Programacion en C++

Pedro Corcuera

Dpto. Matematica Aplicada y
Ciencias de la Computacion

Universidad de Cantabria

corcuerp@unican.es

Programacion en C++

C

Table of Contents

© 0Nk~

Programacion en C++

Introduction to
Programming

Programacion en C++

& Software Programs That Run on a
Computer

» (Categories of software:

— System software: programs that manage the computer
hardware and the programs that run on them.

« Examples: operating systems, utility programs, software
development tools
— Application software: programs that provide services to
the user.

« Examples : word processing, games, programs to solve specific
problems

Programacion en C++

& Programs and Programming Languages

Program: set of instructions that the
computer follows to perform a task
Programming Language: a special
language used to write programs.
Algorithm: set of well-defined steps.

High level (Easily read by humans)

Types of languages:

* Low-level: used for communication with Low level (machine language)
. 10100010 11101011
computer hardware directly. Often
written in binary machine code (0’s/1’s)
directly.

* High-level: closer to human language

Programacion en C++

S

The Programming Process

. Define what the program is to do.

2. Visualize the program running on the computer.

o

© o0 N s

Use design tools to create a model of the program.
Hierarchy charts, flowcharts, pseudocode, etc.

Check the model for logical errors.

Write the program source code.

Compile the source code.

Correct any errors found during compilation.

Link the program to create an executable file.
Run the program using test data for input.

. Correct any errors found while running the program.

Repeat steps 4 - 10 as many times as necessary.

11. Validate the results of the program.

Does the program do what was defined in step 17?

Programacion en C++

& Procedural and Object-Oriented
Programming

* Procedural programming: focus is on the process.
Procedures/functions are written to process data.

* Object-Oriented programming: focus is on objects,
which contain data and algorithms to manipulate the
data. Messages are sent to objects to perform
operations. A program is viewed as interacting
objects.

Programacion en C++

& OOQOP Characteristics

* Encapsulation
— Information hiding
— Objects contain their own data and algorithms

* Inheritance
— Writing reusable code
— Objects can inherit characteristics from other objects

* Polymorphism
— A single name can have multiple meanings depending
on its context

Programacion en C++

Programming Languages

Julia Go
Python JavaScript PHP

C#
C++ Ada

BASIC Pascal

COBOL Lisp FORTRAN

Programacion en C++

https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages

C Compilers, Linkers

A compiler translate high-level language to machine
language
— Source code
* The original program in a high level language
— Object code

* The translated version in machine language

 Alinker combines
— The object code for the programs we write and
— The object code for the pre-compiled routines into
— The machine language program the CPU can run

Programacion en C++

S

From a High-Level Program to an
Executable File

Create file containing the program with a text editor
(program statements: source code, file: source file)

Run preprocessor to convert source file directives to
source code program statements.

Run compiler to convert source program into machine
:cnlstructlons (machine code) which is stored in an object
ile.

Run linker to connect hardware-specific code to
machine instructions, producing an executable file.

Steps b—d are often performed by a single command or
button click.

Errors detected at any step will prevent execution of
following steps.

Programacion en C++

From a High-Level Program to an
Executable File

Full process

Editor or IDE
Source codes (.cpp), Headers {.h}l
Preprocessor
Included files, replaced symbolsl
Compiler
Object codes (.obj, .D]l
Static Libraries (. 1ib, .a)—®»

Executable Code (.exe) l

Linker

Shared Libraries (.d11, .so)—» Loader
Input —» CPU
Output

Simplifi_e_d process

o e Source code is entered
f}u;ﬁf,_ggge } with a text editor by

-~ - the programmer.
Step 1: Write Source Codes, ¢ ! > #Hinclude <icstream’
PI'E'PI'DCESSOT uzing namespace =td;
Step 2: Preprocess ~ l {int main(}
__';_;"Ei——d—f" cout<<"Helle Worldin":
. 0 e return O
Step 3: Compile “~ Build Source Code]
Step 4: Link Edit) ! e I >
Compiler
Step 5: Load b l
> Run —
, Object Code
Step 6: Execute __he_ll_o._o_bj j|

(f Linrker J ﬂ
|

Executable Code
——hello.exe

Programacion en C++

& Integrated Development Environments
(IDES)

* An integrated development environment, or IDE,
combine all the tools needed to write, compile, and

debug a program into a single software application.

» Examples are Microsoft Visual C++, Eclipse,
CodeBlocks, Turbo C++ Explorer, CodeWarrior, etc.

Programacion en C++

Integrated Development Environments
IDEs) — Code Blocks

B8 main.cpp [prueba_cpp_cb] - Code:Blacks 20.03 - O X
File Edit View S5Search Project Build Debug Fortran wxSmith Tocls Tools+ Plugins DoxyBlocks Settings Help
"Bt YRR QAR G P> § S O Debu VEEID EeLlL e Y na|EE
Management main.cpp X
* Projects Files FSymbo * 1 ~
QWDrkspace 2
Eﬂ prueba_cpp_cb 3
- Sources 4
. mamn.cep 5 #include <iocstream>
6 using namespace std;
i
g [Flint main()
9 int n = 20;
10 int factorial = 1;
11
12 int 1 = 1;
13 |:—:| while (i1 <= n) {
14 factorial = factorial * 1i;
15 it+;
16 e }
17 cout << "The Factorial of " << n << " is " << factorial << endl; y
(a4 PR T —— L)
Logs & others =
11 |/ CppCheck/Vera++ X |7 CppCheck/Vera++ messages X |#] Cscope X aDebugger % |# DoxyBlocks X |F|Fortran info % {il*
Et D;\users\ped:o\discoD\P:ogramacion\C++ C\prueba:cpp:cb\main:cpp;lE- ™
Lt D:‘\users‘\pedrotdiscoD\Programacion\C++ Ch\pruebka_cpp ch\main.cpp:l3
Continuing. . .
[Inferior 1 (process 23524) exited with code 0300000004721
Debugger finished with status 0
]
Command:
D\users\pedrotdi.. |C/C++ Windows (CR+LF) WINDOWS-1232 Line 13, Col 20, Pos 279 Insert Read/Write default ==

Programacion en C++

Integrated Development Environments
IDES) - Eclipse

& eclipse-workspace - pr/src/pr.cpp - Eclipse EI@

File Edit Source Refactor MNavigate Search Project Run Window Help
- -4 R @ BN G- it -0 - (D BE N
EIQIv{‘l;,vl =l - Quick Access @H

l5 Project Explorer 33 = O [€ pr.cpp 532 =0 gE=ox % = 8
= <|="=|>| 2 - :_|_'— __:l__:.=;;;;:::=====T=;i:;;;======================================: - e B laz }5{ .EE @
- £ I H
4= pr 3 // Author PC *
> [l Includes 4 // version -
> (B src 5 [/ Copyright ! Your copyright notice -
> [Debug 6 // Description : Hello World in C4+4+, Ansi-style ®l iostream
7 J/=s=s==============sssssssssssoooossssssosoossssssssosssossssas = std
8 @ main():int
9 #include <icstream:
1@ uwsing namespace std;
11
12=int main() {
13 cout << "Hola" << endl; // prints Hola
14 return @;
15 3}
16
1 | 1 | [

illI

Tasks [E Console &3 Properties @:‘D‘l'—ﬂaﬂ :_lf‘fa'ﬁ'zﬁ

CDT Build Censcle [pr]

