Programacion orientada a
objetos en C++

Pedro Corcuera

Dpto. Matematica Aplicada y
Ciencias de la Computacion

Universidad de Cantabria

corcuerp@unican.es

Programacién en C++

Table of Contents

A

Programacion en C++

1. Introduction to
Classes

Programacion en C++

& Procedural and Object-Oriented
Programming

» Procedural programming focuses on the
process/actions that occur in a program, with function
as the basic unit. You need to first figure out all the
functions and then think about how to represent data.

* Object-Oriented programming is based on the data
and the functions that operate on it. Objects are
instances of ADTs that represent the data and its
functions

Programacion en C++

& Limitations of Procedural Programming

» |f the data structures change, many functions must
also be changed

* Programs that are based on complex function
hierarchies are:

— difficult to understand and maintain
— difficult to modify and extend
— easy to break

Programacion en C++

sﬂ Benefits of OOP

* The object-oriented languages focus on components that the
user perceives, with objects as the basic unit. You figure out
all the objects by putting all the data and operations that
describe the user's interaction with the data.

* Object-Oriented technology has many benefits:

— Ease in software design: You are dealing with high-level concepts
and abstractions. Ease in design leads to more productive software
development.

— Ease in software maintenance: object-oriented software are easier
to understand, therefore easier to test, debug, and maintain.

— Reusable software: you don't need to keep re-inventing the wheels
and re-write the same functions for different situations. The fastest
and safest way of developing a new application is to reuse existing
codes - fully tested and proven codes.

Programacion en C++

C: Object-Oriented Programming
Terminology

» class: a class is a definition of objects of the same kind. A
class is a blueprint, template, or prototype that defines and
describes the static attributes and dynamic behaviors
common to all objects of the same kind.

* instance: An instance is a realization of a particular item of a
class. An instance is an instantiation of a class. All the
instances of a class have similar properties, as described in

the class definition.
 object: an instance of a c1ass, in the same way that a
variable can be an instance of a struct

— attributes: members of a class
— methods or behaviors: member functions of a class

Programacion en C++

C: Object-Oriented Programming
Languages

» OOP languages permit higher level of abstraction for solving
real-life problems. The traditional procedural language (C and
Pascal) forces you to think in terms of the structure of the
computer (memory bits and bytes, array, decision, loop)
rather than thinking in terms of the problem you are trying to
solve.

* The OOP languages (Java, C++, C#) let you think in the
problem space, and use software objects to represent and
abstract entities of the problem space to solve the problem.

Programacion en C++

Object-Oriented Programming

Name
Name / Attributes
d Behaviors Name
Attributes |/ | PR 1
Behaviors \ / \ / Behaviors
\ messages
MName % Name ¥
Attributes — Attributes =
Behaviors - Behaviors |

An object-oriented program consists of many well-encapsulated
objects and interacting with each other by sending messages

Programacion en C++

‘ﬂ Classes and Objects

 Class: Aclass is a definition of objects of the same kind. A
class is a blueprint, template, or prototype that defines and
describes the static attributes and dynamic behaviors
common to all objects of the same kind.

* Instance: An instance is a realization of a particular item of
a class. An instance is an instantiation of a class. All the
instances of a class have similar properties, as described in
the class definition.

 The term object usually refers to instance. But it is often
used quite loosely, which may refer to a class or an
instance.

Programacion en C++

C More on Obijects

» data hiding: restricting access to certain members of an object

* public interface: members of an object that are available
outside of the object. This allows the object to provide access
to some data and functions without sharing its internal details
and design, and provides some protection from data
corruption

Programacion en C++

& A Class is a 3-Compartment Box
encapsulating Data and Functions

 Aclass can be visualized as a three-compartment box:
— Classname (or identifier): identifies the class.

— Data Members or Variables (or attributes, states, fields): contains
the static attributes of the class.

— Member Functions (or methods, behaviors, operations): contains
the dynamic operations of the class.

» Aclass encapsulates the static attributes (data) and dynamic
behaviors (operations that operate on the data) in a box.

« Class Members: The data members and member functions
are collectively called class members.

Programacion en C++

A Class is a 3-Compartment Box
encapsulating Data and Functions

C

Classname

. Student Circle
(Identifier)
Data Member hame radius
(Static attributes) &rade color
Classname Member Functions gethName() getRadius ()
(Dynamic Operations) printGrade() getArea()
Data Members
(Static Attributes) SoccerPlayer Car
Member Functions name plateNumber
(Dynamic Operations) number xLocat1on
¥Location ylLocation
A class is a 3-compartment box ylocation =peed
encapsulating data and functions run() move ()
jump() park()
kickBall() accelerate()

Examples of classes

Programacion en C++

C The Unified Modeling Language

» UML stands for Unified Modeling Language.

* The UML provides a set of standard diagrams for graphically
depicting object-oriented systems. UML specification defines
two major kinds of UML diagram: structure diagrams and

behavior diagrams.

— Structure diagrams show the static structure of the system and its
parts on different abstraction and implementation levels and how
they are related to each other. The elements in a structure diagram
represent the meaningful concepts of a system, and may include
abstract, real world and implementation concepts.

— Behavior diagrams show the dynamic behavior of the objects in a
system, which can be described as a series of changes to the

system over time.

Programacion en C++

Classification of UML Diagrams

| UML 2.5 Diagram
Structure Diagram | Behavior Diagram
il A}
Class Diagram] . UseCase Diagram
Object Diagram Inforn‘_natmn Flow
Diagram
Package Diagram — Activity Diagram
Model Diagram State Machine
Diagram
Composite Structure | Behavioral State
Diagram Machine Diagram
Internal Structure L Protocol State
Diagram Machine Diagram
Collaboration Use] .
Diagram — Interaction Diagram |
JiY
Component Diagram | —— ——Sequence Diagram
Manifestation Diagram [I Camr.nunlcatlon
| Diagram
Deployment Diagram ——| Timing Diagram
Network Architecture ' Interaction Overview
Diagram Diagram

Profile Diagram —

Programacion en C++

C

UML Class Diagram

» AUML diagram for a class has three main sections.

Class name goes here —
Member variables are listed here —

Member functions are listed here —

¢ Example class Rectangle {
private:
Rectangle double width; double length;

width public:
length bool setWidth (double) ;
setWidth() bool setLength (double);
setLength() double getWidth () const;
getWidth() double getLength() const;
getLength() double getArea () const;
getAreal() } s

Programacion en C++

‘ﬂ UML Notation

* Access Specification

— In UML you indicate a private member with a minus (-) and a
public member with a plus(+)

Rectangle

- width
- length

+ setWidth()
+ setLength()
+ getWidth()
+ getLength()
+ getArea()

 Data type

— To indicate the data type of a member variable, place a colon
followed by the name of the data type after the name of the

variable. - width : double
- length : double

Programacion en C++

‘ﬂ UML Notation

» Parameter Type

— To indicate the data type of a function’s parameter variable, place a
colon followed by the name of the data type after the name of the
variable

+ setwidth(w : double)

* Function Return Type

— To indicate the data type of a function’s return value, place a colon
followed by the name of the data type after the function’s parameter

list.
+ setwidth(w : double) : void

Programacion en C++

C

Classes

Rectangle Class

Rectangle

Inventoryltem Class

Inventoryltem

- width : double
- length : double

+ setWidth(w : double) : bool

+ setLength(len : double) : bool
+ getWidth() : double

+ getLength() : double

+ getArea() : double

- description : char*

- cost : double

- units : int

- createDescription(size : int,
value : char®) : void

+ Inventoryltem() :

+ Inventoryltem(desc : char”) :

+ Inventoryltem(desc : char®,
¢ : double, u :int) :

+ ~Inventoryltem() :

+ setDescription(d : char*) : void

+ setCost(c : double) : void

+ setUnits(u : int) : void

+ getDescription() : char”

+ getCost() : double

+ getUnits() : int

Programacion en C++

& Class Definition

* Objects are created froma class

* Format:
class ClassName
{
private:
data member declaration;,
public:
member functions declaration;

};

Programacién en C++

S Class Example

class Rectangle
{
private:
double width;
double length;
public:
Rectangle (double, double);
vold setWidth (double) ;
vold setLength (double);
double getWidth () const;
double getlLength () const;
double getArea () const;

by

Programacion en C++

C Why Have Private Members?

» Making data members private provides data protection
» Data can be accessed only through pulb1 i c functions
* Public functions define the class’s public interface

Rectangle Class

u:uidth I?ngth
- selWidlh] \
Code -—1— getWidth
Outside the
Class - setLength—
-—+— getLength=——

Programacion en C++

& Classes in C++

 Access Specifiers:
— Used to control access to members of the class
— public: the member (data or function) is accessible and

available to all in the system
- private: the member (data or function) is accessible and

available within this class only
— Can be listed in any order in a class
— Can appear multiple times in a class
— If not specified, the default is private

* Using const with Member Functions
— const appearing after the parentheses in a member function

declaration specifies that the function will not change any data in the

CamngObECﬁOUble getWidth () const;
double getlLength () const;
double getArea () const;

Programacion en C++

& Classes in C++

 When defining a member function:
— Put prototype in class declaration
— Define function using class name and scope resolution

operator (::)
int Rectangle::setWidth (double w)

{
width = w;

}
o Getters: function that read the value of a private data member

(ex. xxx named getXxx()). Getters do not change an object's
data, so they should be marked const.

o Setters: function that modify the value of a private data
member (ex. XXX setXxx)

Programacion en C++

S Defining an Instance of a Class

* An object is an instance of a class

» To create an instance of a class, you have to:
— Declare an instance (name) identifier of a particular class

— Invoke a constructor to construct the instance (i.e., allocate
storage for the instance and initialize the variables).

« Defined like structure variables:
Rectangle r;

Programacion en C++

Class Naming Convention

A classname shall be a noun or a noun phrase made up of
several words.

All the words shall be initial-capitalized (camel-case).
Use a singular noun for classname.
Choose a meaningful and self-descriptive classname.

Examples: Point, Rectangle, SoccerPlayer, HttpProxyServer,
FileInputStream, PrintStream, SocketFactory.

Programacion en C++

Dot (.) Operator

To reference a member of a object (data member or
member function), you must:
— First identify the instance you are interested in, and then
— Use the dot operator (.) to reference the member, in the form of
InstanceName.memberName.

Access members using dot operator:
r.setWidth(5.2);
cout << r.getWidth () ;

Compiler error if attempt to access private member
using dot operator

Programacion en C++

S

Keyword “this”

* You can use keyword "this" to refer to this instance inside a
class definition

* One of the main usage of keyword this is to resolve

ambiguity between the names of data member and function
parameter. Example:

class Circle {
private:

double radius; // Member variable "radius"

public:
volid setRadius (double radius) {
this->radius|= radius;

Programacion en C++

‘ﬂ Data Members (Variables)

 Adata member (variable) has a name (or identifier) and a
type; and holds a value of that particular type. A data
member can also be an instance of a certain class.

 Data Member Naming Convention: A data member name
shall be a noun or a noun phrase made up of several
words. The first word is in lowercase and the rest of the
words are initial-capitalized (camel-case). Example:
fontSize, roomNumber, xMax, yMin and xTopLeft.

» Take note that variable name begins with an lowercase,
while classname begins with an uppercase.

Programacion en C++

‘ﬂ Member Functions

* A member function:
— receives parameters from the caller,
— performs the operations defined in the function body, and
— returns a piece of result (or void) to the caller.

* Member Function Naming Convention: A function name
shall be a verb, or a verb phrase made up of several words.
The first word is in lowercase and the rest of the words are
initial-capitalized (camel-case). Example: getRadius(),
getParameterValues().

* Take note that data member name is a noun (denoting a
static attribute), while function name is a verb (denoting an
action). They have the same naming convention.

Programacion en C++

Program CircleAlO.cpp

/* The Circle class (All source codes in one file) (CircleAIO.cpp)
#include <iostream> // using IO functions

#include <string> // using string

using namespace std;

class Circle {

private:
double radius; // Data member (Variable)
string color; // Data member (Variable)
public:
// Constructor with default values for data members
Circle(double r = 1.0, string c = "red") {
radius = r;
color = c;

Y

}

double getRadius() { // Member function (Getter)
return radius;

}

string getColor () { // Member function (Getter)
return color;

}

double getArea () { // Member function
return radius*radius*3.1416;

// need to end the class declaration with a semi-colon

*/

Programacion en C++

Program CircleAlO.cpp

// Test driver function
int main () {

// Construct a Circle instance

Circle cl(1.2, "blue");

cout << "Radius=" << cl.getRadius () << " Area="
<< " Color=" << cl.getColor () << endl;

// Construct another Circle instance

Circle c2(3.4); // default color

cout << "Radius=" << cZ2.getRadius () << " Area="
<< " Color=" << c2.getColor() << endl;

// Construct a Circle instance using default no-

Circle c3; // default radius and color
cout << "Radius=" << c3.getRadius () << " Area="
<< " Color=" << c3.getColor() << endl;

return 0;

<< cl.getAreal()

<< c2.getArea /()

arg constructor

<< c3.getAreal()

Programacion en C++

// This program demonstrates a simple class.
#include <iostream>
using namespace std;

// Rectangle class declaration.
class Rectangle
{
private:
double width;
double length;
public:
void setWidth (double) ;
void setLength (double) ;
double getWidth () const;
double getLength() const;
double getArea () const;
i
// setWidth assigns a value to the width member.
void Rectangle::setWidth (double w) {
width = w;
}

// setLength assigns a value to the length member.
void Rectangle::setlLength (double len) {

length = len;
}
// getWidth returns the value in the width member.
double Rectangle::getWidth () const {

return width;

}

Program Rectangle.cpp

Programacion en C++

Program Rectangle.cpp

// getLength returns the value in the length member. *
double Rectangle::getlLength() const {
return length;
}
// getArea returns the product of width times length. *
double Rectangle::getArea () const {
return width * length;
}
// Function main *
int main ()
{
Rectangle box; // Define an instance of the Rectangle class
double rectWidth; // Local variable for width
double rectLength; // Local variable for length
// Get the rectangle's width and length from the user.
cout << "This program will calculate the area of a\n";
cout << "rectangle. What is the width? ";
cin >> rectWidth;
cout << "What is the length? ";
cin >> rectlLength;
// Store the width and length of the rectangle
// 1in the box object.
box.setWidth (rectWidth) ;
box.setlLength (rectLength) ;
// Display the rectangle's data.
cout << "Here is the rectangle's data:\n";

cout << "Width: " << box.getWidth () << endl;
cout << "Length: " << box.getlength() << endl;
cout << "Area: " << box.getArea () << endl;

return O;

Programacion en C++

ﬁ Pointer to an Object and Dynamically
Allocating an Object

» Can define a pointer to an object:
Rectangle *rPtr = nullptr;

» (Can access public members via pointer:
rPtr = &otherRectangle;
rPtr->setLength (12.5);
cout << rPtr->getlLength () << endl;

» We can also use a pointer to dynamically allocate an object
Rectangle *rPtr = nullptr; // define pointer
rPtr = new Rectangle; // allocate object
rPtr->setWidth (10.0); // store values
rPtr->setLength (15.0);

delete rPtr; // delete object
rPtr = nullptr;

Programacion en C++

& Separating Specification from
Implementation

— For better software engineering, it is recommended that
the class declaration and implementation be kept in two
separate files: declaration is a header file ".h"; while
implementation in a ".cpp”.

— This is known as separating the public interface (header
declaration) and the implementation. Interface is defined
by the designer, implementation can be supplied by others.
While the interface is fixed, different vendors can provide
different implementations. Furthermore, only the header
files are exposed to the users, the implementation can be
provided in an object file ".0" (or in a library). The source
code needs not given to the users.

Programacion en C++

& Separating Specification from
Implementation

— Place class declaration in a header file that serves as the
class specification file. Name the file CIassName. h,

forexample, Rectangle.h, Circle.h

— Place member function definitions in
ClassName. cpp, forexample, Rectangle. cpp,
Circle.cpp. Fileshould #include the class
specification file

— Programs that use the class must # include the class
specification file, and be compiled and linked with the

member function definitions. Example:
TestCircle.cpp

Programacion en C++

C

Separating Specification from
Implementation — Example Circle Class

Instead of putting all the codes in a single file, we separate the interface

and implementation by placing the codes in 3 files:
1. Circle.h: defines the public interface of the Circle class

2. Circle.cpp: provides the implementation of the Circle class
3. TestCircle.cpp: A test driver program for the Circle class

Circle

-radius:double = 1.8
-color:string = "red”

+Circle(radius:double,color:string)
+getRadius() :double
+setRadius(radius:double) :void
+getColor () :string
+setColor(color:string):void
+getArea() :double

Programacion en C++

C Compiling multifile programs

* In Code::Blocks:
— Use Project

 Linux with GNU CC:
> g++ -0 TestCircle.exe TestCircle.cpp Circle.cpp

Programacion en C++

& #include Guard - #pragma once

* To prevent a header file from being included more than once:

* Use an include guara:
#ifndef / #define / #endif

* Oruse #pragma once
#pragma once
// test.h
#ifndef TEST H
#define TEST H

Programacion en C++

Circle Class — Circle.h

/* The Circle class Header (Circle.h) */
#include <string> // using string
using namespace std;

// Circle class declaration

class Circle {

private: // Accessible by members of this class only
// private data members (variables)
double radius;
string color;

public: // Accessible by ALL
// Declare prototype of member functions
// Constructor with default values
Circle (double radius = 1.0, string color = "red");

// Public getters & setters for private data members

double getRadius () const;
volid setRadius (double radius);
string getColor () const;

void setColor (string color);

// Public member Function
double getArea () const;

Programacion en C++

Circle Class — Circle.cpp

/* The Circle class Implementation (Circle.cpp) */
#include "Circle.h" // user-defined header in the same directory
// Constructor default values shall only be specified in the
// declaration, cannot be repeated in definition
Circle::Circle(double r, string c) {

radius = r;

color = c;
}
// Public getter for private data member radius
double Circle::getRadius () const {

return radius;
}
// Public setter for private data member radius
void Circle::setRadius (double r) {

radius = r;
}
// Public getter for private data member color
string Circle::getColor () const {

return color;
}
// Public setter for private data member color
void Circle::setColor(string c) {

color = c;
}
// A public member function
double Circle::getArea () const {

return radius*radius*3.14159265;

Programacion en C++

Circle Class — TestCircle.cpp

/* A test driver for the Circle class (TestCircle.cpp) */
#include <iostream>

#include "Circle.h" // using Circle class

using namespace std;

int main() {
// Construct an instance of Circle cl
Circle cl (1.2, "red");
cout << "Radius=" << cl.getRadius () << " Area=" << cl.getArea()
<< " Color=" << cl.getColor() << endl;

cl.setRadius(2.1); // Change radius and color of cl

cl.setColor ("blue");

cout << "Radius=" << cl.getRadius () << " Area=" << cl.getArea()
<< " Color=" << cl.getColor() << endl;

// Construct another instance using the default constructor

Circle c2;

cout << "Radius=" << cZ.getRadius () << " Area=" << c2.getArea()
<< " Color=" << c2.getColor() << endl;

return 0O;

Programacion en C++

& Inline Member Functions

« Member functions can be defined
— Inline: Iin class declaration
— after the class declaration

* Inline appropriate for short function bodies:
int getWidth () const
{ return width; }

* Tradeoffs — Inline vs. Regular Member Functions:

— Regular functions — when called, compiler stores return address of
call, allocates memory for local variables, etc.

