data stored

• Implementation must support relational operators >,
<, and == to allow comparison of nodes

Programación en C++ 337

Referencias

• Starting out with C++ : from control structures
through objects, Tony Gaddis, Pearson

• C++ Programming Tutorial
• A Tour of C++

Programación en C++ 338

https://www.pearson.com/us/higher-education/program/Gaddis-Starting-Out-with-C-From-Control-Structures-through-Objects-Brief-Version-Plus-My-Lab-Programming-with-Pearson-e-Text-Access-Card-Package-9th-Edition/PGM2059253.html
https://www.ntu.edu.sg/home/ehchua/programming/#Cpp
http://www.stroustrup.com/tour2.html

	Programación orientada a objetos en C++
	Table of Contents
	1. Introduction to Classes
	Procedural and Object-Oriented Programming
	Limitations of Procedural Programming
	Benefits of OOP
	Object-Oriented Programming�Terminology
	Object-Oriented Programming�Languages
	Object-Oriented Programming
	Classes and Objects
	More on Objects
	A Class is a 3-Compartment Box encapsulating Data and Functions
	A Class is a 3-Compartment Box encapsulating Data and Functions
	The Unified Modeling Language
	Classification of UML Diagrams
	UML Class Diagram
	UML Notation
	UML Notation
	Classes
	Class Definition
	Class Example
	Why Have Private Members?
	Classes in C++
	Classes in C++
	Defining an Instance of a Class
	Class Naming Convention
	Dot (.) Operator
	Keyword “this”
	Data Members (Variables)
	Member Functions
	Program CircleAIO.cpp
	Program CircleAIO.cpp
	Program Rectangle.cpp
	Program Rectangle.cpp
	Pointer to an Object and Dynamically Allocating an Object
	Separating Specification from Implementation
	Separating Specification from Implementation
	Separating Specification from Implementation – Example Circle Class
	Compiling multifile programs
	#include Guard - #pragma once
	Circle Class – Circle.h
	Circle Class – Circle.cpp
	Circle Class – TestCircle.cpp
	Inline Member Functions
	Rectangle Class with Inline Member Functions
	Constructors
	In-Place Initialization
	Default Constructors
	Passing Arguments to Constructors
	Overloading Constructors
	Constructor Delegation
	Constructor Delegation
	Copy Constructors
	Destructors
	Only One Default Constructor and One Destructor
	More features
	Using Private Member Functions
	Using Private Member Functions
	Constructor Example (Rectangle.h)
	Constructor Example (Rectangle.cpp)
	Constructor Example (ProgRect.cpp)
	Example (InventoryItem.h)
	Example (InventoryItem.h)
	Example (InventoryItem.cpp)
	More Examples
	More Examples
	More Examples
	More Examples
	Arrays of Objects
	Accessing Objects in an Array
	Instance and Static Members
	static member variable
	Three Instances of the Tree Class, But Only One objectCount Variable
	static member function
	static member function
	Friends of Classes
	 friend Class Declarations
	Memberwise Assignment
	Copy Constructors
	Copy Constructors
	Programmer-Defined Copy Constructor
	Programmer-Defined Copy Constructor
	Operator Overloading
	The this Pointer
	Operator Overloading and Invoking an Overloaded Operator
	Returning a Value
	Returning a Value
	Notes on �Overloaded Operators
	Overloading Types of Operators
	Overloaded [] Operator
	Object Conversion
	Aggregation
	Aggregation
	Aggregation
	Lvalues and Rvalues
	Rvalue References
	2. Inheritance, Polymorphism, and Virtual Functions
	What Is Inheritance?
	Inheritance – Terminology and Notation
	Back to the ‘is a’ Relationship
	What Does a Child Have?
	Protected Members and Class Access
	Class Access Specifiers
	Constructors and Destructors in Base and Derived Classes
	Passing Arguments to �Base Class Constructor
	Constructor Inheritance
	Constructor Inheritance
	Constructor Inheritance
	Redefining Base Class Functions
	Base Class
	Número de diapositiva 111
	Número de diapositiva 112
	Class Hierarchies
	Example: Superclass Point and subclass MovablePoint
	Example: Shape and its Subclasses
	Polymorphism and Virtual Member Functions
	Virtual Functions
	Número de diapositiva 118
	Polymorphism Requires References or Pointers
	Base Class Pointers
	Redefining vs. Overriding
	Virtual Destructors
	C++ 11's override and final Key Words
	Abstract Base Classes and Pure Virtual Functions
	Multiple Inheritance
	Multiple Inheritance
	3. Exceptions and Templates
	Exceptions
	Exceptions – Key Words
	Exceptions – Flow of Control
	Exceptions – Example
	Exceptions – What Happens
	Número de diapositiva 133
	Exceptions - Notes
	Exception Not Caught?
	Exceptions and Objects
	What Happens After catch Block?
	Nested try Blocks
	Function Templates
	Function Template Example
	Function Template Example
	Function Template Notes
	Function Template Notes
	Function Template Notes
	Where to Start �When Defining Templates
	Class Templates
	Class Template Example
	Class Template Example
	Class Templates and Inheritance
	4. The Standard Template Library
	The Standard Template Library
	The Standard Template Library headers
	Containers
	Containers
	STL Header Files
	The array Class Template
	The array Class Template
	Iterators
	Similarities between Pointers and Iterators
	Iterators
	Iterators
	Iterators
	Número de diapositiva 163