== =g=r = === ==== s e

Info: Internal Builder is used for build i

gH+ -08 -g3 -Wall -c -fmessage-length=8 -o "srci\\pr.o” "..\\srch\pr.cpp” [

gH -o pr.exe "srch\\pr.o”

¥ b
Writable Smart Insert 16:1

Programacion en C++

Integrated Development Environments
(IDEs) — Visual Studio

w Gross Pay - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = B X
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST AMALYZE WINDOW HELP

Q- B-ald 2% 9- = P Local Windows Debugger ~

GrossPay.cpp ® X

Debug - | A _

(Global Scope) - @ main()

// This progam calculates the user's pay.
#include <iostream>

Solution Explorer s w X
@ o-2d®
Search Solution Explorer (Ctrl+, O -

using namespace std; %] Gross Pay
b =3 External Dependencies
Zlint main() B Header Files

{ B Resource Files

4 &] Source Files
P *++ GrossPay.cpp

double hours, rate, pay;

// @et the number of hours worked.
cout << "How many hours did you work? “;

. Solution Explorer | Tearn Explorer
cin »» hours;

Properties wrow I
/) Get tTE hourly pay rate. . . main VCCodeFunction -
cout << "How much do you get paid per hour? ;
cin »» rate; :E y 7]
// Calculate the pay. (Name] main -
pay = hours * rate; File chusersitony'\d

FullMarme main

// Display the pay. Lslnjected False -
cout << "You have earned 3" << pay << endl; o -
return @; (Name)

:’l Sets/returns the name of the object.

Programacion en C++

C Compile/Link/Run in Linux

 \We need to use g++ command to compile C++

program, as follows: The -o option specify the output file name
S g+t+ —-o hello hello.cpp

$ chmod a+x hello

S ./hello

Source Code (.c, .cpp, .h]i
Preprocessing Step 1: Preprocessor (cpp)

Include Header, Expand Macro (.1, .ii]l
Compilation Step 2: Compiler (gcc, g++)

Assembly Code (. sjl

Assemble Step 3: Assembler (as)
Machine Code (.o, .0bj}|¢
Static Library (. 1ib, .a)—» Linking Step 4: Linker (1d)

Executable Machine Code {.exe]l

Programacion en C++

Introduction to C++

Programacion en C++

C C++ History

* Where did C++ come from?
— Derived from the C language
— C was derived from the B language
— B was derived from the BCPL language

 C developed by (AT&T Bell Labs, 1970s)
— Used to maintain UNIX systems
— Many commercial applications written in C
» (C++ developed by (AT&T Bell Labs, 1980s)
— Overcame several shortcomings of C Y
— Incorporated object oriented programming
— C remains a subset of C++

Programacion en C++

https://www.bell-labs.com/usr/dmr/www/
https://www.stroustrup.com/

S

C++ Standards

« C++is standardized as ISO/IEC 14882. Currently, there are two
versions:

C++98 (ISO/IEC 14882:1998): First standard version of C++.

C++03 (ISO/IEC 14882:2003): minor "bug-fix" to C++98 with no change to
the language. Commonly refer to as C++98/C++03 or First C++ standard.

C++11 (ISO/IEC 14882:2011): Second standard version of C++. Informally
called C++0x, as it was expected to finalize in 200x but was not released
until 2011. It adds some new features to the language; more significantly, it
greatly extends the C++ standard library and standard template library
(STL).

C++14: Informally called C++1y, is a small extension to C++11, with bug
fixes and small improvement.

C++17: informally called C++1z.

C++2a: the next planned standard in 2020.

Programacion en C++

d C++ Features

o C++is C. C++ supports (almost) all the features of C. Like C,
C++ allows programmers to manage the memory directly, so
as to develop efficient programs.

» C++is 00. C++ enhances the procedural-oriented C language
with the object-oriented extension. The OO extension facilitates
design, reuse and maintenance for complex software.

» Template C++. C++ introduces generic programming, via the
so-called template. You can apply the same algorithm to
different data types.

» STL. C++ provides a huge set of reusable standard libraries, in
particular, the Standard Template Library (STL).

Programacion en C++

C What is a Program Made of?

» Common elements in programming languages:
— Key Words
— Programmer-Defined Identifiers
— Operators
— Punctuation
— Syntax

Programacion en C++

C

// sample C++ program

The Parts of a C++ Program

comment

#include <iostream> preprocessor directive

which namespace to use

usling namespace std;

beginning of function named main

int main ()

{ beginning of block for main
cout << "Hello, world!",; « outputstatement
L string literal
return O; Send 0 to operating system
} end of block for main

Programacion en C++

C Program hello1.cpp — without namespace

/***\

* Program: First C++ program that says hello (hello.cpp) *
* Description: Simple program that print the message "hello, world" *
* Autor: Pedro Corcuera *
* Revisién: 1.0 2/02/2008 *

***/

/*
* First C++ program that says hello (hello.cpp)
*/
#include <iostream> // Needed to perform IO operations

int main() {
std: :cout << "hello, world" << std::endl;
return O;

Programacion en C++

& Comments

» Used to document parts of the program. Are ignored by the
compiler.

* Intended for persons reading the source code of the program:
— Indicate the purpose of the program
— Describe the use of variables
— Explain complex sections of code

* Types:

— Single-Line begin with / / through to the end of line:
int length = 12; // length in inches
// calculate rectangle area
area = length * width;
— Multi-Line comments begins with / *, end with * /
/* this is a multi-line

comment */

Programacion en C++

& The #include directive

* Inserts the contents of another file into the program

* |tis a preprocessor directive, not part of C++
language and not seen by compiler

» Example:

#include <iostream>

to include the input/output stream library header into the program, so as to use the |10
library function to carry out input/output operations (such as cin and cout).

Note: Do not place a semicolon at end of #include line

Programacion en C++

https://en.cppreference.com/w/cpp/header

S Preprocessor Directives

« (C++ source code is pre-processed before it is compiled into
object code

* A preprocessor directive, which begins with a # sign, tells the
preprocessor to perform a certain action, before compiling the
source code into object code.

* Preprocessor directives are not programming statements, and
therefore should NOT be terminated with a semi-colon.

« Example:
#include <iostream> // To include the IO library header
#include <cmath> // To include the Math library header

#define PI 3.14159265 // To substitute PI with 3.14159265

Programacion en C++

S Preprocessor Directives

#include: is most commonly-used to include a header file into
this source file for subsequent compilation

#define, #undef: #define can be used to define a macro. When
the macro pattern appears subsequently in the source codes,
it will be replaced or substituted by the macro's body. Macro
may take parameters. #undef to un-define a macro

#ifdef, #ifndef, #if, #elif, #endif: Conditional directives
can be used to control the sections of program send for
compilation

#pragma: The directive #pragma can be used to direct compiler
for system-dependent information

Programacion en C++

& Mathematical Library Functions

» Mathematical functions in library <cmath> header file.

sin(x), cos(x), tan(x), asin(x), acos(x), atan(x): Take argument-type and return-type of float, double, long double.
atan2(y, x): Return arc-tan of y/x. Better than atan(x) for handling 90 degree.

sinh(x), cosh(x), tanh(x): hyper-trigonometric functions.

pow(x, y), sqrt(x): power and square root.

ceil(x), floor(x): returns the ceiling and floor integer of floating point number.

fabs(x), fmod(x, y): floating-point absolute and modulus.

exp(x), log(x), log10(x): exponent and logarithm functions.