— Code for an inline function is copied into program in place of call -
larger executable program, but no function call overhead, hence
faster execution

Programacion en C++

Rectangle Class with Inline Member
Functions

// Specification file for the Rectangle class

// This version uses some inline member functions.
#ifndef RECTANGLE H

#define RECTANGLE H

class Rectangle
{
private:
double width;
double length;
public:
void setWidth (double) ;
void setLength (double) ;

double getWidth () const
{ return width; }

double getLength () const
{ return length; }

double getArea () const
{ return width * length; }
}:
#fendif

Programacion en C++

& Constructors

* A constructoris a special function that has the
function name same as the class name

» A constructor function is different from an ordinary

function in the following aspects:

— The name of the constructor is the same as the class
name.

— Purpose Is to construct an object

— Member function that is automatically called when an
object is created

— Constructor has no return type

— Constructors are not inherited

Programacion en C++

C In-Place Initialization

* In C++11 or later, you can initialize a member variable in its
declaration statement, just as you can with a regular variable.

* This is known as in-place Initialization. Example:
class Rectangle
{
private:
double width = 0.0;
double length = 0.60;
public:
Public member functions appear here...

s

Programacion en C++

Default Constructors

A default constructor is a constructor that takes no arguments.

If you write a class with no constructor at all, C++ will write a
default constructor for you, one that does nothing.

ClassName: :ClassName () { }

A simple instantiation of a class (with no arguments) calls the
default constructor: Rectangle r;

If all of a constructor's parameters have default arguments,

then it is a default constructor. For example:
Rectangle (double = 0, double = 0);

Creating an object and passing no arguments will cause this

constructor to execute:
Rectangle r;

Programacion en C++

& Passing Arguments to Constructors

* To create a constructor that takes arguments:

— Indicate parameters in prototype:
Rectangle (double, double);

— Use parameters in the definition:
Rectangle: :Rectangle (double w, double len) {
width = w;
length = len;
}
* You can pass arguments to the constructor when you create

an object: Rectangle r (10, 5);

« When all of a class's constructors require arguments, then
the class has NO default constructor. In this case, you must
pass the required arguments to the constructor when
creating an object.

Programacion en C++

C Overloading Constructors

* Aclass can have more than one constructor

* Qverloaded constructors in a class must have different

parameter lists:
Rectangle () ;
Rectangle (double) ;
Rectangle (double, double);

Programacion en C++

C Constructor Delegation

« Sometimes a class will have multiple

- {
constructors that perform a similar ~ private:

set of steps. For example, look at the

following Contact class:

public:
 Both constructors perform a similar
operation: They assign values tothe “ronc™l ...
name, email, and phone member N

variables.

 The default constructor assigns
empty strings to the members, and

. i1l =
the parameterized constructor Shone = o
assigns specified values to the }
members.

}

Other member functions follow...

}s

class Contact

string name;
string email;
string phone;

/!l Constructor
Contact(string n,
{ name = n;
€]

#2

/| Constructor #1 (default)

string e,

string p)

Programacion en C++

C

¢ In C++ 11, |t |S pOSS|b|e fOr class Contact

Constructor Delegation

one constructor to call ivate.
another constructor in the :E:ﬁ:g nane:
same class. string phone;
public:
* This Is known as /| Constructor #1 (default)
constructor delegation. et s femtaeR

/| Constructor #2
Contact(string n, string e, string p)
{ name = n;

email = e;
phone = p;
}
Other member functions follow...

'

Programacion en C++

C Copy Constructors

* A copy constructor constructs a new object by copying an
existing object of the same type. In other words, a copy
constructor takes an argument, which is an object of the same
class.

* |f you do not define a copy constructor, the compiler provides
a default which copies all the data members of the given

object. Example:
Circle c4(7.8, "blue");
cout << "Radius=" << céd.getRadius () << " Area=" << c4d.getAreal()
<< " Color=" << c4d.getColor () << endl;
// Radius=7.8 Area=191.135 Color=blue

// Construct a new object by copying an existing object
// via the so-called default copy constructor
Circle cb(cd);
cout << "Radius=" << cb.getRadius () << " Area=" << cb.getAreal()
<< " Color=" << cb.getColor () << endl;
// Radius=7.8 Area=191.135 Color=blue

Programacion en C++

Destructors

Member function automatically called when an object is
destroyed

Destructor name is ~classname, e.g., ~Rectangle
Has no return type; takes no arguments
Only one destructor per class, /.e., it cannot be overloaded

If constructor allocates dynamic memory, destructor should
release it

If you do not define a destructor, the compiler provides a

default, which does nothing

class MyClass {

public:

// The default destructor that does nothing
~MyClass () { }

Programacion en C++

O Only One Default Constructor
and One Destructor

* Do not provide more than one default constructor for a
class: one that takes no arguments and one that has
default arguments for all parameters

square () ;

Square (int = 0); // will not compile

* Since a destructor takes no arguments, there can only be
one destructor for a class

Programacion en C++

& More features

» Constructors, Destructors, and Dynamically Allocated
Objects:

— When an object is dynamically allocated with the new operator, its
constructor executes:
Rectangle *r = new Rectangle (10, 20);

— When the object is destroyed, its destructor executes:
delete r;

» Member Function Overloading:

— Non-constructor member functions can also be overloaded:
vold setCost (double) ;

vold setCost (char *);

— Must have unique parameter lists as for constructors

Programacion en C++

C Using Private Member Functions

* Aprivate member function can only be called by another
member function

* |tis used for internal processing by the class, not for use
outside of the class

» Example: createDescription functionin
ContactInfo.h

Programacion en C++

C Using Private Member Functions

* Aprivate member function can only be called by another
member function

* |tis used for internal processing by the class, not for use
outside of the class

» Example: createDescription functionin
ContactInfo.h

Programacion en C++

Constructor Example (Rectangle.h)

// Specification file for the Rectangle class
// This version has a constructor.

#ifndef RECTANGLE H

#define RECTANGLE H

class Rectangle
{
private:
double width;
double length;
public:
Rectangle () ; // Constructor
void setWidth (double) ;
void setLength (double) ;

double getWidth () const
{ return width; }
double getLength () const
{ return length; }
double getArea () const
{ return width * length; }
}:
#endif

Programacion en C++

@ Constructor Example (Rectangle.cpp)

// Implementation file for the Rectangle class. This version has a constructor.

#include "Rectangle.h" // Needed for the Rectangle class
#include <iostream> // Needed for cout
#include <cstdlib> // Needed for the exit function

using namespace std;

// The constructor initializes width and length to 0.0. *
Rectangle: :Rectangle () {
width = 0.0; length = 0.0;
}
// setWidth sets the value of the member variable width. *
void Rectangle: :setWidth (double w) {
if (w >= 0)
width = w;
else {
cout << "Invalid width\n";
exit(EXIT_FAILURE);

}
// setLength sets the value of the member variable length. *
void Rectangle: :setlLength (double len) {
if (len >= 0)
length = len;
else {
cout << "Invalid length\n";
exit (EXIT FAILURE);

Programacion en C++

@ Constructor Example (ProgRect.cpp)

// This program uses the Rectangle class's constructor.
#include <iostream>

#include "Rectangle.h" // Needed for Rectangle class
using namespace std;

int main ()

{

Rectangle box; // Define an instance of the Rectangle class

// Display the rectangle's data.
cout << "Here 1is the rectangle's data:\n";

cout << "Width: " << box.getWidth () << endl;
cout << "Length: " << box.getlLength () << endl;
cout << "Area: " << box.getArea () << endl;
return 0;

Programacion en C++

Example (Inventoryltem.h)

// InventoryItem.h: This class has overloaded constructors
#ifndef INVENTORYITEM H

#define INVENTORYITEM H

#include <string>

using namespace std;

class InventoryItem ({

private:
string description; // The item description
double cost; // The item cost
int units; // Number of units on hand
public:
// Constructor #1 (default constructor)
InventoryItem() { // Initialize description, cost, and units.
description = "";
cost = 0.0;
units = 0; }

// Constructor #2

InventoryItem(string desc) { // Assign the value to description.

description = desc;
cost = 0.0; // Initialize cost and units.

units = 0; }

Programacion en C++

Example (Inventoryltem.h)

// Constructor #3
InventoryItem(string desc, double c, int u) {
description = desc; // Assign values to desc., cost, and units.
cost = c;
units = u; }
// Destructor
~InventoryItem() {
delete description;}

// Mutator functions

void setDescription(string d) {
description = d; }

void setCost (double c) {
cost = c; }

void setUnits (int u) { units = u; }

// Accessor functions

string getDescription () const { return description; }
double getCost () const { return cost; }
int getUnits () const { return units; }

I

#endif

Programacion en C++

Example (Inventoryltem.cpp)

// This program demonstrates a class with overloaded constructors.

#include <iostream>
#include <iomanip>
#include "InventoryItem.h"

int main() {

InventoryItem iteml; // Create an InventorylItem obj. with const.
iteml.setDescription ("Hammer") ; // Set the description

iteml.setCost (6.95); // Set the cost
iteml.setUnits (12); // Set the units

InventoryItem item2 ("Pliers"); // Create InventorylItem obj.
InventoryItem item3 ("Wrench", 8.75, 20); // InventoryItem const 3

cout << "The following items are in inventory:\n";
cout << setprecision(2) << fixed << showpoint;
// Display the data for items 1, 2, 3

cout << "Description: " << iteml.getDescription ()

cout << "Cost: $" << iteml.getCost () << endl;

cout << "Units on Hand: " << iteml.getUnits() << endl << endl;
cout << "Description: " << item2.getDescription ()

cout << "Cost: $" << item2.getCost () << endl;

cout << "Units on Hand: " << item2.getUnits() << endl << endl;
cout << "Description: " << item3.getDescription ()

cout << "Cost: $" << item3.getCost () << endl;

cout << "Units on Hand: " << item3.getUnits () << endl;

return O;

Programacion en C++

<< endl;

<< endl;

<< endl;

More Examples

Time

-hour:int 5]
-minute:int = @
-second:int = @

Point

+Time(h:int, m:int, s:int)
+getHour() :int
+getMinute():int
+getSecond() :int
+setHour(h:int) :void
+setMinute(m:int) :void
+setSecond(s:int) :void

+setTime(h:int, m:int, s:int)
+print():void -------cc-emaaoaaoo.

+nextSecond() :void

-x:int = @
-y:int = @

hh:mm:ss
| (e.g., @0:01:59)

+Point(x:int,y:int)
+getX():int
+setX(x:int):void
+get¥():int
+set¥(y:int):void
+setXY(x:int,y:int) :void
+getMagnitude() :double
+getArgument () :double

+print():vold ------------mmoamnon- - -

Programacion en C++

More Examples

Account

-accountNumber:int
-balance:double = 8.0

+Account (accounthumber:int,

balance:double)
+getAccountMumber() :int
+getBalance():int
+setBalance(balance:double) : void
+credit(amount: double) :void
+debit(amount:double) :void
+print():void .

Al

%

o

TA/C no: xxx Balance=%xxx

Ball

-x:double = 9.0
-y:double = 8.8
-xSpeed:double = 8.8
-ySpeed:double = 8.8

+Ball(x:double, y:double
xSpeed:double, ySpeed:double)
+get¥() :double
+setX(x:double) :void
+getY () :double
+set¥Y(y:double) :void
+getXSpeed() :double
+setXSpeed(xSpeed:double) :void
+getYSpeed() :double
+setYSpeed(ySpeed:double) :void
+setXY(x:double, y:double):void
+setXYSpeed(xSpeed:double,
ySpeed:double) :void
+move () :void
+print():void

Programacion en C++

More Examples

Author

-name:string

—email:string --ccooooo . -
-gender:char —ocoooooo.

Containa *@°.

&

+Author(name:string, email:string,

gender :char)
+getName() :string
+getEmail () :string
+setEmail (email :string) :void
+getGender() :char

+print():void -----------------------

Ir.“lF I‘FIFDI’
"u' forunknown

_____ | “name (gender) at email” |

aggregation (or has-a)
association relationship

Book

-name:string
-author:Author
-price:double
-gtyInStock:int = @

1

—

Author

+gethame() :string
+getAuthor() :Author
+getPrice() :double

+getQtyInStock() :int

+print():void
+getAuthoriame() :string

+Book(name:string, author:Author,
price:double, gtyInStock:int)

+setPrice(price:double):void

+setQtyInStock(gtyInStock:int) :void

-name:string
-email:string
-gender:char

Programacion en C++

More Examples

Complex

Date

0.0
0.9

-real:double
-imag:double

+Complex(real:double, imag:double)
+getReal () :double
+setReal(real:double) :void
+getImag() :double
+setImag(imag:double) :void
+setValue(real:double, imag:double):void
+print() :void
+isReal () :bool
+isImaginary() : bool
+addInto(another:MyComplexé) :MyComplex&
+addInto(real:double, imag:double) :MyComplex&
+addReturniew(another : MyComp lex&) : MyComp lex
+addReturnNew(real :double, imag:double)
:MyComplex

-year:int

-month:int

-day:int

-5TR MOMNTHS:string[] = {"Jan","Feb","Mar","Apr", "May","Jun",
"Jul","Aug","Sep™, "0ct™, "Nov" , "Dec" }

-STR DAY:string[] = {"Sunday","Monday"," Tuesday", "Wednesday",

"Thursday","Friday","Saturday"}
-DAYS IN MONTH:int[] = {31,28,31,30,31,30,31,31,30,31,30,31}

+isleapYear(year:int) :bool
+isValidDate(vear:int, month:int, day:int):bool
+getDay0fleek(vear:int, month:int, day:int):int
+Date(year:int, month:int, day:int)
+setDate(year:int, month:int, day:int):void
+getYear():int

+getMonth () :int

+getDay() :int

+setYear(year:int):void

+setMonth {month:int) : void

+setDay(day:int) :void

+print():void

+nextDay () :Date&

+previousDay() : Date&

+nextMonth() :Dated

+previousMonth() :Date&

+nextYear() :Date&

+previousYear() :Date&

Programacion en C++

C Arrays of Objects

* Objects can be the elements of an array:

InventoryItem 1nventory[40];
» Default constructor for object is used when array is defined
 Must use initializer list to invoke constructor that takes arguments:

InventorylItem inventory[3]={"Hammer", "Wrench","Pliers"};
* |fthe constructor requires more than one argument, the initializer
must take the form of a function call:

InventoryItem inventory|[3] = { InventoryItem("Hammer", &6.95, 12},
Inventoryltem("Wrench", 8.75, 20),
InventoryItem|"Pliers”, 3.75, 10} I};
* |tisn't necessary to call the same constructor for each object in an
array:
InventoryItem inventory[3] = { "Hammer",

Inventoryltem("Wrench", 8.75, 20},
"Pliers" }:

Programacion en C++

C Accessing Objects in an Array

* Objects in an array are referenced using subscripts

* Member functions are referenced using dot notation:

inventory|[2] .setUnits (30);
cout << 1nventory[2].getUnits|();

Programacion en C++

& Instance and Static Members

* Instance variable: a member variable in a class. Each object
has its own copy.