	Número de diapositiva 164
	Mutable Iterators
	Constant Iterators
	Reverse Iterators
	Reverse Iterators
	Reverse Iterators
	Reverse Iterators
	The vector Class
	vector Class Constructors
	Número de diapositiva 173
	Initializing a vector
	Adding New Elements to a vector
	Accessing Elements with the at() Member Function
	Using an Iterator With a vector
	Using an Iterator With a vector
	Inserting Elements with the insert() Member Function
	Número de diapositiva 180
	Overloaded Versions of the insert() Member Function
	Storing Objects Of Your Own Classes in a vector
	Número de diapositiva 183
	Número de diapositiva 184
	Inserting Container Elements With Emplacement
	Inserting Container Elements With Emplacement
	Número de diapositiva 187
	Número de diapositiva 188
	Maps – General Concepts
	Maps
	The map Class
	map Class Constructors
	Initializing a map
	The Overloaded [] Operator
	The Overloaded [] Operator
	The pair Type
	Inserting Elements with the insert() Member Function
	Inserting Elements with the insert() Member Function
	Inserting Elements with the emplace() Member Function
	Retrieving Elements with the at() Member Function
	Retrieving Elements with the at() Member Function
	Deleting Elements
	Stepping Through a map with the Range-Based for Loop
	Stepping Through a map with the Range-Based for Loop
	Using an Iterator With a map
	Número de diapositiva 206
	Storing Objects Of Your Own Classes as Values in a map
	Número de diapositiva 208
	Número de diapositiva 209
	Número de diapositiva 210
	Storing Objects Of Your Own Classes as Keys in a map
	Número de diapositiva 212
	Número de diapositiva 213
	The unordered_map Class
	The multimap Class
	Número de diapositiva 216
	Adding Elements to a multimap
	Adding Elements to a multimap
	Getting the Number of Elements With a Specified Key
	Retrieving Elements with a Specified Key
	Número de diapositiva 221
	Deleting Elements with a Specified Key
	The unordered_multimap Class
	Sets
	The set Class
	set Class Constructors
	The set Class
	Adding New Elements to a set
	Stepping Through a set With the Range-Based for Loop
	Using an Iterator With a set
	Using an Iterator With a set
	Determining Whether an Element Exists
	Retrieving an Element
	Retrieving an Element
	Storing Objects Of Your Own Classes in a set
	Número de diapositiva 236
	Número de diapositiva 237
	The multiset Class
	The unordered_set Class
	The unordered_multiset Class
	STL Algorithms
	Categories of Algorithms in the STL
	Sorting
	Searching
	Número de diapositiva 245
	Detecting Permutations
	Detecting Permutations
	Plugging Your Own Functions into an Algorithm
	Plugging Your Own Functions into an Algorithm
	Plugging Your Own Functions into an Algorithm
	Número de diapositiva 251
	Algorithms for Set Operations
	Function Objects
	Function Objects
	Número de diapositiva 255
	Anonymous Function Objects
	Número de diapositiva 257
	Predicate Terminology
	Lambda Expressions
	Lambda Expressions
	Lambda Expressions
	Lambda Expressions
	Lambda Expressions
	Número de diapositiva 264
	Functional Classes in the STL
	5. Data Structures
	Linked List ADT
	Linked Lists vs. Arrays and Vectors
	Node Organization - Declaring a Node
	Linked List Organization
	Empty List
	Defining a Linked List
	The Null Pointer
	Linked List Operations
	Número de diapositiva 275
	Create a New Node
	Appending a Node
	Appending a Node
	Número de diapositiva 279
	Número de diapositiva 280
	Número de diapositiva 281
	Inserting a Node into a Linked List
	Inserting a Node into a Linked List
	Inserting a Node into a Linked List
	Número de diapositiva 285
	Número de diapositiva 286
	Número de diapositiva 287
	Traversing a Linked List
	Traversing a Linked List
	Deleting a Node
	Deleting a Node
	Deleting a Node
	Número de diapositiva 293
	Número de diapositiva 294
	Destroying a Linked List
	Número de diapositiva 296
	A Linked List Template
	Variations of the Linked List
	Variations of the Linked List
	The STL list Container
	The STL forward_list Container
	Introduction to the Stack ADT
	Stack Operations and Functions
	Dynamic Stacks
	Implementing a Stack
	The STL stack container
	Defining a stack
	Introduction to the Queue ADT
	Queue Locations and Operations
	Queue Operations - Example
	dequeue Issue, Solutions
	Dynamic Queues
	Implementing a Queue
	The STL deque �and queue Containers
	Defining a queue
	Definition and Application of Binary Trees
	Binary Tree Terminology
	Binary Tree Terminology
	Binary Tree Terminology
	Binary Tree Terminology
	Binary Tree Terminology
	Uses of Binary Trees
	Searching in a Binary Tree
	Searching in a Binary Tree
	Binary Search Tree Operations
	Binary Search Tree Node
	Creating a New Node
	Inserting a Node in a Binary Search Tree
	Inserting a Node in a Binary Search Tree
	Traversing a Binary Tree
	Traversing a Binary Tree
	Searching in a Binary Tree
	Deleting a Node from a �Binary Tree – Leaf Node
	Deleting a Node from a �Binary Tree – One Child
	Deleting a Node from a �Binary Tree – Two Children
	Deleting a Node from a �Binary Tree – Two Children
	Template Considerations for �Binary Search Trees
	Referencias