« cstdlib header provides a function rand (), which
generates a pseudo-random integral number between 0 and
RAND_MAX (inclusive). RAND_MAX (typically 32767). To

generate a random number between [0,n): rand() % n
« srand (x):seed orinitialize the random number generator

with unsigned int x

Programacion en C++

& Mathematical Library Functions

* Require cmath header file. Take double as input, return a
double
» Commonly used functions: sin Sine
cos Cosine
tan Tangent
sgrt Square root
log Natural (e) log
abs Absolute value (int)
* Require cstdlib header file
« rand () :returns a random number (int) between 0 and

the largest int the compute holds.
« srand (x):Initializes random number generator with

unsigned i1nt X

Programacion en C++

& Namespace, << operator and return

using namespace std;

The names cout and end1 belong to the std namespace. They can
be referenced via fully qualified name std: : cout and std: :endl,
or simply as cout and end1 with a "using namespace std;" statement.

<<

stream insertion operator .

return 0;

indicates normal termination; a non-zero (typically 1) indicates abnormal
termination. C++ compiler will automatically inserta "return 0;"atthe
end of the the ma in () function, thus, it statement can be omitted.

Instead you can also use EXIT_SUCCESS or EXIT_FAILURE, which is
defined in the cstdlib header (i.e., you need to "#include <cstdlib>"

Programacion en C++

Namespace

When you use different library modules, there is always a
potential for name crashes, as different library may use the
same name for different purposes

This problem can be resolved via the use of namespace

A namespace is a collection for identifiers under the same
naming scope. The entity name under a namespace is
qualified by the namespace name, followed by :: (known as
scope resolution operator), in the form of
namespace:.entityName

A namespace can contain variables, functions, arrays, and
compound types such as classes and structures

Programacion en C++

C Namespace

* To place an entity under a namespace, use keyword
namespace as follow:

// create a namespace called myNamespace for the enclosed

entities
namespace myNameSpace
int foo; // variable
int £() { Y // function
class Bar { }; // compound type class and struct

}

// To reference the entities, use
myNameSpace: : foo
myNameSpace: : £ ()
myNameSpace: :Bar

Programacion en C++

C Using Namespace

« Example: all the identifiers in the C++ standard libraries are
placed under the namespace called std. To reference an

Identifier under a namespace, you have three options:

1. Use the fully qualified names:
std::cout << std::setw(6) << 1234 << std::endl;

2. Use a using declaration to declare the particular
identifiers:

using std::cout;
using std::endl;

cout << std::setw(6) << 1234 << endl;

3. Use a using namespace directive:
using namespace std;

cout << setw (6) << 1234 << endl;

Programacion en C++

C Special Characters

Character Name Description

// Double Slash Begins a comment

Pound Sign Begins preprocessor directive
< > Open, Close Brackets Encloses filename used in

#include directive
() Open, Close Parentheses | Used when naming a function
{} Open, Close Braces Encloses a group of statements
"o Open, Close Double Encloses a string of characters
Quote Marks
; Semicolon Ends a programming statement

Programacion en C++

S Important Details

» C++ is case-sensitive. Uppercase and lowercase
characters are different characters.

 Formatting Source Codes: extra white spaces are
ignored. Proper indentation (with tabs and blanks)
and extra empty lines greatly improves the readability
of the program.

Programacion en C++

S The cout Object

* Displays information on the computer screen

» Use << (stream insertion operator) to send
information to cout:

cout << "Programming 1s fun!";

» Can be used to send multiple items to cout:
cout << "Hello " << "there!";

or.
cout << "Hello ";

cout << "there!";

Programacion en C++

C: The cout Object - The end1l Manipulator
Starting a New Line

* This produces one line of output:
cout << "Programming is ";
cout << "fun!";
* You can use the manipulator to start a new line of

output. This will produce two lines of output:

cout << "Programming 1s" << endl;
cout << "fun!";

- Note: You do NOT put quotation marks around and the last character in is a lowercase L, not the number 1.

* You can also use the \ n escape sequence to start a new line
of output. This will produce two lines of output:

cout << "Programming is\n";
cout << "fun!";

Programacion en C++

@ Escape Sequences — More Control Over
Output

Escape Description
Sequence

\n Newline Causes the cursor to go to the next line for subsequent printing

\t Horizontal tab ~ Causes the cursor to skip over to the next tab stop

\a Alarm Causes the computer to beep

\b Backspace Causes the cursor to back up (i.e., move left) one position

\r Return Causes the computer to go to the beginning of the current line,
not the next line

A Backslash Causes a backslash to be printed

\! Single quote Causes a single quotation mark to be printed

\" Double quote Causes a double quotation mark to be printed

Programacion en C++

SumOddEven.cpp

/*
* Sum the odd and even numbers, respectively, from 1 to a given upperbound.
* Also compute the absolute difference.
* (SumOddEven.cpp)
*/
#include <iostream> // Needed to use IO functions
using namespace std;

int main() {
int sumOdd = 0; // For accumulating odd numbers, init to 0
int sumEven = 0; // For accumulating even numbers, init to 0
int upperbound; // Sum from 1 to this upperbound
int absDiff; // The absolute difference between the two sums

// Prompt user for an upperbound
cout << "Enter the upperbound: ";
cin >> upperbound;

// Use a while-loop to repeatedly add 1, 2, 3,..., to the upperbound
int number = 1;
while (number <= upperbound) {
if (number % 2 == 0) { // Even number
sumEven += number; // Add number into sumEven
} else { // 0dd number
sumOdd += number; // Add number into sumOdd
}
++number; // increment number by 1
}
// Compute the absolute difference between the two sums
if (sumOdd > sumEven) {
absDiff = sumOdd - sumEven;
} else {

absDiff sumEven - sumOdd;

}

// Print the results

cout << "The sum of odd numbers is " << sumOdd << endl;
cout << "The sum of even numbers is " << sumEven << endl;
cout << "The absolute difference is " << absDiff << endl;

return O;

Programacién en C++

The cin Object

Standard input object. Used to read input from keyboard.
Like cout, requires 1ostreamfile

Information retrieved from ¢ in with operator >>

cin converts data to the type that matches the variable:
int height;
cout << "How tall i1is the room? ";
cin >> height;

Can be used to input more than one value:
cin >> height >> width;

Multiple values from keyboard must be separated by spaces.
Order is important

Programacion en C++

& Working with Characters and string Objects

* Using with the >> operator to input strings can
cause problems:

* |t passes over and ignores any leading whitespace
characters (spaces, tabs, or line breaks)

* To work around this problem, you can use a C++
function named

Programacion en C++

C: Working with Characters and string

Objects
* To read a single character:
— Use cin:
char ch;

cout << "Strike any key to continue";
cin >> ch;
Problem: will skip over blanks, tabs, <CR>
-~ Usecin.get ():
cin.get (ch);
Will read the next character entered, even whitespace

Programacion en C++

C: Working with Characters and string
Objects

* Mixingcin >>andcin.get () Inthe same program
can cause input errors that are hard to detect