« static variable: one variable shared among all objects of
a class

e« static member function: can be used to access static

member variable; can be called before any objects are
defined

Programacion en C++

static member variable

Contents of Tree . h

// Tree class
class Tree

{
private:
static int objectCount; // Static member variable.

public:
// Constructor

Tree ()
{ objectCount++; }

// Accessor function for objectCount
int getObjectCount () const
{ return objectCount; }

Y

// Definition of the static member variable, written

// outside the class.
int Tree::objectCount = 0;

Programacion en C++

Three Instances of the Tree Class, But
Only One objectCount Variable

objectCount variable
(static)

pine

o

Instances of the Tree class

Programacion en C++

S

static member function

Declared with stat ic before return type:
static i1nt getObjectCount () const
{ return objectCount; }

Static member functions can only access static member
data

Can be called independent of objects:

int num = Tree::getObjectCount ()

Programacion en C++

static member function

Modified Version of Tree.h

// Tree class
class Tree
{
private:
static int objectCount; // Static member variable.
public:
// Constructor
Tree ()
{ objectCount++; }

// Accessor function for objectCount
int getObjectCount () const
{ return objectCount; }

}s

// Definition of the static member variable, written
// outside the class.
int Tree::objectCount = 0;

cout << "There are " << Tree::getObjectCount ()
<< " objects.\n";

Programacion en C++

& Friends of Classes

* Friend: a function or class that is not a member of a class,
but has access to private members of the class

« Afriend function can be a stand-alone function or a
member function of another class

* |tis declared a friend of a class with £riend keyword in
the function prototype:

— Stand-alone function:
friend void setAVal (1ntValé&, 1int):;

// declares setAVal function to be
// a friend of this class

— Member function of another class:
friend void SomeClass::setNum(int num)

// setNum function from SomeClass
// class is a friend of this class

Programacion en C++

S

friend Class Declarations

« C(Class as a friend of a class:
class FriendClass

{

Y

class NewClass
{
public:
friend class FriendClass; // declares
// entire class FriendClass as a friend
// of this class

Y

Programacion en C++

C Memberwise Assignment

 (Can use = to assign one object to another, or to initialize an
object with an object’s data
 Copies member to member. e.g.,
instance?Z2 = instancel; means:

copy all member values from instancel and assign to the
corresponding member variables of instance?2

« Use atinitialization:
Rectangle r2 = rl;

Programacion en C++

Copy Constructors

Special constructor used when a newly created object is
Initialized to the data of another object of same class

Default copy constructor copies field-to-field
Default copy constructor works fine in many cases

Problem: what if object contains a pointer?
class SomeClass
{ public:
SomeClass (int val = 0)
{value=new 1nt; *value = wval;}
int getVal () ;
vold setVal (int) ;
private:
int *value;

Programacion en C++

C Copy Constructors

What we get using memberwise copy with objects

containing dynamic memory:
SomeClass objectl (5);
SomeClass object?2 = objectl;
object2.setVal (1l3);
cout << objectl.getVal(); // also 13

objectl

13

object?

valud
/

/\

\\\\Yalue

Programacion en C++

C Programmer-Defined Copy Constructor

* Allows us to solve problem with objects containing pointers:
SomeClass::SomeClass (const SomeClass &ob7j)
{

value = new 1int;
*value = obj.value;

}

 Copy constructor takes a reference parameter to an object of
the class

» Each object now points to separate dynamic memory:
SomeClass objectl (9);
SomeClass object?2 = objectl;
object2.setVal (13);
cout << objectl.getVal(); // still 5

9 13

objectl object?
Value/ value/
[}

[}

Programacion en C++

C Programmer-Defined Copy Constructor

* Since copy constructor has a reference to the object it
IS copying from,
someClass::SomeClass (SomeClass &obj)
it can modify that object.

» To prevent this from happening, make the object
parameter const:

SomeClass: :SomeClass
(const SomeClass &ob7)

StudentTestScores.h

Programacion en C++

Operator Overloading

Operators such as =, +, and others can be redefined
when used with objects of a class

The name of the function for the overloaded operator
IS operator followed by the operator symbol, e.g.,

operator+ to overload the + operator, and
operator=to overload the = operator

Prototype for the overloaded operator goes in the
declaration of the class that is overloading it

Overloaded operator function definition goes with
other member functions

Programacion en C++

C The this Pointer

« this: predefined pointer available to a class's member
functions

» Always points to the instance (object) of the class whose
function is being called

* |s passed as a hidden argument to all non-static member
functions

« Example, studentl are StudentTestScores object

* The following statement causes the getStudentName
member function to operate on studentl:

cout << studentl.getStudentName() << endl;

* When getStudentName is operating on studenti, the
this pointer is pointing to studentl.

Programacion en C++

C: Operator Overloading and Invoking an
Overloaded Operator

* Prototype:

vold operator=(const SomeClass &rval)

* Operator is called via object on left side
» QOperator can be invoked as a member function:
objectl.operator=(object?2);

* |t can also be used in more conventional manner:
objectl = object2;

Programacion en C++

S

Returning a Value

* QOverloaded operator can return a value

class Point2d
{
private:
int x, y;

public:
double operator-(const point2d &right)
{ return sqgrt (pow((x-right.x),2)
+ pow ((y-right.y),2));

}
i
Point2d pointl(2,2), point2(4,4);
// Compute and display distance between 2 points.
cout << point2 - pointl << endl; // displays 2.82843

Programacion en C++

C Returning a Value

* Return type the same as the left operand supports
notation like:

objectl = object2 = object3;
* Function declared as follows:

const SomeClass operator=(const someClass &rval)

* |n function, include as last statement:

return *this;

Programacion en C++

& Notes on
Overloaded Operators

» Can change meaning of an operator

» Cannot change the number of operands of the
operator

* Only certain operators can be overloaded. Cannot
overload the following operators:

7 . ¥ :: sizeof

Programacion en C++

‘ﬂ Overloading Types of Operators

« ++, —— operators overloaded differently for prefix
vs. postfix notation

» Qverloaded relational operators should return a
bool value

* QOverloaded stream operators >>, << must return
reference 0 1 stream, ostream objects and
take i stream, ostream objects as parameters

Programacion en C++

C Overloaded [] Operator

» Can create classes that behave like arrays, provide
bounds-checking on subscripts

« Must consider constructor, destructor

 Overloaded [] returns a reference to object, not an
object itself

Programacion en C++

Object Conversion

Type of an object can be converted to another type
Automatically done for built-in data types

Must write an operator function to perform conversion
To convertan FeetInches objecttoan int:

FeetInches: :operator 1nt ()
{return feet;}

Assuming distance is a Feet Inches object, allows
statements like:

int d = distance;

Programacion en C++

sﬂ Aggregation

« Agagregation: a class is a member of a class

* Supports the modeling of ‘has a’ relationship
between classes — enclosing class ‘has a
enclosed class

« Same notation as for structures within structures

Programacion en C++

ﬁ Aggregation

class StudentInfo
{

private:
string firstName, LastName;
string address, city, state, zip;

};

class Student

{

private:
StudentInfo personalData;

};

Programacion en C++

Aggregation

Course

- courseName : char []
- instructor : Instructor
- textBook : TextBook

+ print() : void

+ Course(name : char *, instr : &Instructor,
text : &TextBook) :

Instructor

TextBook

- lastName : char []
- firstName : char []
- officeNumber : char []

- title : char []
- author : char []
- publisher : char []

+ Instructor(lname : char *, fname : char *,
office : char *) :
+ Instructor(obj : &Instructor) :
+ set(lname : char *, fnrame : char *,
office : char *) : void
+ print() : void

+ TextBook(textTitle : char *, auth : char *,
pub :char *) :
+ TextBook(obj : &TextBook) :
+ set(textTitle : char *, auth : char *,
pub : char *) : void
+ print() : void

Programacion en C++

& L values and Rvalues

* Two types of values stored in memory during the execution of
a program:

— Values that persist beyond the statement that created them, and
have names that make them accessible to other statements in the
program. In C++, these values are called Ivalues.

— Values that are temporary, and cannot be accessed beyond the
statement that created them. In C++, these values are called
rvalues.

Programacion en C++

Rvalue References

Rvalue Reference: a reference variable that can refer only to
temporary objects that would otherwise have no name.

Rvalue references are used to write move constructors and
move assignment operators (otherwise known as move
semantics).

Anytime you write a class with a pointer or reference to a piece
of data outside the class, you should implement move
semantics.

Move semantics increase the performance of these types of
classes.

Programacion en C++

2. Inheritance,
Polymorphism, and Virtual
Functions

Programacion en C++

& What Is Inheritance?

* Provides a way to create a new class from an
existing class

* The new class is a specialized version of the
existing class

o EXa m p | e : +Shape(color:string)

+getColor () :string

+setColor (color:string) :void
+print():void
+getArea() :double

5 “Is a” Relationship

Rectangle Circle

<<abstract>> Shape

-length:int = 1 -radius:int = 1

SETEIETE = L +Circle(radius:int,

+Rectangle(length:int, color:string)
width:int,color:string) +getRadius():int

+getlength():int +setRadius(radius:int):void

+setlength(length:int):void +print():void

+getWidth () :int +getArea() :double

+setWidth (width:int): void
+print():void
+getArea() :double

Programacion en C++

& Inheritance — Terminology and Notation

» Base class (or parent) — inherited from
* Derived class (or child) — inherits from the base class
* Notation:

class Student // base class

{

bi
class UnderGrad : public student

{ // derived class

by

Programacion en C++

S Back to the ‘is a’ Relationship

* An object of a derived class 'is a(n)' object of the
base class

» Example:
—an UnderGradisa Student

—aMammalisan Animal

* Aderived object has all of the characteristics of
the base class

Programacion en C++

& What Does a Child Have?

An object of the derived class has:
* all members defined in child class
» all members declared in parent class

An object of the derived class can use:
* all public members defined in child class
* all public members defined in parent class

Programacion en C++

& Protected Members and Class Access

« protected member access specification: like
private, but accessible by objects of derived

class

Class access specification: determines how
private, protected, and public members

of base class are inherited by the derived class

Programacion en C++

Class Access Specifiers

public - object of derived class can be treated as
object of base class (not vice-versa)

protected — more restrictive than public, but
allows derived classes to know details of parents
private — prevents objects of derived class from
being treated as objects of base class.

Programacion en C++

& Constructors and Destructors in Base and
Derived Classes

* Derived classes can have their own constructors
and destructors

* When an object of a derived class is created, the
base class’s constructor is executed first, followed
by the derived class’s constructor

» When an object of a derived class is destroyed, its
destructor is called first, then that of the base class

Programacion en C++

& Passing Arguments to
Base Class Constructor

* Allows selection between multiple base class
constructors

» Specify arguments to base constructor on derived
constructor heading:

Square: :Square (1nt side) :Rectangle(side, side)

« (Can also be done with inline constructors
* Must be done if base class has no default constructor

Programacion en C++

& Constructor Inheritance

 |n aderived class, some constructors can be inherited
from the base class.

 The constructors that cannot be inherited are:
— the default constructor
— the copy constructor
— the move constructor

Programacion en C++

C

Constructor Inheritance

Consider the following:

class MyBase

{
private:
int ival;
double dval;
public:
MyBase(int 1)
{ ival = 1; }
MyBase(double d)
{ dval = d; }
;s

class MyDerived :

{
public:

MyDerived(int 1)
1}

1}

MyDerived(double d)

MyBase

. MyBase(1i)

. MyBase(d)

Programacion en C++

C

Constructor Inheritance

» We can rewrite the MyDerived class as:

class MyBase

{

private:
int ival;
double dval;

public:
MyBase(int 1)
{ ival = 1; }
MyBase(double d)
{ dval = d; }

;s

{
;s

class MyDerived : MyBase

using MyBase: :MyBase;

AN

N\

The using statement causes
the class to inherit the base
class constructors.

Programacion en C++

C Redefining Base Class Functions

« Redefining function: function in a derived class that
has the same name and parameter list as a function
In the base class

» Typically used to replace a function in base class
with different actions in derived class

* Not the same as overloading — with overloading,
parameter lists must be different

* Objects of base class use base class version of
function; objects of derived class use derived class
version of function

Programacion en C++

Base Class

class GradedActivity

{

protected:
char letter; // To hold the letter grade
double score: // To hold the numeric score
vold determineGrade(); // Determines the letter grade
public:

// Default constructor
Gradedfctivitv()
{ letter = ' ': score = 0.0; }

/f Mutator function
vold setScore(double s5)
{ score = 5;
determineGrade();}

!/ RAccessor functions
double getScore() const
{ return score; }

char getletterGrade() const
{ return letter; }

Programacion en C++

Derived Class

tifndef CURVEDACTIVITY H

tdefine CURVEDACTIVITY H

tinclude "GradedBctivity.h"

class CurvedActivity : public GradedActivity
{

protected:
double rawsScore: £/ Unadjusted score
double percentage; ff Curve percentage
public:
/7 Defanlt constructor
Curveddctivity() : Gradedlctivity()

{ rawscore = 0.0; percentage = 0.0; }

// Mutator functions
volid setScore(double s)
{ rawscore = g5;
GradedActivity::setScore(rawScore * percentage);

vold setPercentage(double c)
{ percentage = c; }

/{ Recessor functions

double getPercentage() const
{ return percentage; }

double getRawScore() const
{ return rawsScore; }
¥
tendif

s

Programacion en C++

Invocation of redefined function

f/ Define a Curvedlctivity object.
CurvedActivity exam;

// Get the unadjusted score.
cout << "Enter the student's raw numeric score: ":
cin »» numericScore;

/{ Get the curve percentage.
cout << "Enter the curve percentage for this student: ";
cin >> percentage;

// Bend the wvalues to the exam cobject.
exam.setPercentage(percentage) ;

exam.setScore(numericScore); «—— |Nvocation setScore function

// Display the grade data.
cout << fixed << setprecision(2);
cout << "The raw score is "
<< eXam.JetRawscore() << endl;
cout << "The curved score is "
<< eXam.JgetScore() << endl;
cout << "The curved grade is "
<< exXam.getLetterGrade() << endl;

Programacion en C++

C

Class Hierarchies

« Abase class can be derived from another base class.

ClassA
GradedActivity
/\ /\
ClassB
FinalExam PassFailActivity
ClassC

PassFailExam

Programacion en C++

@ Example: Superclass Point and subclass
MovablePoint

Point

2
2

-x:int
-y:int

+Point(x:int,y:int)
+getX():int
+setX(x:int):void
+get¥Y():int
+set¥(y:int):void
+setXY(x:int,y:int) :void
+print() :void

T

MovablePoint
-xSpeed:int = @
-ySpeed:int = @

+Point(x:int,y:int
xSpeed:int,ySpeed:int)
+getXSpeed() rint
+setXSpeed(xSpeed:int) :void
+get¥Speed() :int
+set¥Speed(ySpeed:int) :void
+setXYSpeed(xSpeed:int,
ySpeed:int):void
+move () :void
+print():void

Programacion en C++

Example: Shape and its Subclasses

<<abstract>> Shape
-color:string = "red"

+Shape(color:string)
+getColor () :string
+setColor(color:string):void
+print():void
+getArea() :double

AN
| |

Rectangle Circle

-length:int = 1 -radius:int = 1

-width:int = 1 +Circle(radius:int,

+Rectangle(length:int, color:string)
width:int,color:string) +getRadius():int

+getlength():int +setRadius(radius:int) :void

+setlength(length:int) :void +print():void

+getiWidth () :int +getArea() :double

+setlWidth (width:int) : void
+print():void
+getArea() :double

Programacion en C++

& Polymorphism and
Virtual Member Functions

Virtual member function: function in base class that
expects to be redefined in derived class

Function defined with key word virtual:
virtual void Y () {...}

Supports dynamic binding: functions bound at run
time to function that they call

Without virtual member functions, C++ uses static
(compile time) binding

Programacion en C++

Virtual Functions

A virtual function is dynamically bound to calls at
runtime.

At runtime, C++ determines the type of object making
the call, and binds the function to the appropriate
version of the function.

To make a function virtual, place the virtual key word
before the return type in the base class's declaration:

virtual char getLetterGrade () const;

The compiler will not bind the function to calls.
Instead, the program will bind them at runtime.

Programacion en C++

Updated Version of GradedActivity

class Gradedlctivity

{

protected:

double score; // To hold the numeric score
public:

// Default constructor

GradedActivity()

{ score = 0.0; }

// Constructor
Graded2ctivity(double s)
{ score = 53 }

// Mutator function
void setScore(double s)

{ score = s; } The function

// Accessor functions IS now virtual.

double getScore() const

{ return score; The function also becomes

har getLetterGrade() const; virtual in all derived classes
i automatically!

Programacion en C++

ﬁ Polymorphism Requires References or
Pointers

* Polymorphic behavior is only possible when an object

Is referenced by a reference variable or a pointer, as
demonstrated in the displayGrade function.

Programacion en C++

& Base Class Pointers

» Can define a pointer to a base class object
 Can assign it the address of a derived class object

GradedActivity *exam = new PassFailExam(100, 25, 70.0);

cout << exXam->JgetsScore() << endl;
cout << exam->JetletterGrade () << endl;

* Base class pointers and references only know about
members of the base class

— S0, you can't use a base class pointer to call a derived class
function

* Redefined functions in derived class will be ignored unless
base class declares the function virtual

Programacion en C++

C Redefining vs. Overriding

* |n C++, redefined functions are statically bound and
overridden functions are dynamically bound.

» S0, a virtual function is overridden, and a non-virtual
function is redefined.

Programacion en C++

& Virtual Destructors

» |t's a good idea to make destructors virtual if the class
could ever become a base class.

» Otherwise, the compiler will perform static binding on
the destructor if the class ever is derived from.

Programacion en C++

C: C++ 11's override and £inal Key
Words

* The override key word tells the compiler that the
function is supposed to override a function in the base
class.

* \When a member function is declared with the final
key word, it cannot be overridden in a derived class.

Programacion en C++

& Abstract Base Classes and Pure Virtual
Functions

o Pure virtual function: a virtual member function that must
be overridden in a derived class that has objects

* Abstract base class contains at least one pure virtual
function:
virtual void Y () = 0;

* The = 0 indicates a pure virtual function
« Must have no function definition in the base class

* Abstract base class: class that can have no objects.
Serves as a basis for derived classes that may/will have
objects

« Aclass becomes an abstract base class when one or
more of its member functions is a pure virtual function

Programacion en C++

S Multiple Inheritance

 Aderived class can have more than one base class
 Each base class can have its own access specification in

derived class's definition:

class cube : public square, public rectSolid;
class class
square rectSolid
T “—
class
cube
* Arguments can be passed to both base classes' constructors:

cube: :cube (1nt side)

rectSolid(side,

square (side),
side, side);

» Base class constructors are called in order given in class
declaration, not in order used in class constructor

Programacion en C++

S Multiple Inheritance

* Problem: what if base classes have member
variables/functions with the same name?

 Solutions:
— Derived class redefines the multiply-defined function
— Derived class invokes member function in a particular base class
using scope resolution operator : :
« Compiler errors occur if derived class uses base class
function without one of these solutions

Programacion en C++

3. Exceptions and
Templates

Programacion en C++

S Exceptions

* Indicate that something unexpected has occurred or
been detected

» Allow program to deal with the problem in a controlled
manner. Can be as simple or complex as program
design requires

* Terminology:
— EXxception: object or value that signals an error

— Throw an exception: send a signal that an error has
occurred

— Catch/Handle an exception: process the exception; interpret
the signal

Programacion en C++

C Exceptions — Key Words

« throw —followed by an argument, is used to throw an
exception

« try-—followed by ablock { },is used toinvoke code
that throws an exception

« catch —followed by a block { 1}, is used to detect and
process exceptions thrown in preceding t rvy block.
Takes a parameter that matches the type thrown.

Programacion en C++

S

Exceptions — Flow of Control

1)
2)

A function that throws an exception is called from within a try block

If the function throws an exception, the function terminates and
the try block is immediately exited. A catch block to process the
exception is searched for in the source code immediately following
the try block.

If a catch block is found that matches the exception thrown, it is
executed. If no catch block that matches the exception is found,
the program terminates.

Programacion en C++

Exceptions — Example

// Examplel: function that throws an exception
int totalDays(int days, 1nt weeks) {
1f ((days < 0) || (days > 7))
throw "invalid number of days";
// the argument to throw is the
// character string
else
return (7 * weeks + days);
}
// Example2: try catch
try { // block that calls function
totDays = totalDays (days, weeks);
cout << "Total days: " << days;
}
catch (char *msg) { // interpret exception
cout << "Error: " << msg;

Programacién e C++

Exceptions — What Happens

try block is entered. totalDays function is called

If 1st parameter is between 0 and 7, total number of days is
returned and catch block is skipped over (no exception
thrown)

If exception is thrown, function and t ry block are exited,
catch blocks are scanned for 15t one that matches the
data type of the thrown exception. catch block executes

Programacion en C++

Exceptions

What Happens in theTry/Catch Construct

. t
If this statement {ry
Kowe: IVEXCApHON:. ————= quotient = divide(numl, num2);
__then this statement ——— ™ cout << "The quotient is " << quotient << endl;
is skipped. }
catch (char *exceptionString)
If the exception is a string, {
the program jumps to cout << exceptionString;
this catch clause. }

After the catch block is
finished, the program
resumes here.

cout

<< "End of the program.\n";

return 0;

try
{

quotient = divide(numl, num2);

What |f no exceptlon |S thrown? cout << "The quotient is " << gquotient << endl;

If no exception is thrown in the
try block, the program jumps

to the statement that immediately
follows the try/catch construct.

— }
catch (char *exceptionString)

{

cout << exceptionString;

}

= cout << "End of the program.\n";
return 0;

Programacion en C++

S Exceptions - Notes

* Predefined functions such as new may throw
exceptions
» The value that is thrown does not need to be used in
catch block.
— In this case, no name is needed in catch parameter
definition
— catch block parameter definition does need the type of
exception being caught

Programacion en C++

C Exception Not Caught?

* An exception will not be caught if
— itis thrown from outside of a t ry block
— there is no catch block that matches the data type of the
thrown exception

» |f an exception is not caught, the program will
terminate

Programacion en C++

C Exceptions and Objects

* An exception class can be defined in a class and
thrown as an exception by a member function

* An exception class may have:

— no members: used only to signal an error
— members: pass error data to catch block

* Aclass can have more than one exception class

Programacion en C++

S What Happens After catch Block?

» Once an exception is thrown, the program cannot
return to throw point. The function executing throw

terminates (does not return), other calling functions in
t ry block terminate, resulting in unwinding the stack

* |f objects were created in the t ry block and an
exception is thrown, they are destroyed.

Programacion en C++

C Nested trvy Blocks

* try/catch blocks can occur within an enclosing t ry
block

» Exceptions caught at an inner level can be passed up to a
catch block at an outer level:

catch ()
{

throw; // pass exception up
} // to next level

Programacion en C++

C Function Templates

» Function template: a pattern for a function that can
work with many data types

» When written, parameters are left for the data types

» When called, compiler generates code for specific
data types in function call

Programacion en C++

S Function Template Example

template <class T>

T timeslO (T num)
{

return 10 * num;

}

What gets generated when What gets generated when times10 is
times10 is called with an int: | called with a double:

int timeslO (int num) double timeslO0 (double num)
{

{
return 10 * num;

} }

return 10 * num;

Programacion en C++

S Function Template Example

template <class T>

T timeslO (T num)

{

return 10 * num;

J

* (Call a template function in the usual manner:
int i1ival = 3;
double dval = 2.55;
cout << timeslO(ival); // displays 30
cout << timeslO(dval); // displays 25.5

Programacion en C++

C Function Template Notes

» Can define a template to use multiple data types:

template<class T1, class T2>

« Example:
template<class T1l, class T2> // Tl and T2 will be
double mpg (Tl miles, T2 gallons) // replaced in the

{ // called function
return miles / gallons // with the data
} // types of the

// arguments

Programacion en C++

C Function Template Notes

Function templates can be overloaded Each template
must have a unique parameter list

template <class T>

T sumAll (T num)

template <class T1l, class T2>

Tl sumall (Tl numl, T2 num?2)

All data types specified in template prefix must be used in
template definition

Function calls must pass parameters for all data types
specified in the template prefix

Like regular functions, function templates must be defined
before being called

Programacion en C++

C Function Template Notes

* Afunction template is a pattern

* No actual code is generated until the function named in
the template is called

* Afunction template uses no memory

» When passing a class object to a function template,
ensure that all operators in the template are defined or
overloaded in the class definition

Programacion en C++

& Where to Start
When Defining Templates

» Templates are often appropriate for multiple functions
that perform the same task with different parameter
data types

» Develop function using usual data types first, then
convert to a template:
— add template prefix

— convert data type names in the function to a type
parameter (i.e., a T type) in the template

Programacion en C++

C Class Templates

» Classes can also be represented by templates.
When a class object is created, type information is
supplied to define the type of data members of the
class.

* Unlike functions, classes are instantiated by
supplying the type name (int, double,
string, etc.) at object definition

Programacion en C++

C

Class Template Example

template <class T>
class grade
{
private:
T score;
public:
grade (T) ;
vold setGrade (T) ;
T getGrade ()

b

Programacion en C++

S Class Template Example

» Pass type information to class template when defining
objects:

grade<int> testList[20];

grade<double> quizList[20];

» Use as ordinary objects once defined

Programacion en C++

& Class Templates and Inheritance

» Class templates can inherit from other class
templates:
template <class T>
class Rectangle
(N
template <class T>
class Square : public Rectangle<T>

{ oo 17

» Must use type parameter T everywhere base
class name is used in derived class

Programacion en C++

4. The Standard
Template Library

C The Standard Template Library

 The Standard Template Library (STL): an extensive library
of generic templates for classes and functions.

» (Categories of Templates:

— Containers: Class templates for objects that store and organize
data

— lterators: Class templates for objects that behave like pointers, and
are used to access the individual data elements in a container

— Algorithms: Function templates that perform various operations on
elements of containers

— Function objects: are objects that act like functions

Programacion en C++

& The Standard Template Library headers

 <vector>, <list>, <deque>, <queue>, <stack>, <map>, <set>,
<bitset>, <forward_list> (C++11), <unordered_map> (C++11),
<unordered_set> (C++11), <array> (C++11): Containers data
structures template classes.

* <ijterator>: Iterator for transversing the elements in a
container.

* <algorithm>, <numeric>, <functional>, <utility>: Algorithm and
function objects.

o <initializer_list> (C++11), <memroy> (C++11).

Programacion en C++

& Containers

» Sequence Containers: Stores data sequentially in memory

— vector: dynamically resizable array. Support fast insertion and deletion at back;
and direct access to its elements.

— deque: double-ended queue. Support fast insertion and deletion at front and back;
and direct access to its elements.

— list: double-linked list. Support fast insertion and deletion anywhere in the list; and
direct access to its elements.

* Associative Containers: nonlinear data structures storing

key-value pairs

— set: No duplicate element. Support fast lookup.

— multiset: Duplicate element allowed. Support fast lookup.

— map: One-to-one mapping (associative array) with no duplicate. Support fast key
lookup.

— multimap: One-to-many mapping, with duplicates allowed. Support fast key
lookup.

Programacion en C++

& Containers

 Container Adapter Classes

— Stack: Last-in-first-out (LIFO) queue, adapted from deque (default), or vector, or
list. Support operations back, push_back, pop_back.

— queue: First-in-first-out (FIFO) queue, adapted from deque (default), or list.
Support operations front, back, push_back, pop_front.

— priority_queue: highest priority element at front of the queue. adapted from vector
(default) or deque. Support operations front, push_back, pop_front.

Programacion en C++

STL Header Files

Header File Classes
<array> array
<deque> deque

<forward list>
<list>

<map>

<queue>

<set>

<stack>
<unordered_map>
<unordered_set>

<vector>

forward 1list
Tist

map, multimap

queue, priority_queue

set, multiset
stack

unordered_map,
unordered_ set,

vector

Programacion en C++

unordered_multimap

unordered multiset

S The array Class Template

* An array object works very much like a regular array
+ Afixed-size container that holds elements of the same data
type.

* array objects have a size() member function that returns the
number of elements contained in the object.

* The array class is declared in the <array> header file.

 When defining an array object, you specify the data type of
its elements, and the number of elements.

» Examples:
array<int, 5> numbers;
array<string, 4> names;

Programacion en C++

S The array Class Template

* |nitializing an array object:

array<int, 5> numbers = {1, 2, 3, 4, 5};

array<string, 4> names = {"Jamie", "Ashley", "Doug",
"Claire"};
* The array class overloads the [] operator.
* You can use the [] operator to access elements using a
subscript, just as you would with a regular array.

» The [] operator does not perform bounds checking. Be
careful not to use a subscript that is out of bounds.

Programacion en C++

C

lterators

* An iterator behaves like a generic pointer, which can be used
to reference (point-to) individual element of a generic
container; and transverse through elements of a container.

* Five categories of iterators:

Iterator Category Description

Forward Can only move forward in a container (uses the ++ operator).

Bidirectional Can move forward or backward in a container (uses the ++ and —- operators).

Random access Can move forward and backward, and can jump to a specific data element
in a container.

Input Can be used with an input stream to read data from an input device or a file.

Output Can be used with an output stream to write data to an output device or a file.

Programacion en C++

& Similarities between Pointers and lterators

Use the - operator to move backward a specific
number of elements

Pointers Iterators

Use the * and -> operators to dereference Yes Yes
Use the = operator to assign to an element Yes Yes
Use the == and != operators to compare Yes Yes
Use the ++ operator to increment Yes Yes

Yes Yes
Use the -- operator to decrement (bidirectional and

random-access iterators)

Use the + operator to move forward a specific Yes Yes
number of elements

Yes Yes Yes

(bidirectional and
random-access iterators)

Programacion en C++

S

lterators

To define an iterator, you must know what type of container you will be
using it with.

The general format of an iterator definition:

containerType: :iterator i1teratorName;

Where containerType is the STL container type, and
i1teratorName is the name of the iterator variable that you are
defining.

For example, suppose we have defined an array object, as follows:
array<string, 3> names = {"Sarah", "William", "Alfredo"};
We can define an iterator that is compatible with the array object as

follows:
array<string, 3>::iterator it;

This defines an iterator named it. The iterator can be used with an
array<string, 3> object.

Programacion en C++

& lterators

 All of the STL containers have a begin () member function that
returns an iterator pointing to the container's first element.

// Define an array object.
array<string, 3> names = {"Sarah", "William", "Alfredo"};

/] Define an iterator for the array object.
array<string, 3>::iterator it;

/] Make the iterator point to the array object's first element.
it = names.begin();

[/ Display the element that the iterator points to.

cout << *it << endl;

 All of the STL containers have a end () member function that returns
an iterator pointing to the position after the container's last element.

First Element Element Element Last :
Element Element
begin() Iterator end () Iterator

Programacion en C++

& lterators

* You typically use the end () member function to know when
you have reached the end of a container.

/! Define an array object.
array<string, 3> names = {"Sarah", "William", "Alfredo"};:

/| Define an iterator for the array object.
array<string, 3>::iterator it;

/| Make the 1iterator point to the array object's first element.
it = names.begin();

// Display the array object's contents.

while (it !'= names.end())
{
cout << *it << endl;
Tt++]
}

* You can use the auto keyword to simplify the definition of an

iterator. Example:
array<string, 3> names = {"Sarah", "William", "Alfredo"};
auto it = names.begin();

Programacion en C++

lterators

#include <iostream>
#include <string>
#include <array>
using namespace std;

int main()

{

const int SIZE = 3;

[/ Store some names in an array object.
array<string, SIZE> names = {"Sarah", "William", "Alfredo"};

/'l Create an iterator for the array object.
array<string, SIZE>::iterator it;

/1 Display the names.

cout << "Here are the names:\n";

for (it = names.begin(); it !'= names.end(); it++)
cout << *it << endl;

return O;

Programacion en C++

lterators

#include <iostream>
#include <string>
#include <array>
using namespace std

int main()

1

[/ Store some names in an array object.
array<string, SIZE> names = {"Jamie", "Ashley",

names.begin(); it != names.end();

{
const int SIZE = 4;
/'l Display the names.
cout << "Here are the names:\n";
for (auto it =
cout << *it << endl;
return 0;
}

L1 Dougll ,

it++)

"Claire"};

Programacion en C++

C

Mutable lterators

* An iterator of the iterator type gives you read/write
access to the element to which the iterator points.

* This is commonly known as a mutable iterator.

/I Define an array object.
array<int, 5> numbers = {1, 2, 3, 4, 5};

/I Define an iterator for the array object.
array<int, 5>::iterator it;

/'l Make the 1iterator point to the array object's first element.
it = numbers.begin();

/I Use the iterator to change the element.
it = 99;

Programacion en C++

& Constant Iterators

* An iterator of the const_iterator type provides read-
only access to the element to which the iterator points.

» The STL containers provide a cbegin() member function
and a cend () member function.

— The cbegin() member function returns a const_iterator
pointing to the first element in a container.

— The cend () member function returns a const_iterator
pointing to the end of the container.

— When working with const_iterators, simply use the container

class’s cbegin() and cend () member functions instead of the
begin() and end () member functions.

Programacion en C++

& Reverse lterators

* Areverse iterator works in reverse, allowing you to
iterate backward over the elements in a container.

« With a reverse iterator, the last element in a container
IS considered the first element, and the first element is
considered the last element.

» The ++ operator moves a reverse iterator backward,
and the —— operator moves a reverse iterator forward.

Programacion en C++

& Reverse lterators

* The following STL containers support reverse iterators:
- array
- deque
- list
- map
- multimap
- multiset
- set
- vector

o All of these classes provide an rbegin() member
function and an rend () member function.

Programacion en C++

& Reverse lterators

* The rbegin() member function returns a reverse iterator
pointing to the last element in a container.

* The rend () member function returns an iterator pointing to
the position before the first element.

: First Element Element Element Last
; Element Element
rend() Iterator rbegin() Iterator

Programacion en C++

C

Reverse lterators

« To create a reverse iterator, define it as
reverse_ iterator

[/ Define an array object.
array<int, 5> numbers = {1, 2, 3, 4, 5};

/] Define a reverse iterator for the array object.
array<int, 5>::reverse iterator it;

/] Display the elements 1in reverse order.
for (it = numbers.rbegin(); it != numbers.rend(); it++)
cout << *it << endl;

Programacion en C++

& The vector Class

* Avector is a sequence container that works like an
array, but is dynamic in size.

* Overloaded [] operator provides access to existing
elements

* The vector class is declared in the <vector>
header file.

Programacion en C++

C

vector Class Constructors

Default Constructor

Fill Constructor

Fill Constructor

Range Constructor

Copy Constructor

vector<dataType> name;
Creates an empty vector.

vector<dataType> name(size);

Creates a vector of size elements. If the elements are objects,
they are initialized via their default constructor. Otherwise, initialized
with 0.

vector<dataType> name(size, value);
Creates a vector of size elements, each initialized with value.

vector<dataType> name(iteratorl, iterator2);
Creates a vector that is initialized with a range of values from
another container. iteratorl marks the beginning of the range
and iterator2 marks the end.

vector<dataType> name(vector2);
Creates a vector that is a copy of vector2.

Programacion en C++

vector Class Example

#include <iostream>
#include <vector>
using namespace std;

int main()

{

const int SIZE = 10;

/! Define a vector to hold 10 1int values.
vector<int> numbers(SIZE);

/I Store the values 0 through 9 in the vector.
for (int index = 0; index < numbers.size(); index++)

numbers[index] = 1ndex;<~\\§§§\\\§\\§\\\\

/'l Display the vector elements.
for (auto element : numbers

) \
cout << element << : Range-based for loop

cout << endl;

Subscript notation

return 0;

Programacion en C++

C Initializing a vector

* |n C++ 11 and later, you can initialize a vector
object:

vector<int> numbers = {1, 2, 3, 4, 5};

or

vector<int> numbers {1, 2, 3, 4, 5};

Programacion en C++

& Adding New Elements to a vector

* The push_back member function adds a new
element to the end of a vector:

vector<int> numbers;

numbers.push _back(10);
numbers.push _back(20);
numbers.push _back(30);

Programacion en C++

@Accessing Elements with the at () Member

Function

* You can use the at () member function to retrieve a
vector element by its index with bounds checking:

vector<string> names
names.
names.
names.
names.

cout <<
cout <<
cout <<
cout <<

at(0) <«
at(l) <«
at(2) <«
at(3) <«

{"Joe", "Karen", "Lisa"};
endl;

endl;

endl;

endl; // Throws an exception

\Throws an out_of_bounds exception

when given an invalid index

Programacion en C++

C

Using an Iterator With a vector

e vectors have begin() and end () member functions

that return iterators pointing to the beginning and end of the
container:

// Create a vector containing names.
vector<string> names = {"Joe", "Karen", "Lisa", "Jackie"};

/I Create an 1'te_rat0r- _ Defines an iterator that is compatible
vector<string>::iterator 1t;<*”“”’”'\NnhEivectop<stping>(ﬂﬂect

[/ Use the iterator to display each element in the vector.
for (it = names.begin(); it != names.end(); it++)
{

cout << *it << endl; «— Displays the item that the iterator points to
}

Programacion en C++

C Using an lterator With a vector

« The begin() and end () member functions return a random-access
iterator of the iterator type

« The cbegin() and cend() member functions return a random-
access iterator of the const_iterator type

« The rbegin() and rend() member functions return a reverse
iterator of the reverse_iterator type

« The crbegin() and crend() member functions return a reverse
iterator of the const_reverse iterator type

Programacion en C++

@ Inserting Elements with the insert()
Member Function

* You can use the insert () member function, along

with an iterator, to insert an element at a specific
position.