* To skip over unneeded characters that are still in the
keyboard buffer, use cin.ignore ():

cin.ignore(); // skip next char
cin.ignore (10, '\n'); // skip the next

// 10 char. or until a '\n'

Programacion en C++

sﬂ string Member Functions and Operators

» To find the length of a string:

string state = "Texas";
int size = state.length();

» To concatenate (join) multiple strings:

greeting2 = greeting1 + name1;
greeting1 = greeting1 + nameZz,;

Or using the += combined assignment

operator:
greeting1 += name2;

Programacion en C++

S

Formatting Input/Output using 1O
Manipulators (Header <iomanip>)

 The <iomanip> header provides so-called I/O manipulators for
formatting input and output:

setw(int field-widht): set the field width for the next IO operation.
setw() is non-sticky and must be issued prior to each 10 operation.
seftfill(char fill-char): set the filled character for padding to the field
width.

left|right|internal: set the alignment

fixed/scientific (for floating-point numbers): use fixed-point notation
or scientific notation.

setprecision(int numDecimalDigits) (for floating-point numbers):
specify the number of digits after the decimal point.
boolalpha/noboolalpha (for bool): display bool values as alphabetic
string (true/false) or 1/0.

Programacion en C++

C

Stream Manipulators

» Some affect values until changed again:
— fixed: use decimal notation for floating-point values

- setprecision (x):when used with £ixed, print floating-point
value using x digits after the decimal. Without £1ixed, print floating-
point value using x significant digits

— showpoint: always print decimal for floating-point values

Stream Manipulator Description

setw(n) Establishes a print field of # spaces.

fixed Displays floating-point numbers in fixed point notation.

showpoint Causes a decimal point and trailing zeroes to be displayed, even if
there is no fractional part.

setprecision(n) Sets the precision of floating-point numbers.

left Causes subsequent output to be left justified.

right Causes subsequent output to be right justified.

Programacion en C++

Variables, Types and
Operations

Programacion en C++

& Variables

» Variable: a named storage location in memory
— Has a name, a type and stores a value.
— Must be defined before it can be used:

int i1tem;

NAME VALUE TYPE
number 123 int
sum _456 int

pi 3.1416 double
average -55.66 double

Avariable has a name, stores a value of the declared type

Programacion en C++

& Literals

» Literal: a value that is written into a program’s code.
"hello, there"
12
3.14

Programacion en C++

@ Integer and String Literals in Program

// This program uses integer, string literals, and a variable.
#include <iostream>
using namespace std;

1nt main (

Variable Definition
*/- integer literal

apples =
cout << "On Sunday we sold " << apples << " bushels of apples. \n";

apples =
cout << "On Mondaywma}%;Ez:><Kiapples << Q:gggggls of applgg::§:>'

return 0;
} /

These are string literals

Programacion en C++

|dentifiers

An identifier is a programmer-defined name for some
part of a program: variables, functions, etc.

Name should indicate the use of the identifier
Cannot use C++ key words as identifiers

Must begin with alphabetic character or _, followed by
any number of alphabetic, numeric, or _ characters.

Alphabetic characters may be upper or lowercase

Programacion en C++

C++ Key Words

alignas
alignof
and
and_eq
asm

auto
bitand
bitor
bool
break
case
catch
char
charlé t
char32 t
class

compl

const
constexpr
const_cast
continue
decltype
default
delete

do

double
dynamic_cast
else

enum
explicit
export
extern
false

float

for
friend
goto

if
inline
int

long
mutable
namespace
new
noexcept
not
not_eq
nullptr
operator
or

or eq

private
protected
public
register
reinterpret cast
return

short

signed

sizeof

static
static_assert
static_cast
struct

switch
template

this

thread_local

throw
true

try
typedetf
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar t
while
Xor

Xor eq

You cannot use any of the C++ key words as an identifier. These words have reserved meaning.

Programacion en C++

https://en.cppreference.com/w/cpp/keyword

& Variable Names - ldentifier Rules

* Avariable name should represent the purpose of the variable.

For example:

hold the number of items ordered.

* The first character of an identifier must be an alphabetic
character or and underscore (_). After the first character you
may use alphabetic characters, numbers, or underscore

characters.

 Upper and lowercase characters are distinct

IDENTIFIER
totalSales
total Sales
total.Sales
4thQtrSales
totalSale$

VALID? REASON IF INVALID
Yes

Yes

No Cannot contain .

No Cannot begin with digit
No Cannot contain S

Programacion en C++

C

Variable Declaration

* To use a variable in your program, you need to first
"Introduce” it by declaring its name and type. Syntaxes:

/| Declare a variable of a specified type

type identifier; int option;

/I Declare multiple variables of the same type, separated by commas

type identifier-1, identifier-2, ..., identifier-n; double sum, difference, product, quotient;
/I Declare a variable and assign an initial value

type identifier = value; int magicNumber = 88;

/I Declare multiple variables with initial values

type identifier-1 = value-1, ..., identifier-n = value-n; double sum = 0.0, product = 1.0;

Programacion en C++

Constants (const)

Constants are non-modifiable variables, declared with
keyword const.

Their values cannot be changed during program execution.
Also, const must be initialized during declaration.

Constant Naming Convention: Use uppercase words, joined
with underscore. For example, MIN_VALUE, MAX_SIZE.

Example:
cout << "Programming 1s fun!";

Programacion en C++

Fundamental Types

Integers: C++ supports these integer types: char, short, int, long,
long long (in C++11) in a non-decreasing order of size. You could
use the keyword unsigned to declare an unsigned integers. There
are a total 10 types of integers.

Characters: Characters (e.g., 'a’, 'Z', '0', '9') are encoded in ASCI|
into integers, and kept in type char. Take note that the type char
can be interpreted as character in ASCII code, or an 8-bit integer.

Floating-point Numbers: There are 3 floating point types: float,
double and long double, for single, double and long double
precision floating point numbers. float and double are represented
as specified by IEEE 754 standard.

Boolean Numbers: A special type called bool (for boolean), which
takes a value of either true or false.

Programacion en C++

@ Typical size, minimum, maximum for the primitives types

Category Type Description Bytes Minimum Maximum
Typlcal (Typical) (Typical)

Integers

Real Numbers

Boolean
Numbers
Wide
Characters

Int (or signed int)
unsigned int
char

signed char

unsigned char

short (or short int) (or signed short)
(or signed short int)

unsigned short (or unsigned shot int)
long (or long int) (or signed long)

(or signed long int)

unsigned long (or unsigned long int)
long long (or long long int)

(or signed long long)

(or signed long long int) (C++11)
unsigned long long

(or unsigned long long int) (C++11)
float

double

long double

bool

wchar_t
char16_t (C++11)
char32_t (C++11)

Signed integer (of at least 16 bits)
Unsigned integer (of at least 16 bits)

Character (can be either signed or unsigned depends on
implementation)

Character or signed tiny integer (guarantee to be signed)

Character or unsigned tiny integer (guarantee to be
unsigned)

Short signed integer (of at least 16 bits)

Unsigned short integer (of at least 16 bits)

Long signed integer (of at least 32 bits)

Unsigned long integer (of at least 32 bits)

Very long signed integer (of at least 64 bits)

Unsigned very long integer (of at least 64 bits)

Floating-point number, =7 digits
(IEEE 754 single-precision floating point format)

Double precision floating-point number, =15 digits
(IEEE 754 double-precision floating point format)

Long double precision floating-point number, =19 digits
(IEEE 754 quadruple-precision floating point format)

Boolean value of either true or false

Wide (double-byte) character

Programacion en C++

4 (2)
1

12 (8)

-2147483648
0

-128

-32768

0
-2147483648

63

3.4e38

1.7e308

false (0)

2147483647
4294967295

127

255

32767

65535
2147483647

same as above

2%

64

3.4e-38

1.7e-308

true (1 or non-zero)

Integer Data Types

Integer variables can hold whole numbers such as 12, 7,
and -99.