* General format:

vectorName.insert(it, value);

lterator pointing to an / \

element in the vector Value to insert before

the element that it
points to

Programacion en C++

Inserting Elements Example

#include <iostream>
#include <vector>
using namespace std;

int main()

{
[/ Define a vector with 5 int values.
vector<int> numbers = {1, 2, 3, 4, 5};

/| Define an iterator pointing to the second element.
auto it = numbers.begin() + 1;

[/ Insert a new element with the value 99.
numbers.insert(it, 99);

/1 Display the vector elements.
for (auto element : numbers)

cout << element << ;
cout << endl;

return O;

Programacion en C++

& Overloaded Versions of the insert()
Member Function

insert(it, value)

insert(it, n, value)

insert(iteratorl,
iterator?2,
iterator3)

Inserts vaLue just before the element pointed to by it. The
function returns an iterator pointing to the newly inserted element.

Inserts n elements just before the element pointed to by it. Each of
the new elements will be initialized with valLue. The function returns
an iterator pointing to the first element of the newly inserted
elements.

Inserts a range of new elements. iteratorl points to an existing
element in the container. The range of new elements will be inserted
before the element pointed to by iteratorl. iterator2 and
iterator3 mark the beginning and end of a range of values that
will be inserted. (The element pointed to by iterator3 will not be
included in the range.) The function returns an iterator pointing to the
first element of the newly inserted range.

Programacion en C++

@ Storing Objects Of Your Own Classes in a
vector

#ifndef PRODUCT_H

* STL containers are £defne RODUCT
especially useful for storing ™ "™ ™
objects of your own classes. ...

string name;

* Consider this Product sties

Product(string n, 1int u)

ClaSS: { name = n;

units = u; }

]

void setName(string n)
{ name = n; }

void setUnits(int u)
{ wunits = u; }

string getName() const
{ return name; }

int getUnits() const

{ return units; }
i
#endif

Programacién en C++

@ Storing Objects Of Your Own Classes in a

vector

#include <iostream>
#include <vector>

#include "Product.h"
using namespace std;

int main()

{

/'l Create a vector of Product objects.

yectorsproduct> products = This program initializes a

{ P g.
Product("T-Shirt", 20), _ vector with three Product
Product("Calendar", 25), .
Product ("Coffee Mug", 30) ObjeCtS.

b

/'l Display the vector elements.
for (auto element : products)

{ cout << "Product: " << element.getName() << end]
<< "Units: " << element.getUnits() << endl;
}
return O; \ Arange'based
for loop
iterates over the
vector.

Programacion en C++

@ Storing Objects Of Your Own Classes in a

vector

#include <iostream>
#include <string>
#include <vector>
#include "Product.h"
using namespace std;

int main()

{

/! Create Product objects.
Product prodi1("T-Shirt", 20);
Product prod2("Calendar", 25);
Product prod3("Coffee Mug", 30); 1-rf
IS program uses the

/!l Create a vector to hold the Products

vector<Product> products; pUSh_baCk member funCtion
// Add the products to the vector. tO Store three PPOdUCt
products.push_back(prod1); ObJeCtS |n a vector.
products.push_back(prod2) ;

products.push_back(prod3) ;

/'l Use an iterator to display the vector contents.
for (auto it = products.begin(); it != products.end(); it++)

{
cout << "Product: " << it->getName() << end]

<< "Units: " << it->getUnits() << endl; \ A for loop uses an
}

iterator to step through the
vector.

return 0;

Programacion en C++

& Inserting Container Elements With
Emplacement

« Member functions such as insert () and push_back() can cause
temporary objects to be created in memory while the insertion is taking
place.

* This is not a problem in programs that make only a few insertions.

» However, these functions can be inefficient for making a lot of
Insertions.

« C++11 introduced a new family of member functions that use a
technique known as emplacement to insert new elements.

« Emplacement avoids the creation of temporary objects in memory while
a new object is being inserted into a container.

« The emplacement functions are more efficient than functions such as
insert() and push_back()

Programacion en C++

& Inserting Container Elements With
Emplacement

» The vector class provides two member functions that use
emplacement:

- emplace() - emplaces an element at a specific location
- emplace_back()- emplaces an element at the end of the vector

* With these member functions, it is not necessary to instantiate,
ahead of time, the object you are going to insert.

* Instead, you pass to the emplacement function any arguments that
you would normally pass to the constructor of the object you are
inserting.

* The emplacement function handles the construction of the object,
forwarding the arguments to its constructor.

Programacion en C++

Inserting Container Elements With
Emplacement

#include <iostream=
#include <vector=>

#include "Product.h"
using namespace std;

int main()

{ Define a vector to hold

/1 Create a vector to hoTi’EEEEEEEE;—~—*‘ .
vector<Product> products; Product ObJeCtS

/! Add Products to the vector. Emplace three Product
products.emplace_back("T-Shirt", 20);

products.emplace_back("Calendar", 25); ObjeCtS at the end Of the
products.emplace_back("Coffee Mug", 30); vector

{/ Use an iterator to display the vector contents.
for (auto it = products.begin(); it != products.end(); it++)
{

cout << "Product: " << it->getName() << end]l
<< "Units: " << it—>getUnits() << endl;

} \ A for loop uses an
return 0;

iterator to step through the
vector.

Programacion en C++

Inserting Container Elements With
Emplacement

#include <iostream=
#include <vector>

#include "Product.h"
using namespace std;

int main()

{
/! Create a vector to hold Products. |nitia|izes a Vector‘ W|th
vector<Product> products = .
{ —— two Product objects

Product("T-Shirt", 20),

Product ("Coffee Mug", 30)
|3
/'l Get an iterator to the 2nd element. Gets an |terat0r pOIntIng tO
auto it = products.begin() + 1; — the 2nd element

/'{ Insert another Product into the vector.

products.emplace(it, "Calendar", 25); \ Emplaces a new PPOdUCt
object before the one

/'l Display the vector contents.

for (auto element : products) pointed to by the iterator
{
cout << "Product: " << element.getName() << end]
<< "Units: " << element.getUnits() << endl;
}
return 0;

Programacion en C++

S Maps — General Concepts

* A map is an associative container.

 Each element that is stored in a map has two parts: a key and
a value.

* To retrieve a specific value from a map, you use the key that
Is associated with that value.

» This is similar to the process of looking up a word in the
dictionary, where the words are keys and the definitions are
values.

Programacion en C++

& Maps

« Example: a map in which employee IDs are the keys and
employee names are the values.

* You use an employee's ID to look up that employee's name.

Keys Values

101 »1“Chris Jones”

102 | “Jessica Smith”
103 »|“Amanda Stevens”
104 1 “Will Osborn”

Programacion en C++

The map Class

You can use the STL map class to store key-value pairs.

The keys that are stored in a map container are unique — no
duplicates.

The map class is declared in the <map> header file.

Example: defining a map container to hold employee 1D
numbers (as ints) and their corresponding employee names
(as strings):

map<int, string> employees;

/N

Key data type Value data type

Programacion en C++

C

map Class Constructors

Default Constructor map<kReyDataType, valueDataType> name;
Creates an empty map.

Range Constructor map<keyDataType, valueDataType>
name(iteratorl, iterator2);
Creates a map that is initialized with a range of values from another
map. iteratorl marks the beginning of the range and
1terator2 marks the end.

Copy Constructor map<keyDataType, valueDataType> name(map2);
Creates a map that is a copy of map2.

Programacion en C++

Initializing a map

map<int, string> employees =

{
{101, "Chris Jones"}, {102, "Jessica Smith"},
{103, "Amanda Stevens"}, {104, "Will Osborn"}

}s

In the first element, the key is 101 and the value is "Chris Jones".
In the second element, the key is 102 and the value is "Jessica
Smith".

In the third element, the key is 103 and the value is "Amanda

Stevens".
In the fourth element, the key is 104 and the value is "Will Osborn".

Programacion en C++

C The Overloaded [] Operator

* You can use the [] operator to add new elements to a map.
 (General format;

mapName[Rey] = value;
* This adds the key-value pair to the map.

* |fthe key already exists in the map, it's associated value will
be changed to value.

Programacion en C++

C The Overloaded [] Operator

map<int, string> employees;

employees[110] = "Beth Young";
employees[111] = "Jake Brown";
employees[112] = "Emily Davis"”;

 After this code executes, the employees map will
contain the following elements:
+ Key = 110, Value = "Beth Young"
+ Key = 111, Value = "Jake Brown"
+ Key = 112, Value = "Emily Davis"

Programacion en C++

S The pair Type

* Internally, the elements of a map are stored as instances of the
pair type.

e pairis a struct that has two member variables: first and
second.

* The element’s key is stored in first, and the element's value is
stored in second.

* The pair structis declared in the <utility> header file.
When you #include the <map> header file, <utility>is
automatically included as well.

Programacion en C++

& Inserting Elements with the insert()
Member Function

* The map class provides an insert () member function that
adds a pair object as an element to the map.

* You can use the STL function template make pair to
construct a pair object.

* The make_pair function template is declared in the
<utility> headerfile.

Programacion en C++

& Inserting Elements with the insert()
Member Function

map<int, string> employees;

employees.insert(make _pair(110, "Beth Young"));
employees.insert(make_pair(111, "Jake Brown"));
employees.insert(make pair(112, "Emily Davis"));

 After this code executes, the employees map will
contain the following elements:
+ Key = 110, Value = "Beth Young"
« Key =111, Value = "Jake Brown"
+ Key = 112, Value = "Emily Davis"

Note: If the element that you are inserting with the insert () member function

has the same key as an existing element, the function will not insert the new
element.

Programacion en C++

& Inserting Elements with the emplace()
Member Function

* The map class also provides an emplace () member
function that adds an element to the map.

map<int, string> employees;

employees.emplace(110, "Beth Young");
employees.emplace(111, "Jake Brown");
employees.emplace(112, "Emily Davis");

« After this code executes, the employees map will
contain the following elements:
+ Key =110, Value = "Beth Young"
« Key = 111, Value = "Jake Brown"
+ Key =112, Value = "Emily Davis"

Note: If the element that you are inserting with the emplace() member function

has the same key as an existing element, the function will not insert the new
element.

Programacion en C++

& Retrieving Elements with the at () Member
Function

* You can use the at () member function to retrieve a map
element by its key:

// Create a map containing employee IDs and names.
map<int, string> employees =
{
{101, "Chris Jones"}, {102, "Jessica Smith"},
{103, "Amanda Stevens"}, {104, "Will Osborn"}

s

// Retrieve a value from the map.
cout << employees.at(103) << endl;

\ Displays "Amanda Stevens"

Programacion en C++

& Retrieving Elements with the at () Member
Function

* To prevent the at () member function from throwing an
exception (if the specified key does not exist), use the count
member function to determine whether it exists:

// Create a map containing employee IDs and names.
map<int, string> employees =

{
{101, "Chris Jones"}, {102, "Jessica Smith"},
{103, "Amanda Stevens"}, {104, "Will Osborn"}
}s
// Retrieve a value from the map.
if (employees.count(103)) - The count () member function
cout << employees.at(103) << endl; returns 1 if the specified key
else exists, or 0 otherwise.

cout << "Employee not found.\n";

Programacion en C++

C Deleting Elements

* You can use the erase () member function to retrieve a
map element by its key:

// Create a map containing employee IDs and names.
map<int, string> employees =
{
{101, "Chris 3Jones"}, {102, "Jessica Smith"},
{103, "Amanda Stevens"}, {104, "Will Osborn"}

}s

// Delete the employee with ID 102.
employees.erase(102);

\ Deletes Jessica Smith from the map

Programacion en C++

G Stepping Through a map with the Range-
Based for Loop

// Create a map containing employee IDs and names.
map<int, string> employees =
{
{101, "Chris Jones"}, {102, "Jessica Smith"},
{103, "Amanda Stevens"}, {104, "Will Osborn"}

}s

// Display each element. ,///
for (pair<int, string> element : employees)

{

Remember, each element is a pair.

cout << "ID: " << element.first << "\tName:
<< element.second << endl;

Programacion en C++

G Stepping Through a map with the Range-
Based for Loop

// Create a map containing employee IDs and names.
map<int, string> employees =
{
{101, "Chris Jones"}, {102, "Jessica Smith"},
{103, "Amanda Stevens"}, {104, "Will Osborn"}

}s

// Display each element.
for (auto element : employees)- auto simplifies this

{

cout << "ID: " << element.first << "\tName:
<< element.second << endl;

Programacion en C++

Using an lterator With a map

The begin() and end () member functions return a bidirectional
iterator of the iterator type

The cbegin() and cend () member functions return a bidirectional
iterator of the const_iterator type

The rbegin() and rend () member functions return a reverse
bidirectional iterator of the reverse_iterator type

The crbegin() and crend () member functions return a reverse
bidirectional iterator of the const_reverse_iterator type

When an iterator points to a map element, it points to an instance of the
pair type.
The element has two member variables: first and second.

The element’s key Is stored in first, and the element’s value is
stored in second.

Programacion en C++

Using an lterator With a map

/!l This program demonstrates an iterator with a map.
#include <iostream=>

#include <string>

#include <map>

using namespace std;

int main()

{
// Create a map containing employee IDs and names.
map<int, string> employees =
{ {101,"Chris Jones"}, {102,"Jessica Smith"},
{103, "Amanda Stevens"},{104,"Will Osborn"} };
/| Create an iterator.
map<int, string>::iterator iter;
/| Use the iterator to display each element in the map.
for (iter = employees.begin(); iter != employees.end(); iter++)
{
cout << "ID: " << dter—>first
<< "\tName: " << iter->second << endl;
}
return 0;
}

Programacion en C++

ﬁ Storing Objects Of Your Own Classes as
Values in a map

» |f you want to store an object as a value in a map,
there is one requirement for that object’s class:

It must have a default constructor.

* Consider the following Contact class...

Programacion en C++

@ Storing Objects Of Your Own Classes as
#define CONTACT H Va/ue S in am ap

#include <string=>
—15iNg Namespace std;

class Contact
{
private:
string name;
string email;
public:
Contact()
{ name =
email =

A

Default constructor

"t

Contact(string n, string em)
{ name = n;
email = em; }

void setName(string n)
{ name = n; }

void setEmail(string em)
{ email = em; }

string getName() const
{ return name; }

string getEmail() const
{ return email; }

i

#endif

Programacion en C++

@ Storing Objects Of Your Own Classes as

Values in a map

#include <iostream>
#include <string=>
#include <map=>
#include "Contact.h"
using namespace std;

int main()

{

string searchName; /! The name to search for

/'l Create some Contact objects

Contact contact1("Ashley Miller", "amiller@faber.edu");
Contact contact2("Jacob Brown", "jbrown@gotham.edu");
Contact contact3("Emily Ramirez", "eramirez€coolidge.edu");

/'l Create a map to hold the Contact objects.
map<string, Contact> contacts;

In the map, the keys are
the contact names, and the

values are the Contact

/'l Add the contact objects to the map. / objects.
contacts[contact1.getName()] = contacti;

contacts[contact2.getName()] = contact2;

contacts[contact3.getName()] contact3; A nbions iomod

/'l Create an iterator for the map.
map<string, Contact>::iterator iter;

Sl NIT TCTIT TUANV A 5 s s

Programacion en C++

@ Storing Objects Of Your Own Classes as
Values in a map

/! Get the name to search for.
cout << "Enter a name: ";:
getline(cin, searchName) ;

/I Search for the name.
iter = contacts.find(searchName) ;

[/l Display the results.
if (iter != contacts.end())

{

cout << "Name:
cout << "Email:

<< ijter->second.getName() << endl;
<< jter—>second.getEmail() << endl;

}

else

{

cout << "Contact not found.\n";

}

return 0;

Programacion en C++

ﬁ Storing Objects Of Your Own Classes as
Keys in a map

* |f you want to store an object as a key in a map, there
IS one requirement for that object’s class:

It must overload the < operator.

» Consider the following Customer class...

Programacion en C++

@ Storing Objects Of Your Own Classes as
Keys in a map

#ifndef CUSTOMER_H string getName() const
#define CUSTOMER_H { return name; }
#include<string=
using namespace std;

bool operator < (const Customer &right) const
{ bool status = false;

class Customer if (custNumber < right.custNumber)

{ status = true;
private:
int custNumber; return status; }
string name; b
public: #endif

Customer(int cn, string n)
{ custNumber = cn;
name = n; }

void setCustNumber(int cn)
{ custNumber = cn; }

void setName(string n)
{ name = n; }

int getCustNumber() const
{ return custNumber; }

Programacion en C++

@ Storing Obje

cts Of Your Own Classes as

Keys in a map

#include <iostream>
#include <string>
#include <map>
#include "Customer.h"
using namespace std;

int main()

{

/'l Create some Customer objects.

Customer customer1 (1001, "Sarah Scott");
Customer customer2(1002, "Austin Hil11");
Customer customer3(1003, "Megan Cruz"):

Il Create a map to hold the seat assignments.

map<Customer, string> assignments;

Il Use the map to store the seat assignments.

assignments[customer1] = "1A";
assignments[customer2] = "2B";
assignments[customer3] = "3C";

Il Display all objects in the map.
for (auto element : assignments)

{
cout << element.first.getName() << "\t"
<< element.second << endl;
}
return 0;

This program assigns seats in a

theater to customers. The map

uses Customer objects as keys,
and seat numbers as values.

Programacion en C++

C The unordered map Class

* The unordered_map class is similar to the map class,
except in two regards:
— The keys in an unordered_map are not sorted
— The unordered_map class has better performance

* You should use the unordered_map class instead of the
map class if:
— You will be making a lot of searches on a large number of elements
— You are not concerned with retrieving them in key order

* The unordered_map class is declared in the
<unordered_map> header file

Programacion en C++

The multimap Class

The multimap class is a map that allows duplicate keys

The multimap class has most of the same member
functions as the map class

The multimap class is declared in the <map> header file

Consider a phonebook application where the key is a
person's name and the value is that person's phone number.

Amultimap container would allow each person to have

multiple phone numbers

“555-5678"

Programacion en C++

The multimap Class

#include <iostream=>
#include <string=>
#include <map=>
using namespace std;

int main()
{
/| Define a phonebook multimap.
multimap<string, string> phonebook =
{ {"Wil1", "555-1212"}, {"Will1", "555-0123"},
{"Faye", "555-0707"}, {"Faye", "555-1234"},
{"Sarah", "555-8787"}, {"Sarah", "555-5678"} }:

[/ Display the elements in the multimap.
for (auto element : phonebook)
{
cout << element.first << "\t"
<< element.second << end]l;

}

return 0;

Programacion en C++

C

Adding Elements to a multimap

* The multimap class does not overload the [] operator.

— S0, you cannot use an assignment statement to add a new element
foamultimap.

* Instead, you will use either the emplace() orthe
insert () member functions.

multimap<string,
phonebook.

phonebook

phonebook

.emplace
phonebook.
.emplace
phonebook.
phonebook.

emplace "W111”
1"
Faye
Faye",
Sarah"
'‘Sarah”,

emplace
emplace("
emplace

(
("W
("
("
(
("

string> phonebook;

"555-1212"
"555-0123"
"555-0707"
"555-1234") ;
"555-8787") ;
"555-5678") ;

T ™ ™ M

Programacion en C++

C

Adding Elements to a multimap

multimap<string, string> phonebook;
phonebook.insert (make_pair("Will", "555-1212"));
phonebook.insert (make_pair("Will", "555-0123"));
phonebook.insert (make pair("Faye", "555-0707"));
phonebook.insert(make_pair("Faye", "555-1234"));
phonebook.insert(make_pair("Sarah", "555-8787"));
phonebook.insert(make_pair("Sarah", "555-5678"));

Programacion en C++

@ Getting the Number of Elements With a
Specified Key

* The multimap class’s count () member function accepts
a key as its argument, and returns the number of elements
that match the specified key.

#include <iostream>
#include <string>
#include <map>

using namespace std;

int main()
{
/| Define a phonebook multimap.
multimap<string, string> phonebook =
{ {"Wil1", "555-1212"}, {"Will", "555-0123"},
{"Faye", "555-0707"}, {"Faye", "555-1234"},
{"Sarah", "555-8787"}, {"Sarah", "555-5678"} };

/| Display the number of elements that match "Faye".
cout << "Faye has " << phonebook.count("Faye") << " elements.\n";
return O;

}

Programacion en C++

C Retrieving Elements with a Specified Key

* The multimap class has a find () member function that
searches for an element with a specified key.

* The find () function returns an iterator to the first element
matching it.

* |fthe elementis not found, the find () function returns an
iterator to the end of the multimap.

* To retrieve all elements matching a specified key, use the
equal_range member function.

* The equal_range member function returns a pair object.

— The pair object’s first member is an iterator pointing to the first
element that matches the specified key.

— The pair object's second member is an iterator pointing to the position
after the last element that matches the specified key.

Programacion en C++

@ Retrieving Elements with a Specified Key

/| Define a phonebook multimap.
multimap<string, string> phonebook =
£ {"Witi1", "b55-1212"}, {"Will", "555-0123"},
{"Faye", "b55-0707"}, {"Faye", "555-1234"},
{"Sarah", "b55-8787"}, {"Sarah", "555-5678"} };

/| Define a pair variable to receive the object that

[/ 1s returned from the equal_range member function.

pair<multimap<string, string>::iterator,
multimap<string, string>::iterator> range;

/| Define an iterator for the multimap.
multimap<string, string>::iterator iter;

[/ Get the range of elements that match "Faye".
range = phonebook.equal_range("Faye");

[/ Display all of the elements that match "Faye".
for (iter = range.first; iter != range.second; iter++)
{

cout << diter—>first << "\t" << jter—->second << endl:

}

Programacion en C++

@ Deleting Elements with a Specified Key

* To delete all elements matching a specified key, use the
erase () member function.

/| Define a phonebook multimap.
multimap<string, string> phonebook =
{ {"Will", "b55-1212"}, {"Will", "555-0123"},
{"Faye", "555-0707"}, {"Faye", "b55-1234"},
{"Sarah", "b555-8787"}, {"Sarah", "555-5678"} };

/|| Delete Will's phone numbers from the multimap.
phonebook.erase("Will1");

Programacion en C++

S The unordered multimap Class

* The unordered multimap class is similar to the
multimap class, except:
— The keys in an unordered_multimap are not sorted
— The unordered_multimap class has better performance

* You should use the unordered multimap class instead
of the multimap class if:

— You will be making a lot of searches on a large number of elements
— You are not concerned with retrieving them in key order

* The unordered_multimap class is declared in the
<unordered multimap> header file

Programacion en C++

Sets

A set Is an associative container that is similar to a
mathematical set.

You can use the STL set class to create a set
container.

All the elements in a set must be unique. No two
elements can have the same value.

The elements in a set are automatically sorted in
ascending order.

The set class is declared in the <set > header file.

Programacion en C++

& The set Class

* You can use the STL set class to create a set
container.

* The keys that are stored in a map container are
unique — no duplicates.

* The map class is declared in the <map> header file.

Programacion en C++

C

set Class Constructors

Default
Constructor

Range
Constructor

Copy
Constructor

setcdataType> name;
Creates an empty set.

set<dataType> name(iteratorl,
iterator2);

Creates a set that is initialized with a range of
values. iteratorl marks the beginning of the
range and iterator2 marks the end.

set<dataType> name(set2),;
Creates a set that is a copy of set2.

Programacion en C++

The set Class

Example: defining a set container to hold integers:
set<int> numbers;

Example: defining and initializing a set container to hold
integers:

set<int> numbers = {1, 2, 3, 4, 5};

A set cannot contain duplicate items.

If the same value appears more than once in an initialization
list, it will be added to the set only one time.

For example, the following set will contain the values 1, 2, 3,

4, and 5:
set<int> numbers = {1, 1, 2, 2, 3, 4, 5, 5, 5};

Programacion en C++

C Adding New Elements to a set

» The insert () member function adds a new
elementto a set:

set<int> numbers;

numbers.insert(10);
numbers.insert(20);
numbers.insert(30);

Programacion en C++

@ Stepping Through a set With the Range-
Based for Loop

/| Create a set containing names.
Setqstrjng} names = {"Joe", "KBFEHH, ”Lisa", nJaijeu};

/| Display each element.
for (string element : names)

{

cout << element << endl;

}

Programacion en C++

C Using an lterator With a set

* The begin() and end() member functions return a
bidirectional iterator of the iterator type

* The cbegin() and cend() member functions return a
bidirectional iterator of the const_iterator type

* The rbegin() and rend() member functions return a
reverse bidirectional iterator of the reverse_iterator
type

* The crbegin() and crend() member functions return a

reverse bidirectional iterator of the
const_reverse_iterator type

Programacion en C++

C

Using an Iterator With a set

/| Create a set containing names.
set<string> names = {"Joe", "Karen", "Lisa", "Jackie"};

|/ Create an iterator.
set<string>::iterator iter;

/| Use the iterator to display each element in the set.
for (iter = names.begin(); iter != names.end(); iter++)

{
}

cout << *iter << endl;

Programacion en C++

@ Determining Whether an Element Exists

* The set class’s count () member function accepts a value
as its argument, and returns 1 if that value exists in the set.
The function returns 0 otherwise.

set<string> names = {"Joe", "Karen", "Lisa", "Jackie"};
if (names.count("Lisa"))

cout << "Liga was found in the set.\n";
else

cout << "Lisa was not found.\n";

Programacion en C++

C Retrieving an Element

» The set class has a find () member function that
searches for an element with a specified value.

* The find() function returns an iterator to the
element matching it.

* [fthe element is not found, the find () function
returns an iterator to the end of the set.

Programacion en C++

C

Retrieving an Element

/| Create a set containing names.
set<string> names = {"Joe", "Karen", "Lisa",

/| Create an iterator.
set<string>::iterator iter;

/] Find "Karen".
iter = names.find("Karen");

[/ Display the result.

if (iter != names.end())
{

cout << *jter << " was found.\n":
}
else
{

cout << "Karen was not found.\n":
!

"Jackie"};

Programacion en C++

ﬁ Storing Objects Of Your Own Classes in a
set

» |f you want to store an object in a set, there is one
requirement for that object’s class:

It must overload the < operator.

» Consider the following Customer class...

Programacion en C++

@ Storing Objects Of Your Own Classes in a

set

#ifndef CUSTOMER_H
#define CUSTOMER_H
#include<string=
using namespace std;

class Customer
{
private:
int custNumber:;
string name;
public:
Customer(int cn, string n)
{ custNumber = cn;
name = n; }

void setCustNumber(int cn)
{ custNumber = cn; }

void setName(string n)
{ name = n; }

int getCustNumber() const
{ return custNumber; }

string getName() const
{ return name; }

bool operator < (const Customer &right) const
{ bool status = false;

if (custNumber < right.custNumber)
status = true;

return status; }
}i
#endif

Programacion en C++

@ Storing Objects Of Your Own Classes in a
set

#include <iostream> Continued...
#include <set> /| Search for customer number 1002.
#include "Customer.h" cout << "\nSearching for Customer Number 1002:\n";
using namespace std; auto it = customerset.find(Customer (1002, ""));
int main() if (it != customerset.end())

cout << "Found: " << it->getName() << endl;
{ else

|| Create a set of Customer objects.
set<Customer> customerset =
{ Customer (1003, "Megan Cruz"),
Customer (1002, "Austin Hill"),
Customer (1001, "Sarah Scott")

cout << "Not found.\n";

return 0;

}i

/| Try to insert a duplicate customer number.
customerset.emplace (1001, "Evan Smith");

/| Display the set elements
cout << "List of customers:\n";:
for (auto element : customerset)

{

cout << element.getCustNumber() <<
<< element.getName() << endl;

Programacion en C++

The multiset Class

The mulitset class is a set that allows duplicate items.

The mulitset class has the same member functions as the
set class.

The multiset class is declared in the <set> header file.

In the set class, the count () member function returns
either 0 or 1. Inthe multiset class, the count () member
function can return values greater than 1.

In the set class, the equal_range () member function
returns a range with, at most, one element. Inthe multiset
class, the equal_range () member function can return a
range with multiple elements.

Programacion en C++

C The unordered set Class

* The unordered_set class is similar to the set class,
except in two regards:
— The values in an unordered_set are not sorted
— The unordered_set class has better performance

* You should use the unordered_set class instead of the
set class if:
— You will be making a lot of searches on a large number of elements
— You are not concerned with retrieving them in ascending order

* The unordered_set class is declared in the
<unordered_set> header file

Programacion en C++

C The unordered multiset Class

* The unordered multiset class is similar to the
multiset class, exceptin two regards:
— The values in an unordered_multiset are not sorted
— The unordered_multiset class has better performance

* You should use the unordered multiset class instead
of the multiset class if:

— You will be making a lot of searches on a large number of elements
— You are not concerned with retrieving them in ascending order

* The unordered _multiset class is declared in the
<unordered_set> header file

Programacion en C++

C STL Algorithms

 The STL provides a number of algorithms, implemented as
function templates, in the <algorithm> header file.

* These functions perform various operations on ranges of
elements.

* Arange of elements is a sequence of elements denoted by
two iterators:
— The first iterator points to the first element in the range

— The second iterator points to the end of the range (the element to
which the second iterator points is not included in the range).

Programacion en C++

Categories of Algorithms in the STL

Min/max algorithms
Sorting algorithms
Search algorithms

Read-only sequence
algorithms

Copying and moving
algorithms

Swapping algorithms

Replacement algorithms

Removal algorithms
Reversal algorithms
Fill algorithms

Rotation algorithms
Shuffling algorithms

Set algorithms
Transformation algorithm
Partition algorithms
Merge algorithms
Permutation algorithms
Heap algorithms

» Lexicographical comparison

algorithm

Programacion en C++

& Sorting

* The sort function:

sort(iteratorl, iterator2);

iteratorl and iterator2 mark the beginning
and end of a range of elements. The function sorts the
range of elements in ascending order.

Programacion en C++

& Searching

* The binary_search function:

binary_search(iteratorl, iterator2, value);

iteratorl and iterator2 mark the beginning
and end of a range of elements that are sorted in

ascending order. value is the value to search for. The
function returns true if value is found in the range,
or false otherwise.

Programacion en C++

Searching

#include <iostream>
#include <vector>

#include <algorithm>
using namespace std;

int main()

{
int searchValue; /| Value to search for
/| Create a vector of unsorted integers.
vector<int> numbers = {10, 1, 9, 2, 8, 3, 7, 4,
// Sort the vector.
sort(numbers.begin(), numbers.end());
/I Display the vector.
cout << "Here are the sorted values:\n";
for (auto element numbers)
cout << element << " ";
cout << endl;
/!l Get the value to search for.
cout << "Enter a value to search for: ";
cin >> searchValue;
I/ Search for the value.
if (binary_search(numbers.begin(), numbers.end(),
cout << "That value is in the vector.\n";
else
cout << "That wvalue is not in the vector.\n":
return 0;
}

6, 5};

searchValue))

Programacion en C++

C Detecting Permutations

* |farange has N elements, there are N! possible
arrangements, or permutations, of those elements.

 For example, the range of integers 1, 2, 3 has six possible
permutations:

Programacion en C++

C Detecting Permutations

* The is permutation() function determines whether
one range of elements is a permutation of another range of
elements.

is _permutation(iteratorl, 1iterator2, iterator3)

- 1teratorland iterator2 mark the beginning and end of the first range of
elements.

— 1terator3 marks the beginning of the second range of elements, assumed to
have the same number of elements as the first range.

— The function returns true if the second range is a permutation of the first range,
or false otherwise.

Programacion en C++

& Plugging Your Own Functions into an
Algorithm

 Many of the function templates in the STL are designed to accept
function pointers as arguments.

* This allows you to “plug” one of your own functions into the
algorithm.

* Forexample:

for _each(iteratorl, 1iterator2, function)

- 1teratorl and iterator2 mark the beginning and end of a range of
elements.

— function is the name of a function that accepts an element as its
argument.

— The for_each() function iterates over the range of elements, passing
each element as an argument to function.

Programacion en C++

Plugging Your Own Functions into an
Algorithm

C

* For example, consider this function; Vve1d doubleNumber(int &n)

{
n=n"m%*2;
!
* And this code snippet: This passes each
vector<int> numbers = { 1, 2, 3, 4, 5 }; element ofthe
// Display the numbers before doubling. numbers vector to
for (auto element : numbers) the doubleNumber
cout << element << " "; .

cout << endl; function.
/| Double the value of each vector element. //

for_each(numbers.begin(), numbers.end(), doubleNumber);

// Display the numbers before doubling.
for (auto element : numbers)

cout << element << " ";
cout << endl;

Programacion en C++

& Plugging Your Own Functions into an
Algorithm

* Another example:

count_if(iteratorl, 1iterator2, function)

— 1teratorl and iterator2 mark the beginning and end of a
range of elements.

- function is the name of a function that accepts an element as its
argument, and returns either true or false.

— The count_if () function iterates over the range of elements,
passing each element as an argument to function.

— The count_if function returns the number of elements for which
function returns true.

Programacion en C++

Plugging Your Own Functions into an
Algorithm

#include <iostream>
#include <vector>

#include <algorithm>
using namespace std;

// Function prototypes
bool isNegative(int);

OLCoOoNOUVLTE, WNBR

int main()

{

R
)

// Create a vector of ints.
vector<int> numbers = { @, 99, 120, -33, 10, 8, -1, 101 };

R R R
A wnN

// Get the number of elements that are negative.
int negatives = count_if(numbers.begin(), numbers.end(), isNegative);

B
N O U

// Display the results.
cout << "There are " << negatives <<
return 0;

=
o0

negative elements.\n";

N =
[INe}

}

NN
N =

// isNegative function

23 bool isNegative(int n)
24 {

25 bool status = false;
26

27 if (n < Q)

28 status = true;

29

30 return status;

31}

Programacion en C++

C

Algorithms for Set Operations

» The STL provides function templates for basic mathematical

set operations.
set_union Finds the union of two sets, which is a set that contains all the elements of both
sets, excluding duplicates.
set_intersection Finds the intersection of two sets, which is a set that contains only the elements
that are found in both sets.
set_difference Finds the difference of two sets, which is the set of elements that appear in one

set, but not the other.

set_symmetric_difference Finds the symmetric difference of two sets, which is the set of elements that
appear in one set, but not both.

set_includes Determines whether one set includes another.

Programacion en C++

C Function Objects

» Afunction object is an object that acts like a function.
— It can be called
— It can accept arguments
— It can return a value

* Function objects are also known as functors

Programacion en C++

C

Function Objects

» To create a function object, you write a class that
overloads the () operator.