Variables of the same type can be defined on separate
lines or on the same line.

Integer Data Types

Data Type Typical Size Typical Range

short int 2 bytes —32,768 to +32,767

unsigned short int 2 bytes 0 to +635,535

int 4 bytes —2,147,483,648 to +2,147,483,647

unsigned int 4 bytes 0 to 4,294,967,295

long int 4 bytes —2,147,483,648 to +2,147,483,647

unsigned long int 4 bytes 0 to 4,294,967,295

long long int 8 bytes —9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

unsigned long long int 8 bytes 0 to 18,446,744,073,709,551,615

Programacion en C++

C

Floating-Point Data Types

* The floating-point data types are:

They can hold real numbers such as:
12.45 -3.8
Stored in a form similar to scientific notation
All floating-point numbers are signed
« A float can represent a number between £1.40239846x10-4°

Table 2-8 Floating Point Data Types on PCs

Data Type Key Word Description
Single precision float 4 bytes. Numbers between +3.4E-38 and +3.4E38
Double precision double 8 bytes. Numbers between +1.7E-308 and +1.7E308

Long double precision long double* § bytes. Numbers between +1.7E-308 and +1.7E308

Programacion en C++

S

The sizeof Operator

 (C/C++ provides an unary sizeof operator to get the size of the
operand (in bytes).

* The following program (SizeofTypes.cpp) uses sizeof operator
to print the size of the fundamental types

/*

* Print Size of Fundamental Types (SizeofTypes.cpp).

*/

#include <iostream>
using namespace std;

int main() {

cout
cout
cout
cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<
<<
<<
<<

"sizeof (char) is " << sizeof(char) << " bytes " << endl;

"sizeof (short) is " << sizeof(short) << " bytes " << endl;

"sizeof (int) is " << sizeof(int) << " bytes " << endl;

"sizeof (long) is " << sizeof(long) << " bytes " << endl;

"sizeof (long long) is " << sizeof(long long) << " bytes " << endl;
"sizeof (float) is " << sizeof(float) << " bytes " << endl;

"sizeof (double) is " << sizeof (double) << " bytes " << endl;

"sizeof (long double) is " << sizeof (long double) << " bytes " << endl;
"sizeof (bool) is " << sizeof (bool) << " bytes " << endl;

return O;

Programacion en C++

& Literals for Fundamental Types and String

 Aliteral is a specific constant value, that can be assigned directly to a
variable or used as part of an expression.

 They are called literals because they literally and explicitly identify their
values.

* Integer Literals

A whole number, is treated as an int by default.

An int literal may precede with a plus (+) or minus (-) sign, followed by digits. No
commas or special symbols (e.g., $ or space) is allowed. No preceding 0 is
allowed too (e.g., 007 is invalid).

Besides the default base 10 integers, you can use a prefix '0' (zero) to denote a
value in octal, prefix '0x' for a value in hexadecimal, and prefix '0b' for binary value
(in some compilers), e.g.,

Along literal is identified by a suffix 'L' or 'I'. Along long int is identified by a suffix
'LL". You can also use suffix 'U' for unsigned int, 'UL' for unsigned long, and 'ULL'

for unsigned long long int.

Programacion en C++

& Literals for Fundamental Types and String

* Floating-point Literals

— A number with a decimal point, is treated as a double by default.

— You can also express them in scientific notation, e.g., 1.2e3, -5.5E-6, where e or E
denotes the exponent in power of 10. You could precede the fractional part or
exponent with a plus (+) or minus (-) sign. Exponent shall be an integer. There
should be no space or other characters in the number.

— You MUST use a suffix of 'f' or 'F' for float literals, e.g., -1.2345F. Use suffix 'L' (or
') for long double.

« Character Literals and Escape Sequences

— A printable char literal is written by enclosing the character with a pair of single
quotes, e.g., 'z, '$', and '9". In C++, characters are represented using 8-bit ASCII

code, and can be treated as a 8-bit signed integers in arithmetic operations.

— Non-printable and control characters can be represented by escape sequence,
which begins with a back-slash (\).

Programacion en C++

https://www3.ntu.edu.sg/home/ehchua/programming/java/DataRepresentation.html#ASCII

& Literals for Fundamental Types and String

o String Literals

— A String literal is composed of zero of more characters surrounded by a pair of
double quotes, e.g., "Hello, world!", "The sumis ", ™.

— String literals may contains escape sequences. Inside a String, you need to use \"
for double-quote to distinguish it from the ending double-quote, e.g. "\"quoted\"".

Single quote inside a String does not require escape sequence.

* bool Literals
— There are only two bool literals: true and false.

Programacion en C++

ﬁ Integer, Floating-point and Character
Literals example

int number = -123;
int sum = 4567;
int bigSum = 8234567890; // ERROR: this value is outside the range of int

int numberl = 1234; // Decimal
int number2 = 01234; // Octal 1234, Decimal 2322
int number3 = Oxlabc; // hexadecimal 1ABC, decimal 15274

int number4 = 0b10001001; // binary (may not work in some compilers)

long number = 12345678L; // Suffix 'L' for long
long sum = 123; // int 123 auto-casts to long 123L
long long bigNumber = 987654321LL; // Need suffix 'LL' for long long int

short smallNumber = 1234567890; // ERROR: this value is outside the range of short.
short midSizeNumber = -12345;

float average = 55.66; // Error! RHS is a double. Need suffix 'f' for float.
float average = 55.66f;

char letter = 'a'; // Same as 97

char anotherLetter = 98; // Same as the letter 'b'

cout << letter << endl; // 'a' printed

cout << anotherLetter << endl; // 'b' printed instead of the number
anotherLetter += 2; // 100 or 'd’

cout << anotherLetter << endl; // 'd' printed
cout << (int)anotherLetter << endl; // 100 printed

Programacion en C++

S TestLiteral.cpp

/* Testing Primitive Types (TestLiteral.cpp) */
#include <iostream>
using namespace std;

int main() {

char gender = 'm'; // char is single-quoted
bool isMarried = true; // true (non-zero) or false (0)
unsigned short numChildren = 8; // [0, 255]

short yearOfBirth = 1945; // [-32767, 32768]

unsigned int salary = 88000; // [0, 4294967295]

double weight = 88.88; // With fractional part

float gpa = 3.88f; // Need suffix 'f' for float

// "cout <<" can be used to print value of any type
cout << "Gender is " << gender << endl;

cout << "Is married is " << isMarried << endl;

cout << "Number of children is " << numChildren << endl;
cout << "Year of birth is " << yearOfBirth << endl;

cout << "Salary is " << salary << endl;

cout << "Weight is " << weight << endl;

cout << "GPA is " << gpa << endl;

return 0O;

Programacion en C++

C Enumerated Data Types

* An enumerated data type is a programmer-defined
data type. It consists of values known as enumerators,
which represent integer constants.