#ifndef SUM_H
#define SUM_H

class Sum Accepts two int arguments

{
public:

int operator()(int a, int b)

{ return a + b} }«——— Returns an int
}
#endif

OC WO ~NOOO Pk~ WMN-—

—

Programacion en C++

Function Objects

#include <iostream>
#include "Sum.h"
using namespace std;

int main()

{
/| Local variables
int x = 10;
int y = 2;
int z = 0;
/| Create a Sum object.
Sum sum;
// Call the sum function object.
z = sum(x, Yy);
/| Display the result.
cout << z << endl;
return O;

}

Programacion en C++

C

Anonymous Function Objects

* Function objects can be called at the point of their creation,
without being given a name. Consider this class:

#ifndef IS_EVEN_H
#define IS_EVEN_H

class IsEven
{
public:
bool operator()(int x)
{ return x % 2 == 0; }
b
10 #endif

R wWwN =

[{nllee) | [a))]

Programacion en C++

C

Anonymous Function Objects

—
O OO N0 WK =

—&
Mo =

13
14

15

16
17
18

#include <iostream>
#include <vector>

#include <algorithm>

An IsEven object is created

#include "IsEven.h" here, but not given a name.
using namespace std; It is anonymous.
int main()
{
/| Create a vector of ints.
vector<int> v = { 1, 2, 3, 4, 5, 6, 7, 8 };
/| Get the number of elements that even.
int evenNums = count_if(v.begin(), v.end(), IsEven());
[/ Display the results.
cout << "The vector contains " << evenNums << " even numbers.\n";
return 0;
}

Programacion en C++

Predicate Terminology

A function or function object that returns a Boolean value is
called a predicate.

A predicate that takes only one argument is called a unary
predicate.

A predicate that takes two arguments is called a binary
predicate.

This terminology is used in much of the available C++
documentation and literature.

Programacion en C++

C Lambda Expressions

* Alambda expression is a compact way of creating a function
object without having to write a class declaration.

* |tis an expression that contains only the logic of the object’s
operator () member function.

* When the compiler encounters a lambda expression, it
automatically generates a function object in memory, using
the code that you provide in the lambda expression for the
operator () member function.

Programacion en C++

C Lambda Expressions

« (General format:

[1(parameter List) { function body }

* The [] is known as the lambda introducer. It marks the
beginning of a lambda expression.

e parameter L1istis a list of parameter declarations for the
function object's operator () member function.

e function body is the code that should be the body of the
object’'s operator () member function.

Programacién en C++

C Lambda Expressions

» Example: a lambda expression for a function object that

computes the sum of two integers:
[](int a, int b) { return x + vy; }

» Example: a lambda expression for a function object that
determines whether an integer is even is:
[1(int Xx) { return x % 2 == 0; }

« Example: a lambda expression for a function object that takes
an integer as input and prints the square of that integer:
[](int a) { cout << a * a << " "; }

Programacion en C++

C Lambda Expressions

 When you call a lambda expression, you write a list of
arguments, enclosed in parentheses, right after the
expression.

 For example, the following code snippet displays 7, which is
the sum of the variables x and y:

int x = 2;
int y = 5;
cout << [](int a, int b) {return a + b;}(x, y) << endl;

Programacion en C++

C Lambda Expressions

* The following code segment counts the even numbers in a
vector:

// Create a vector of ints.

vector<int> v=4{1, 2, 3, 4, 5, 6, 7, 8 };

// Get the number of elements that are even.

int evenNums = count_if(v.begin(), v.end(), [](int x) {return x % 2 == 0;});
// Display the results.

cout << "The vector contains " << evenNums << " even numbers.\n";

 Because lambda expressions generate function objects, you
can assign a lambda expression to a variable and then call it
through the variable’s name:

auto sum = [](int a, int b) {return a + b;};

int x = 2;
int y = 5;
int z = sum(x, y);

Programacion en C++

C

Lambda Expressions

#include <iostream>
#include <vector>

#include <algorithm>
using namespace std;

int main()

{
/| Create a vector of ints.
vector<int> v = { 1, 2, 3, 4, 5, 6, 7, 8 };
/] Use a lambda expression to create a function object.
auto iskEven = [](int x) { return x % 2 == 0; };
/| Get the number of elements that even.
int evenNums = count_if(v.begin(), v.end(), isEven);
/] Display the results.
cout << "The vector contains " << evenNums << " even numbers.\n";
return 0;
}

Programacion en C++

C

Functional Classes in the STL

» The STL library defines a number of classes that you can
instantiate to create function objects in your program.

* To use these classes, you must #include the
<functional> header file.

« Table 17-15 lists a few of the functional classes:

Table 17-15 STL Function Object Classes

Functional Class Description

less<T> less<T>()(T a, T b)istrueif and onlyifa < b
less_equal<T> less_equal()(T a, T b)istrueifanonlyifa <= b
greater<T> greater<T>()(T a, T b) istrueif and onlyifa > b
greater_equal<T> greater_equal<T>()(T a, T b) istrueif and onlyifa >= b

Programacion en C++

5. Data Structures

Programacion en C++

S

Linked List ADT

» Linked list: set of data structures (nodes) that

contain references to other data structures

list
head

»null

» References may be addresses or array indices
« Data structures can be added to or removed from

the linked

Ist during execution

list
head

newNode

/

\

\

null

Programacion en C++

C Linked Lists vs. Arrays and Vectors

* Linked lists can grow and shrink as needed, unlike
arrays, which have a fixed size

* Linked lists can insert a node between other nodes
easily

[> [> [> ° »nul 1l

list
head

Programacion en C++

S Node Organization - Declaring a Node

* A node contains:

— data: one or more data fields — may be organized as

structure, object, etc.

— a pointer that can point to another node

* Declare a node:
struct ListNode {
int data;

data

pointer

ListNode *next;

bi
* No memory is allocated at this time

Programacion en C++

C Linked List Organization

* Linked list contains 0 or more nodes:

»null

list
head

» Has a list head to point to first node
» Lastnode pointsto null (address 0)

Programacion en C++

Empty List

f a list currently contains 0 nodes, it is the empty
list
n this case the list head points to nul1

list
head

o—/— NULL

Programacion en C++

C Defining a Linked List

* Define a pointer for the head of the list:
ListNode *head = nullptr;

* Head pointer initialized to nullptr to indicate an
empty list

head

—— null

Programacion en C++

C The Null Pointer

* |s used to indicate end-of-list

» Should always be tested for before using a pointer:
ListNode *p;
while (!p)

Programacion en C++

C Linked List Operations

» Basic operations:
— append a node to the end of the list
— Insert a node within the list
— traverse the linked list
— delete a node
— delete/destroy the list

Programacion en C++

Linked List Example - NumberList.h

1 // Specification file for the NumberList class
2 #ifndef NUMBERLIST_H

3 #define NUMBERLIST_H

4

5 class NumberList

6 |

7 private:

8 // Declare a structure for the list

9 struct ListNode

10 {

11 double value; // The value in this node
12 struct ListNode *next; // To point to the next node
13 }i

14

15 ListNode *head; // List head pointer
16

17 public:

18 // Constructor

19 NumberList ()
20 { head = nullptr; }
21
22 // Destructor
23 ~NumberList () ;
24
25 // Linked list operations
26 void appendNode (double) ;
27 void insertNode (double) ;
28 void deleteNode (double) ;
29 void displayList () const;
30 };
31 #endif

Programacion en C++

& Create a New Node

* Allocate memory for the new node:

newNode = new ListNode;

* |nitialize the contents of the node:

newNode->value = num;

» Set the pointer field to nullptr:

newNode->next = nullptr;

newNode

newNode

23

newNode

23

»null

Programacion en C++

C Appending a Node

« Add a node to the end of the list

» Basic process:

— Create the new node (as already described)

— Add node to the end of the list;

* |flist is empty, set head pointer to this node
* Else,
— traverse the list to the end
— set pointer of last node to point to new node

Programacion en C++

Appending a Node

list
head

list
head

»null

A 4

19

| _—

»null

5 13
> [> [
23
[> [
newNode
5 13
> [> [
23
[> [
newNode

»null

[
»

19

| —®

Programacion en C++

C

C++ code for Appending a Node

11
12
13
14
15
16
17
18
19
20
21
22
23

vold NumberList::appendNode (double num)

{

ListNode *newNode; // To point to a new node
ListNode *nodePtr; // To move through the list

// Allocate a new node and store num there.

newNode = new ListNode;
newNode->value = num;
newNode->next = nullptr;

// If there are no nodes in the list
// make newNode the first node.
if (!'head)

Programacion en C++

C++ code for Appending a Node

(Continued)
24 head = newNode;
25 else // Otherwise, insert newNode at end.
26 {
277 // Initialize nodePtr to head of list.
28 nodePtr = head;
29
30 // Find the last node in the list.
31 while (nodePtr->next)
32 nodePtr = nodePtr->next;
33
34 // Insert newNode as the last node.
35 nodePtr->next = newNode;
36 }
37 }

Programacion en C++

Appending a Node

/] This program demonstrates a simple append
/| operation on a linked list.

#include <iostream>

#include "NumberList.h”

using namespace std;

int main()

{
/| Define a NumberList object.
NumberList Tist;

/| Append some values to the list.
list.appendNode(2.5);
list.appendNode(7.9);
l1ist.appendNode(12.6) ;

return O;

Programacion en C++

& Inserting a Node into a Linked List

« Used to maintain a linked list in order

 Requires two pointers to traverse the list:

— pointer to locate the node with data value greater than that
of node to be inserted

— pointer to 'trail behind' one node, to point to node before
point of insertion

* New node is inserted between the nodes pointed at
by these pointers

Programacion en C++

C

Inserting a Node into a Linked List

previousNode nodePtr
° > S ° > 13 ° > 19 ° »nul 1l
list
head
° > 18 ° »nul 1l

newNode

Programacion en C++

C

Inserting a Node into a Linked List

previousNode nodePtr
5 13 19
° > ° > ° »nul 1l
1
list
head
° > 18 e
newNode

Programacion en C++

vold NumberList::insertNode(double num)

{

ListNode *newNode; // A new node
ListNode *nodePtr; // To traverse the list
ListNode *previousNode = nullptr; // The previous node

// Allocate a new node and store num there.
newNode = new ListNode;
newNode->value = num;

// If there are no nodes in the list
// make newNode the first node
if (!head)
{
head = newNode;
newNode->next = nullptr;
I3
else // Otherwise, insert newNode
{
// Position nodePtr at the head of list.
nodePtr = head;

Programacion en C++

// Initialize previousNode to nullptr.
previousNode = nullptr;

// Skip all nodes whose value is less than num.
while (nodePtr != nullptr && nodePtr->value < num)

{

previousNode = nodePtr;
nodePtr = nodePtr->next;

// If the new node is to be the 1lst in the list,
// insert it before all other nodes.
if (previousNode == nullptr)
{
head = newNode;
newNode->next = nodePtr;
}

else // Otherwise insert after the previous node.

{

previousNode->next = newNode;
newNode->next = nodePtr;

Programacion en C++

/'l This program demonstrates the insertNode member function.
#include <iostream>

#include "NumberList.h"

using namespace std;

int main()

{
/'l Define a NumberList object.
NumberList Tlist;

[/ Build the Tist with some values.
Tist.appendNode(2.5) ;
Tist.appendNode(7.9) ;
Tist.appendNode(12.6) ;

[/ Insert a node in the middle of the list.
Tist.insertNode(10.5) ;

[/ Display the Tlist
Tist.displayList();
return O;

Programacion en C++

C Traversing a Linked List

* Visit each node in a linked list: display contents,
validate data, efc.

» Basic process:
— set a pointer to the contents of the head pointer

— while pointer is not a null pointer
* process data

* go to the next node by setting the pointer to the pointer field of
the current node in the list

— end while

Programacion en C++

S

Traversing a Linked List

-

list
head

13

19

nodePtr

L —@

»null

Programacion en C++

C Deleting a Node

« Used to remove a node from a linked list

* [f list uses dynamic memory, then delete node from
memory

* Requires two pointers: one to locate the node to be
deleted, one to point to the node before the node to
be deleted

Programacion en C++

Deleting a Node

previousNode nodePtr

\

»null

5 13 19
[> [> @ g
list
head
previousNode nodePtr

\

vy

list
head

»null

Programacién en C++

C Deleting a Node

previousNode nodePtr

° > ° > ° »null

list
head

Programacién en C++

Deleting a Node

void NumberList::deleteNode(double num)
{
ListNode *nodePtr; // To traverse the list
ListNode *previousNode; // To point to the previous node

// If the list is empty, do nothing.

if (!head) // If nodePtr is not at the end of the list,
return; // link the previous node to the node after
// Determine if the first node is the one. {f nodePtr, then delete nodePtr.
if (head->value == num) if (nodePtr)
{ {
nodePtr = head->next: previousNode->next = nodePtr->next;
delete head: ' delete nodePtr;
r
head = nodePtr; } }
} }
else
{

// Initialize nodePtr to head of list
nodePtr = head;

// Skip all nodes whose value member is
// not equal to num.
while (nodePtr != nullptr && nodePtr->value != num)
{
previousNode = nodePtr;
nodePtr = nodePtr->next;

Programacion en C++

Deleting a Node

I/ This program demonstrates the deleteNode member function.

#include <iostream>
#include "NumberList.h"
using namespace std;

int main()

{

/{1 Define a NumberList object.
NumberList list;

/1 Build the list with some values.
list.appendNode(2.5);
list.appendNode(7.9);
list.appendNode(12.6) ;

11 Dispiay the list.

cout << "Here are the initial values:\n";
Tist.displayList();

cout << endl;

/1 Delete the middle node.
cout << "Now deleting the node in the middle.\n";
list.deleteNode(7.9);

/1 Display the Tlist.

cout << "Here are the nodes left.\n";
Tist.displayList();

cout << endl;

/1 Delete the last node.
cout << "Now deleting the last node.\n";
list.deleteNode(12.6) ;

/1 Display the Tlist.

cout << "Here are the nodes left.\n";
Tist.displayList();

cout << endl;

/I Delete the only node left in the 1list.
cout << "Now deleting the only remaining node.\n";
Tist.deleteNode(2.5);

/I Display the Tist.

cout << "Here are the nodes left.\n";
Tist.displayList();

return 0;

Programacion en C++

C Destroying a Linked List

Must remove all nodes used in the list

To do this, use list traversal to visit each node

For each node,
— Unlink the node from the list

— If the list uses dynamic memory, then free the node’s memory

Setthelistheadto nullptr

Programacion en C++

NumberList: :~NumberList()

{

ListNode *nodePtr; // To traverse the list
ListNode *nextNode; // To point to the next node

// Position nodePtr at the head of the list.
nodePtr = head;

// While nodePtr is not at the end of the list...
while (nodePtr != nullptr)

{

// Save a pointer to the next node.
nextNode = nodePtr->next;

// Delete the current node.
delete nodePtr;

J// Position nodePtr at the next node.
nodePtr = nextNode;

Programacion en C++

C A Linked List Template

 When declaring a linked list, must specify the type of
data to be held in each node

» Using templates, can declare a linked list that can
hold data type determined at list definition time

Programacion en C++

sﬂ Variations of the Linked List

* Other linked list organizations:

— doubly-linked list: each node contains two pointers: one
to the next node in the list, one to the previous node In
the list

T ° > ol o > ol e— snull

list l

head null

Programacion en C++

sﬂ Variations of the Linked List

* Other linked list organizations:

— circular linked list: the last node in the list points back to
the first node in the list, not to the null pointer

5 | 13 | 19

list
head

Programacion en C++

& The STL 1ist Container

 Template for a doubly linked list

* Member functions for
— locating beginning, end of list: front, back, end

— adding elements to the list: insert, merge,
push back, push front

— removing elements from the list: erase, pop back,
pop front, unique

« See for a list of constructors and member functions

Programacion en C++

https://en.cppreference.com/w/cpp/container/list

\ﬂ The STL forward 1ist Container

Template for a singly linked list

* You can only step forwardina forward list.

* Aforward 1list uses slightly less memory than a
1ist, and has takes slightly less time for inserting and

removing nodes.

* Provides most, but not all, of the same member functions as
the 11 st container

Programacion en C++

& Introduction to the Stack ADT

» Stack: a LIFO (last in, first out) data structure

» Examples:
— plates in a cafeteria
— return addresses for function calls
* Implementation:
— static: fixed size, implemented as array
— dynamic: variable size, implemented as linked list

Last plate in,
first plate out

—>»5
4

. : 2
First plate in, —3»-(3

last plate out

Programacion en C++

& Stack Operations and Functions

* QOperations:
— push: add a value onto the top of the stack
— pop: remove a value from the top of the stack

* Functions:

— 1sFull: true if the stack is currently full, i.e., has no
more space to hold additional elements

— iIsEmpty: true Iif the stack currently contains no
elements

Programacion en C++

C Dynamic Stacks

» Grow and shrink as necessary
» Can't ever be full as long as memory is available

* Implemented as a linked list

Programacion en C++

C Implementing a Stack

 Programmers can program their own routines to
implement stack functions

» See DynIntStack class for an example.