» Example:
enum Day { MONDAY, TUESDAY,
WEDNESDAY, THURSDAY,
FRIDAY };

« The identifiers MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, and FRIDAY, which are listed inside

the braces, are enumerators. They represent the
values that belong to the Day data type.

Programacion en C++

C Enumerated Data Types

* Once you have created an enumerated data type in
your program, you can define variables of that type.

Example:
Day workDay;

* This statement defines workDay as a variable of
the Day type.

» \We may assign any of the enumerators MONDAY,
TUESDAY, WEDNESDAY, THURSDAY, or
FRIDAY to a variable of the Day type. Example:

workDay = WEDNESDAY;

Programacion en C++

C Enumerated Data Types

* Internally, the compiler assigns integer values to the

enumerators, beginning at 0.
enum Day { MONDAY, TUESDAY,

WEDNESDAY, THURSDAY,

FRIDAY };
In memory...
MONDAY =(
TUESDAY =1

WEDNESDAY =2
THURSDAY =3
FRIDAY =4

Programacion en C++

C Enumerated Data Types

» Using the Day declaration, the following code...
cout << MONDAY << "

<< WEDNESDAY << "°

<< FRIDAY << endl;

...Will produce this output:

0 2 4

Programacion en C++

Assigning an integer to an enum Variable
Assigning an enum to an int Variable

You cannot directly assign an integer value to an
enum variable. This will not work:

workDay = 3; // Error!

Instead, you must cast the integer:

workDay = static cast<Day>(3);
You CAN assign an enumerator to an int variable.
For example:

int x;

x = THURSDAY;
This code assigns 3 to x.

Programacion en C++

‘ﬂ Comparing Enumerator Values

» Enumerator values can be compared using the
relational operators. For example, using the Day data
type the following code will display the message
"Friday Is greater than Monday.”

if (FRIDAY > MONDAY)
{

cout << "Friday 1s greater "
<< "than Monday.\n";

Programacion en C++

é Enumerated Data Types

» \We can use enumerators for control a loop:

// Get the sales for each day.
for (index = MONDAY; index <= FRIDAY; index++)
{
cout << "Enter the sales for day "
<< 1ndex << ": ";
cin >> sales[index];

Programacion en C++

‘ﬂ Anonymous Enumerated Types

* An anonymous enumerated type is simply one that
does not have a name. Example:

enum { MONDAY, TUESDAY,
WEDNESDAY, THURSDAY,
FRIDAY };

Programacion en C++

ﬁ Using an enum Variable to Step through an
Array's Elements

 Because enumerators are stored in memory as integers, you
can use them as array subscripts. For example:
enum Day { MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY };
const int NUM DAYS = 5;
double sales[NUM DAYS];
sales [MONDAY] = 1525.0;

sales[TUESDAY] = 1896.5;
sales [WEDNESDAY] = 1975.63;
sales [THURSDAY] = 1678.33;

sales[FRIDAY] = 1498.52;

» Remember, though, you cannot use the ++ operator on an enum
variable.

Programacion en C++

S Using Strongly Typed enums in C++ 11

* In C++ 11, you can use a new type of enum , known as a
strongly typed enum

» Allows you to have multiple enumerators in the same scope

with the same name
enum class Presidents { MCKINLEY, ROOSEVELT, TAFT };
enum class VicePresidents { ROOSEVELT, FAIRBANKS, SHERMAN };

 Prefix the enumerator with the name of the enum , followed

by the : : operator:
Presidents prez = Presidents::ROOSEVELT;
VicePresidents vp = VicePresidents::ROOSEVELT;

 Use a cast operator to retrieve integer value:
int x = static cast<int>(Presidents::ROOSEVELT) ;

Programacion en C++

ﬁ Declaring the Type and Defining the
Variables in One Statement

* You can declare an enumerated data type and
define one or more variables of the type in the same

statement. For example:
enum Car { PORSCHE, FERRARI, JAGUAR } sportsCar;

This code declares the Car data type and defines a
variable named sportsCar.

Programacion en C++

C The C++ string Class

Special data type supports working with strings
#include <string>

Can define st ring variables in programs:
string firstName, lastName;

Can receive values with assignment operator:
firstName = "George";

lastName = "Washington";

Can be displayed via cout
cout << firstName << " " << lastName;

Programacion en C++

S Variable Assignments and Initialization

An assignment statement uses the = operator to store a value

In a variable.
item = 12; // assigns value 12 to the item variable.

The variable receiving the value must appear on the left side
of the = operator.

To initialize a variable means to assign it a value when it is
defined:

int length = 12;
Can initialize some or all variables:
int length = 12, width = 5, area;

Programacion en C++

C Declaring Variables With the auto Key Word

« C++ 11 introduces an alternative way to define variables,
using the auto key word and an initialization value. Here is

an example:
auto amount = 100;

* The auto key word tells the compiler to determine the
variable’s data type from the initialization value.

auto i1nterestRate= 12.0;
auto stockCode = 'D';

auto customerNum = 4591,;

Programacion en C++

C

Arithmetic Operators

« C++ supports the following arithmetic binary operators for numbers:
short, int, long, long long, char (treated as 8-bit signed integer),
unsigned short, unsigned int, unsigned long, unsigned long long,
unsigned char, float, double and long double.

Multiplication expr1 * expr2 2*3—6;33"1.0— 3.3
/ Division expr1 [expr2 1/12—0;1.0/20—0.5
% Remainder expr1 % expr2 5%2—>1-5%2— -1
(Modulus)
+ Addition expri + expr2 1+2—311+22— 3.3
Subtraction expri - expr2 1-2—>-111-22—-11

 The multiplication, division and remainder take precedence over
addition and subtraction. Within the same precedence level, the
expression is evaluated from left to right.

Programacion en C++

C

Compound Assignment Operators

« (C++ also provides the so-called compound assignment operators as

listed:

var = expr

var += expr
var -= expr
var *= expr
var [= expr
var %= expr

Assign the value of the LHS to the
variable at the RHS

same as var = var + expr

same as var = var - expr

same as var = var * expr

same as var = var | expr

same as var = var % expr

X:

X+=5 sameasx=x+95
X-=5;sameasx=x-95
X*=9;sameasx=x*5
X/=5;sameasx=x/95
X %=5;sameasx=X%5

Programacion en C++

C

Increment/Decrement Operators

« (C++ supports these unary arithmetic operators: increment '++' and
decrement '--

v Xt ++X Increment by 1, same as x += 1
- X==; ==X Decrement by 1, same as x -= 1

The increment/decrement unary operator can be placed before the
operand (prefix operator), or after the operands (postfix operator).

++var Pre-Increment y =++X; same as X=x+1; y=x;
Increment var, then use the new value of var

var++ Post-Increment y = Xx++; same as oldX=x; x=x+1; y=oldX;
Use the old value of var, then increment var

--var Pre-Decrement y = --X; same as x=x-1; y=x;

var-- Post-Decrement y=X-; same as oldX=x; x=x-1; y=oldX;

Programacion en C++

C

Bit-Shift Operations

« Bit-shift operators perform left or right shift on an operand by a specified
number of bits.

o Left-shift is padded with zeros. Right-shift may padded with zero or
sign-bit, depending on implementation.

<< operand << number Left-shift and padded with zeros
>> operand >> number Right-shift

Programacion en C++

& A Closer Look at the / and % Operators

« / (division) operator performs integer division if both
operands are integers

cout << 13 / 5; // displays 2
cout << 91 / 7; // displays 13

* |f either operand is floating point, the result is floating point
cout << 13 / 5.0; // displays 2.6
cout << 91.0 / 7; // displays 13.0

% (modulus) operator computes the remainder resulting from
integer division
cout << 13 % 5; // displays 3

% requires integers for both operands
cout << 13 % 5.0; // error

Programacion en C++

C Mathematical Expressions

* Can create complex expressions using multiple mathematical
operators

* An expression can be a literal, a variable, or a mathematical
combination of constants and variables

 (Can be used in assignment, cout, other statements:
area = 2 * PI * radius;
cout << "border 1is: " << 2*¥ (l+4+w);

* The following expression:
1+2a 4(b+c)(5—d—e) 7
4 - 6 (E +h)
must be written as
(1+2*a) /3 + (4* (b+c)*(5-d-e))/f - 6*(7/g+h)

Programacion en C++

C Mathematical Expressions

* Multiplication requires an operator:
Area=Iwis writtenas Area = 1 * w;

» There is no exponentiation operator:
Area=s’is written as Area = pow (s, 2);

» Parentheses may be needed to maintain order of

operations:
= V2TV IS written as
X2 — X1 m = (y2-yl) /(x2-x1);

Programacion en C++

&9 Order and associativity of operations

* |n an expression with more than one operator, evaluate in this

order:
— (unary negation), in order, left to right
* /%, in order, left to right
+ —, in order, left to right

In the expression2 + 2 * 2 - 2

* parentheses () can be used to override the order of

operations:

2 + 2 * 2 -2 =4
(2 +2) * 2 -2 =56
2 + 2 * (2 -2) =2
(2 +2) * (2 -2) =0

Programacion en C++

https://en.cppreference.com/w/cpp/language/operator_precedence

& Mixed-Type Operations - Type Conversion

* |f both the operands of an arithmetic operation belong to the
same type, the operation is carried out in that type, and the
result belongs to that type.

* |f the two operands belong to different types, the compiler
promotes the value of the smaller type to the larger type
(known as implicit type-casting).

* Hierarchy of Types: Highest: long double
double

float
unsigned
long

long
unsigned 1nt

Lowest: int

Programacion en C++

Type Casting

Used for manual data type conversion

Useful for floating point division using ints:

double m;
m = static cast<double>(y2-yl)/ (x2-x1);
Useful to see 1 nt value of a char variable:

char ch = 'C';
cout << ch << " i1s "
<< static cast<int>(ch);

C-Style cast: data type name in ()

cout << ch << " 18 " << (int)ch;
Prestandard C++ cast: value in ()
cout << ch << " 18 " << int(ch);

Programacion en C++

& Overflow and Underflow

» Occurs when assigning a value that is too large
(overflow) or too small (underflow) to be held in a
variable.

» Variable contains value that is ‘wrapped around’ set of
possible values

» Different systems may display a warning/error
message, stop the program, or continue execution
using the incorrect value

» |tis important to take note that checking of
overflow/underflow is the programmer's responsibility

Programacion en C++

C: Multiple Assignment and Combined
Assignment

» The = can be used to assign a value to multiple
variables:

X =y =z = 5;
* Value of = is the value that is assigned

* Associates right to left:
x = (y = (2 =5 2));

Programacion en C++

C

Combined Assignment Operators

 The combined assignment operators provide a shorthand for
these types of statements.

* The statement
sum = sum + 1;

IS equivalent to
sum += 1;

var=expr Assign the value of the LHS to the

variable at the RHS
+= var+=expr same as var = var + expr X+=9;sameasx=x+5
-= var-=expr same as var = var - expr X-=9;sameasXx=x-5
= var=expr same as var = var* expr X*=5;sameasx=x*5
= var[= expr ~ same as var = var |/ expr X/=5;sameasx=x/5
%= var %= expr same as var = var % expr X %=9;sameasx=Xx% 5

Programacion en C++

C

Relational Operators

 Used to compare numbers to determine relative order
» Comparison or relational operators:

Example (x=5, y=8)

Equal to expr1 == expr2 (x ==y) — false
1= Not Equal to expri = expr2 (x I=y) — true
> Greater than expr1 > expr2 (x >y) — false
>= Greater than or equal to expr1 >= expr2 (x >=9) — true
< Less than expr1 < expr2 (y < 8) — false
<= Less than or equal to expr1 >= expr2 (y <=8) — true

» These comparison operations returns a bool value of
either false (0) or true (1 or a non-zero value)

Programacion en C++

C

Logical Operators

 C++ provides four logical operators (which operate on
boolean operands only):

&& Logical AND expr1 && expr2
| Logical OR expri || expr2

| Logical NOT lexpr

A Logical XOR expr1 ™ expr2

* 1has highest precedence, followed by &&, then ||

» [f the value of an expression can be determined by evaluating
just the sub-expression on left side of a logical operator, then
the sub-expression on the right side will not be evaluated
(short circuit evaluation)

Programacion en C++

Truth tables of Logical Operators

AND (&8) RWE false
true true false
false false false

OR (||) true false
true true true
false true false

true false
false true

XOR (M) RWE false
true false true

false true false

Programacion en C++

Flow Control

Programacion en C++

& Flow Control

» There are three basic flow control constructs -
sequential, conditional (or decision), and loop (or

iteration)
T I
i v L I _l L T i
i v - ! : |
e é S — (g i .
Sequential Conditional (Decision) Loop (Iteration)

Programacion en C++

C

Conditional (Decision) Flow Control

* There are a few types of conditionals, if-then, if-then-
else, nested-if (if-elseif-elseif-...-else), switch-case,
and conditional expression.

» if-then

[if-then if (mark >= 50) { t

if (booleanExpression) { cout << "Congratulation!" << endl; =
true-block ; cout << "Keep it up!" << endl; T

} } trueBlock

:

Programacion en C++

C

Conditional (Decision) Flow Control

» if-then-else
o
[if-then-else if (mark >= 50) {
if (booleanExpression) { cout << "Congratulation!" << endl; T booleanTest
true-block ; cout << "Keep it up!" << endl; —l
} else { } else { trueBlock falseBlock
false-block ; cout << "Try Harder!" << end|; | |

) } :

Programacion en C++

C

Conditional (Decision) Flow Control

* nested-if

Il nested-if if (mark >= 80) { t
if (booleanExpr-1) { cout << "A" << endl; T estl
block-1; } else if (mark >=70) { bfj; T ;ltz r
} else if (booleanExpr-2) { cout << "B" << endI; I !
block-2 ; } else if (mark >= 60) { flock2 l—T test3 =3
} else if (booleanExpr-3){ cout <<"C" << endl; block3 elseBlock
block-3 ; } else if (mark >= 50) { l l—i ________ v
} else if (booleanExpr-4){ cout <<"D" << endl; ! 1
...... }else { %
} else { cout << "F" << end|;
elseBlock ; }
}

Programacion en C++

C

Conditional (Decision) Flow Control

« switch-case is an alternative to the "nested-if"

Fouchar

/] switch-case char oper; int num1, numz2, result; T
switch (selector) { - o o1r s by Lbreak
vaiued: oc
case value-1: S (@
block-1; break; oo Py -
case value-2 et value2?_~— blockz |
block-2; break; result = num1 - num2; break: o F . roal
case value-3: case ™" value3? -~ block3 ———»
block-3; break: res'u'It= num1 * num2; break; l F
case '/ |
""" result = num1 / num2; break: ’
block-n; break; cout << "Unknown operator" << end!; ®
default: }
default-block;

Programacion en C++

C

Conditional Operator

* A conditional operator is a ternary (3-operand) operator, in the
form OfbooleanExpr ? truekExpr : falsekExpr.