» Can also use the implementation of stack available in
the STL

Programacion en C++

& The STL stack container

o Stack template can be implemented as a vector,
a linked list, or a deque

* Implements push, pop, and empty member
functions
* Implements other member functions:
— size:number of elements on the stack
— top: reference to element on top of the stack

Programacion en C++

Defining a stack

Defining a stack of chars, named cstack, implemented
using a vector:
stack< char, vector<char>> cstack;

implemented using a list;
stack< char, list<char>> cstack;

implemented using a deque:
stack< char > cstack;

When using a compiler that is older than C++ 11, be sure to
put spaces between the angled brackets that appear next to
each other.

stack< char, vector<char> > cstack;

Programacion en C++

sﬂ Introduction to the Queue ADT

* Queue: a FIFO (first in, first out) data structure.
« Examples:

— people in line at the theatre box office

— print jobs sent to a printer
* |mplementation:

— static: fixed size, implemented as array

— dynamic: variable size, implemented as linked list

Programacion en C++

& Queue Locations and Operations

rear: position where elements are added
front: position from which elements are removed
enqueue: add an element to the rear of the queue

dequeue: remove an element from the front of a
queue

Programacion en C++

C Queue Operations - Example

« Acurrently empty queue that can hold char values:

e enqueue('E'");

front —— & « rear
e enqueue ('K'); front—— b K rear
e enqueue ('G'); front —| E K G | rear
// remove E
e dequeue() ; front —— K G |« rear
// remove K
 dequeue () ; front—— G | rear

LS R & "} NI

C dequeue Issue, Solutions

* \When removing an element from a queue, remaining
elements must shift to front

« Solutions:

— Let front index move as elements are removed (works as long as
rear index is not at end of array)

— Use above solution, and also let rear index "wrap around" to front
of array, treating array as circular instead of linear (more complex
enqueue, dequeue code)

Programacion en C++

S

Dynamic Queues

» Like a stack, a queue can be implemented using a

linked list

» Allows dynamic sizing, avoids issue of shifting
elements or wrapping indices

front

——» null

rear

Programacion en C++

C Implementing a Queue

 Programmers can program their own routines to
iImplement queue operations

« See the DynIntQue class in the book for an
example of a dynamic queue

» Can also use the implementation of queue and
dequeue available in the STL

Programacion en C++

& The STL deque
and queue Containers

« deque: a double-ended queue. Has member
functions to enqueue (push back) and dequeue
(pop front)

« queue. container ADT that can be used to provide
queue as a vector, list, or deque. Has member
functions to enque (push) and dequeue (pop)

Programacion en C++

S Defining a queue

» Defining a queue of chars, named cQueue,
implemented using a deque:
deque<char> cQueue;
* Implemented using a queue:
queue<char> cQueue;

 implemented usinga 1ist:

queue<char, list<char>> cQueue;

Programacion en C++

& Definition and Application of

Binary Trees

* Binary tree: a nonlinear linked list in which each

node may point to 0, 1, or two other nodes
» Each node contains

one or more
data fields and
two pointers

di null

null null

e null

/
null

.

null

Programacion en C++

C Binary Tree Terminology

* Tree pointer: like a head
pointer for a linked list, it
points to the first node in the

binary tree
* Root node: the node at the 1%
top of the tree e e
N\ N\
_ o «\ null L o 0\\ null
null null null null

Programacion en C++

C Binary Tree Terminology

« Leaf nodes: nodes that
have no children

The nodes containing 7
and 4 3 are leaf nodes

31

19

null

null

.

null

[
S
g N\
null null

Programacion en C++

C Binary Tree Terminology

 Child nodes, children:
nodes below a given
node

The children of the node
containing 31 are the
nodes containing 1 9 and
59

31

19

i

\

null

null

.

null

29 el

43

e .\ null

/
null

AW
null

Programacion en C++

C Binary Tree Terminology

* Parent node: node above a

given node

The parent of the node

containing 4 3 is the node

containing 59

31

19/.\
7 | e e null
=\
null null

59

43

'\ null

/
null

.
null

Programacion en C++

C Binary Tree Terminology

 Subtree: the portion of a

tree from a node down to

the leaves
31"
The nodes containing 19 -
and 7 are the left subtree of - \
the node containing 31 7 Lol null
= \
null null

59

43

e 0\ null

/
null

AN
null

Programacion en C++

C Uses of Binary Trees

» Binary search tree: data
organized in a binary tree
to simplify searches

« Left subtree of a node

31 le |e

contains data values < the
data in the node 19 afa 59 ala
+ Right subtree of a node \ \
: 7 _e| @ 11 43 e null
contains values > the data [15 ™ =t IN
in the node null null null null

Programacion en C++

S

Searching in a Binary Tree

1)
2)

3)

Start at root node

Examine node data:
s it desired value? Done

Else, is desired data < node data?
Repeat step 2 with left subtree

Else, is desired data > node data?

Repeat step 2 with right subtree
Continue until desired value
found or a null pointer reached

31 le |e
19 | aa 02 /"\
7 N null 43 e |o| null
// AW / AW
null null null null

Programacién en C++

S

Searching in a Binary Tree

To locate the node containing 4 3,

Examine the root node (31) first

Since 43 > 31, examine the right
child of the node containing 31, (59)

Since 43 < 59, examine the left child
of the node containing 59, (4 3)

The node containing
43 has been found

31

19

.\

%

C\

X
null

.

\

null

null

Programacion en C++

S

Binary Search Tree Operations

Create a binary search tree — organize data into a binary
search tree

Insert a node into a binary tree — put node into tree in its
correct position to maintain order

Find a node in a binary tree — locate a node with
particular data value

Delete a node from a binary tree — remove a node and
adjust links to maintain binary tree

Programacion en C++

C Binary Search Tree Node

* Anode in a binary tree is like a node in a linked
list, with two node pointer fields:

struct TreeNode

{

int value;
TreeNode *left;
TreeNode *right;

Programacion en C++

Creating a New Node

Allocate memory for new node:
newNode = new TreeNode;

Initialize the contents of the node:
newNode->value = num;
Set the pointers to nullptr:
newNode->Left

= newNode->Right

= nullptr;

newNode
newNode
23
e | NewNode
23 o
o \
null null

Programacion en C++

C Inserting a Node in a Binary Search Tree

1) If tree is empty, insert the new node as the root node

2) Else, compare new node against left or right child,
depending on whether data value of new node is < or >

root node

3) Continue comparing and choosing left or right subtree unitl
null pointer found

4) Set this null pointer to point to new node

Programacion en C++

@ Inserting a Node in a Binary Search Tree

Examine this node first — e | newNode

value is < node, so go to

left subtree root v

! 23 e | o
o
Examine this \ v o N\
node second —
value is > node, 3Lie |e null null
so go to right
subtree
19 el 59 e
I N null 43)e (¢ null
" =\
null null null null

Since the right subtree
IS null, insert here

Programacion en C++

C Traversing a Binary Tree

Three traversal methods:

1) Inorder:
a) Traverse left subtree of node
b) Process data in node
c¢) Traverse right subtree of node

2) Preorder:
a) Process data in node
b) Traverse left subtree of node
c¢) Traverse right subtree of node

3) Postorder:
a) Traverse left subtree of node
b) Traverse right subtree of node
c) Process datain node

Programacion en C++

S

Traversing a Binary Tree

31

N null

null

AW
null

S

43,00\

null

/

null

AW
null

TRAVERSAL | NODES

METHOD VISITED IN
ORDER

Inorder 7, 19, 31,
43, 59

Preorder 31, 19, 7,
59, 43

Postorder 7, 19, 43,
59, 31

Programacion en C++

S

Searching in a Binary Tree

Start at root node,
traverse the tree looking
for value

Stop when value found or
null pointer detected

Can be implemented as a
bool function

31

7 4o o null
- .
null null

59 o

43

/
null

null

Y

null

Programacion en C++

S

Deleting a Node from a
Binary Tree — Leaf Node

* |f node to be deleted is a leaf node, replace parent node’s
pointer to it with the null pointer, then delete the node

19| ala

null

.
null

null

1o 18
N

null null

Programacion en C++

C: Deleting a Node from a
Binary Tree — One Child

* |f node to be deleted has one child node, adjust pointers
so that parent of node to be deleted points to child of
node to be deleted, then delete the node

3l | 31lie |e

19218 29 T e |o 09| sla

\ \ o AW \
7 e 11 4 3e null null null
N EE AL\ 13 [o] null
“ .
null null null null

null null

Programacion en C++

C: Deleting a Node from a
Binary Tree — Two Children

* If node to be deleted has left and right children,
— ‘Promote’ one child to take the place of the deleted node

— Locate correct position for other child in subtree of promoted
child

* Convention in text: promote the right child, position left
subtree underneath

Programacion en C++

Deleting a Node from a
Binary Tree — Two Children

C

3/:1’—0 LN 59.e o\\
Lol S i 43Je | null
\4 \4 o AW
7 e |8 null 43/e o/ null 19 null
g W g “a L .\
null null null null

P AIN null
o AW

null null

Programacion en C++

& Template Considerations for
Binary Search Trees

* Binary tree can be implemented as a template,
allowing flexibility in determining type of data stored

* Implementation must support relational operators >,
<, and == to allow comparison of nodes

Programacion en C++

Referencias

Pearson

Programacion en C++

https://www.pearson.com/us/higher-education/program/Gaddis-Starting-Out-with-C-From-Control-Structures-through-Objects-Brief-Version-Plus-My-Lab-Programming-with-Pearson-e-Text-Access-Card-Package-9th-Edition/PGM2059253.html
https://www.ntu.edu.sg/home/ehchua/programming/#Cpp
http://www.stroustrup.com/tour2.html

	Programación orientada a objetos en C++
	Table of Contents
	1. Introduction to Classes
	Procedural and Object-Oriented Programming
	Limitations of Procedural Programming
	Benefits of OOP
	Object-Oriented Programming�Terminology
	Object-Oriented Programming�Languages
	Object-Oriented Programming
	Classes and Objects
	More on Objects
	A Class is a 3-Compartment Box encapsulating Data and Functions
	A Class is a 3-Compartment Box encapsulating Data and Functions
	The Unified Modeling Language
	Classification of UML Diagrams
	UML Class Diagram
	UML Notation
	UML Notation
	Classes
	Class Definition
	Class Example
	Why Have Private Members?
	Classes in C++
	Classes in C++
	Defining an Instance of a Class
	Class Naming Convention
	Dot (.) Operator
	Keyword “this”
	Data Members (Variables)
	Member Functions
	Program CircleAIO.cpp
	Program CircleAIO.cpp
	Program Rectangle.cpp
	Program Rectangle.cpp
	Pointer to an Object and Dynamically Allocating an Object
	Separating Specification from Implementation
	Separating Specification from Implementation
	Separating Specification from Implementation – Example Circle Class
	Compiling multifile programs
	#include Guard - #pragma once
	Circle Class – Circle.h
	Circle Class – Circle.cpp
	Circle Class – TestCircle.cpp
	Inline Member Functions
	Rectangle Class with Inline Member Functions
	Constructors
	In-Place Initialization
	Default Constructors
	Passing Arguments to Constructors
	Overloading Constructors
	Constructor Delegation
	Constructor Delegation
	Copy Constructors
	Destructors
	Only One Default Constructor and One Destructor
	More features
	Using Private Member Functions
	Using Private Member Functions
	Constructor Example (Rectangle.h)
	Constructor Example (Rectangle.cpp)
	Constructor Example (ProgRect.cpp)
	Example (InventoryItem.h)
	Example (InventoryItem.h)
	Example (InventoryItem.cpp)
	More Examples
	More Examples
	More Examples
	More Examples
	Arrays of Objects
	Accessing Objects in an Array
	Instance and Static Members
	static member variable
	Three Instances of the Tree Class, But Only One objectCount Variable
	static member function
	static member function
	Friends of Classes
	 friend Class Declarations
	Memberwise Assignment
	Copy Constructors
	Copy Constructors
	Programmer-Defined Copy Constructor
	Programmer-Defined Copy Constructor
	Operator Overloading
	The this Pointer
	Operator Overloading and Invoking an Overloaded Operator
	Returning a Value
	Returning a Value
	Notes on �Overloaded Operators
	Overloading Types of Operators
	Overloaded [] Operator
	Object Conversion
	Aggregation
	Aggregation
	Aggregation
	Lvalues and Rvalues
	Rvalue References
	2. Inheritance, Polymorphism, and Virtual Functions
	What Is Inheritance?
	Inheritance – Terminology and Notation
	Back to the ‘is a’ Relationship
	What Does a Child Have?
	Protected Members and Class Access
	Class Access Specifiers
	Constructors and Destructors in Base and Derived Classes
	Passing Arguments to �Base Class Constructor
	Constructor Inheritance
	Constructor Inheritance
	Constructor Inheritance
	Redefining Base Class Functions
	Base Class
	Número de diapositiva 111
	Número de diapositiva 112
	Class Hierarchies
	Example: Superclass Point and subclass MovablePoint
	Example: Shape and its Subclasses
	Polymorphism and Virtual Member Functions
	Virtual Functions
	Número de diapositiva 118
	Polymorphism Requires References or Pointers
	Base Class Pointers
	Redefining vs. Overriding
	Virtual Destructors
	C++ 11's override and final Key Words
	Abstract Base Classes and Pure Virtual Functions
	Multiple Inheritance
	Multiple Inheritance
	3. Exceptions and Templates
	Exceptions
	Exceptions – Key Words
	Exceptions – Flow of Control
	Exceptions – Example
	Exceptions – What Happens
	Número de diapositiva 133
	Exceptions - Notes
	Exception Not Caught?
	Exceptions and Objects
	What Happens After catch Block?
	Nested try Blocks
	Function Templates
	Function Template Example
	Function Template Example
	Function Template Notes
	Function Template Notes
	Function Template Notes
	Where to Start �When Defining Templates
	Class Templates
	Class Template Example
	Class Template Example
	Class Templates and Inheritance
	4. The Standard Template Library
	The Standard Template Library
	The Standard Template Library headers
	Containers
	Containers
	STL Header Files
	The array Class Template
	The array Class Template
	Iterators
	Similarities between Pointers and Iterators
	Iterators
	Iterators
	Iterators
	Número de diapositiva 163
	Número de diapositiva 164
	Mutable Iterators
	Constant Iterators
	Reverse Iterators
	Reverse Iterators
	Reverse Iterators
	Reverse Iterators
	The vector Class
	vector Class Constructors
	Número de diapositiva 173
	Initializing a vector
	Adding New Elements to a vector
	Accessing Elements with the at() Member Function
	Using an Iterator With a vector
	Using an Iterator With a vector
	Inserting Elements with the insert() Member Function
	Número de diapositiva 180
	Overloaded Versions of the insert() Member Function
	Storing Objects Of Your Own Classes in a vector
	Número de diapositiva 183
	Número de diapositiva 184
	Inserting Container Elements With Emplacement
	Inserting Container Elements With Emplacement
	Número de diapositiva 187
	Número de diapositiva 188
	Maps – General Concepts
	Maps
	The map Class
	map Class Constructors
	Initializing a map
	The Overloaded [] Operator
	The Overloaded [] Operator
	The pair Type
	Inserting Elements with the insert() Member Function
	Inserting Elements with the insert() Member Function
	Inserting Elements with the emplace() Member Function
	Retrieving Elements with the at() Member Function
	Retrieving Elements with the at() Member Function
	Deleting Elements
	Stepping Through a map with the Range-Based for Loop
	Stepping Through a map with the Range-Based for Loop
	Using an Iterator With a map
	Número de diapositiva 206
	Storing Objects Of Your Own Classes as Values in a map
	Número de diapositiva 208
	Número de diapositiva 209
	Número de diapositiva 210
	Storing Objects Of Your Own Classes as Keys in a map
	Número de diapositiva 212
	Número de diapositiva 213
	The unordered_map Class
	The multimap Class
	Número de diapositiva 216
	Adding Elements to a multimap
	Adding Elements to a multimap
	Getting the Number of Elements With a Specified Key
	Retrieving Elements with a Specified Key
	Número de diapositiva 221
	Deleting Elements with a Specified Key
	The unordered_multimap Class
	Sets
	The set Class
	set Class Constructors
	The set Class
	Adding New Elements to a set
	Stepping Through a set With the Range-Based for Loop
	Using an Iterator With a set
	Using an Iterator With a set
	Determining Whether an Element Exists
	Retrieving an Element
	Retrieving an Element
	Storing Objects Of Your Own Classes in a set
	Número de diapositiva 236
	Número de diapositiva 237
	The multiset Class
	The unordered_set Class
	The unordered_multiset Class
	STL Algorithms
	Categories of Algorithms in the STL
	Sorting
	Searching
	Número de diapositiva 245
	Detecting Permutations
	Detecting Permutations
	Plugging Your Own Functions into an Algorithm
	Plugging Your Own Functions into an Algorithm
	Plugging Your Own Functions into an Algorithm
	Número de diapositiva 251
	Algorithms for Set Operations
	Function Objects
	Function Objects
	Número de diapositiva 255
	Anonymous Function Objects
	Número de diapositiva 257
	Predicate Terminology
	Lambda Expressions
	Lambda Expressions
	Lambda Expressions
	Lambda Expressions
	Lambda Expressions
	Número de diapositiva 264
	Functional Classes in the STL
	5. Data Structures
	Linked List ADT
	Linked Lists vs. Arrays and Vectors
	Node Organization - Declaring a Node
	Linked List Organization
	Empty List
	Defining a Linked List
	The Null Pointer
	Linked List Operations
	Número de diapositiva 275
	Create a New Node
	Appending a Node
	Appending a Node
	Número de diapositiva 279
	Número de diapositiva 280
	Número de diapositiva 281
	Inserting a Node into a Linked List
	Inserting a Node into a Linked List
	Inserting a Node into a Linked List
	Número de diapositiva 285
	Número de diapositiva 286
	Número de diapositiva 287
	Traversing a Linked List
	Traversing a Linked List
	Deleting a Node
	Deleting a Node
	Deleting a Node
	Número de diapositiva 293
	Número de diapositiva 294
	Destroying a Linked List
	Número de diapositiva 296
	A Linked List Template
	Variations of the Linked List
	Variations of the Linked List
	The STL list Container
	The STL forward_list Container
	Introduction to the Stack ADT
	Stack Operations and Functions
	Dynamic Stacks
	Implementing a Stack
	The STL stack container
	Defining a stack
	Introduction to the Queue ADT
	Queue Locations and Operations
	Queue Operations - Example
	dequeue Issue, Solutions
	Dynamic Queues
	Implementing a Queue
	The STL deque �and queue Containers
	Defining a queue
	Definition and Application of Binary Trees
	Binary Tree Terminology
	Binary Tree Terminology
	Binary Tree Terminology
	Binary Tree Terminology
	Binary Tree Terminology
	Uses of Binary Trees
	Searching in a Binary Tree
	Searching in a Binary Tree
	Binary Search Tree Operations
	Binary Search Tree Node
	Creating a New Node
	Inserting a Node in a Binary Search Tree
	Inserting a Node in a Binary Search Tree
	Traversing a Binary Tree
	Traversing a Binary Tree
	Searching in a Binary Tree
	Deleting a Node from a �Binary Tree – Leaf Node
	Deleting a Node from a �Binary Tree – One Child
	Deleting a Node from a �Binary Tree – Two Children
	Deleting a Node from a �Binary Tree – Two Children
	Template Considerations for �Binary Search Trees
	Referencias