Depending on the booleanExpr, it evaluates and returns the
value of trueExpr or falseExpr.

booleanExpr ? trueExpr : falseExpr cout << (mark >=50) ? "PASS" : "FAIL" << end|;
/| return either "PASS" or "FAIL", and put to cout
max=(a>b)?a:b;//RHS returnsaorb
abs=(a>0)?a:-a;// RHS returns a or -a

» Parentheses () may be needed in an expression due to
precedence of conditional operator

Programacion en C++

& Flags

Variable that signals a condition
Usually implemented as a boo1 variable

Can also be an integer
— The value 0 is considered false
— Any nonzero value is considered t rue

As with other variables in functions, must be assigned
an initial value before it is used

Programacion en C++

& Menus - Menu-Driven Program
Organization

 Menu-driven program: program execution controlled
by user selecting from a list of actions

* Menu: list of choices on the screen

* Menus can be implemented using if/else if
statements

» Display list of numbered or lettered choices for
actions

* Prompt user to make selection
 Testuser selectionin expression

— if a match, then execute code for action
— if not, then go on to next expression

Programacion en C++

& Using switch in Menu Systems

e switch statementis a natural choice for menu-
driven program:
— display the menu

— then, get the user's menu selection
— use user input as expression in switch statement

— use menu choices as exprin case statements

Programacion en C++

C Validating User Input

* Input validation: inspecting input data to determine
whether it is acceptable

» Bad output will be produced from bad input

» Can perform various tests:
— Range
— Reasonableness
— Valid menu choice
— Divide by zero

Programacion en C++

C Comparing Characters

Characters are compared using their ASCII values
+ 'A'<'B
— The ASCII value of 'A" (69) is less than the ASCII value of
'B'(66)
o« "1'<'2
— The ASCII value of "1' (49) is less than the ASCI value of
2" (50)
» Lowercase letters have higher ASCII codes than
uppercase letters, so'a' > 'Z'

Programacion en C++

S Comparing string Objects

» Like characters, strings are compared using their
ASCII values

string name1 = "Mary";
string name2 = "Mark";

name1 > name2 //true
name1 <= name?Z2 // false
name1 |= name2 // true

name1 < "Mary Jane" // true

Programacion en C++

& break Statement

« Usedto exita switch statement

o [fitis left out, the program "falls through" the
remaining statements in the switch statement

Programacion en C++

C Blocks and Scope

» Scope of a variable is the block in which it is defined,
from the point of definition to the end of the block

» Usually defined at beginning of function
» May be defined close to first use

Programacion en C++

& Variables with the Same Name

* Variables defined inside { } have local or block
scope

« When inside a block within another block, can define
variables with the same name as in the outer block.
— When in inner block, outer definition is not available
— Not a good idea

Programacion en C++

C

* There are a few types of loops: for-loop, while-do, and

Loop Flow Control

do-while.
/ for-loop /I Sum from 1 to 1000 T
for (init; test; post-proc) { intsum =0; e
body ; for (int number = 1; l‘
} number <= 1000; I |
++number){ test — body —* update
sum += number; é}F (exit loop)

)

Programacion en C++

C

« while-do

Loop Flow Control

Flowchart

/Il while-do int sum = 0, number = 1;
while (condition){ while (number <= 1000) { }
body ; sum += number; tost] body
} ++number; J' F (exit loop)
} ®

Programacion en C++

C

 do-while
Flowchart
/| do-while int sum = 0, number = 1; I
do { do { body +—
body ; sum += number; l
} while (condition) ; ++number; —
} while (number <= 1000); g}ﬂ tloop)
exit loop

Loop Flow Control

* The difference between while-do and do-while lies in the
order of the body and condition.

— In while-do, the condition is tested first. The body will be executed if
the condition is true and the process repeats.

— In do-while, the body is executed and then the condition is tested.

Programacion en C++

sﬂlnterrupting Loop Flow - break and continue

* The break statement breaks out and exits the current
(innermost) loop.

* The continue statement aborts the current iteration
and continue to the next iteration of the current
(innermost) loop.

* break and continue are poor structures as they are
hard to read and hard to follow. Use them only if
absolutely necessary. You can always write the same
program without using break and continue.

Programacion en C++

& Using the while Loop for Input Validation

* |nput validation is the process of inspecting data that
Is given to the program as input and determining
whether it is valid.

* The while loop can be used to create input routines
that reject invalid data, and repeat until valid data is

entered. Here's the general approach, in pseudocode:
Read an item of input.

While the input is invalid
Display an error message.
Read the input again.

End While

Programacion en C++

C

Input Validation Example

cout << "Enter a number less than 10: ";
cin >> number;
while (number >= 10)

{
cout << "Invalid Entry!"
<< "Enter a number less than 10: ";
cin >> number;
} { Flowchart for Input Validation
Reajam: first
e N\ Yes Display an Read another J
invalid? error message. value.

No

Programacion en C++

& Counters

 Counter: a variable that is incremented or
decremented each time a loop repeats

» Can be used to control execution of the loop (also
known as the loop control variable)

» Must be initialized before entering loop

Programacion en C++

S

for Loop - Modifications

You can have multiple statements in the
initializationexpressionand in the
upda te expression. Separate the statements with

d comma.
int x, Vy;

for (x=1, vy=1; x <= 5; |x++, y++4)
{
cout << x << " plus " KKy

<< " equals " << (x+V)
<< endl;

Programacion en C++

C for Loop - Modifications

* Youcanomitthe initialization expression if
it has already been done:
int sum = 0, num = 1;
for (; num <= 10; num++)
sum += num;

* You can declare variables in the
initialization expression:
int sum = 0;
for (int num = 0; num <= 10; num++)
sum += num;

The scope of the variable num is the for loop.

Programacion en C++

& Sentinels

 sentinel: value in a list of values that indicates end of
data

» Special value that cannot be confused with a valid
value, e.g., —999 for a test score

 Used to terminate input when user may not know how
many values will be entered

Programacion en C++

C Deciding Which Loop to Use

* The while loop is a conditional pretest loop
— lterates as long as a certain condition exits
— Validating input
— Reading lists of data terminated by a sentinel

* The do-while loop is a conditional posttest loop
— Always iterates at least once
— Repeating a menu

* The for loop is a pretest loop
— Built-in expressions for initializing, testing, and updating
— Situations where the exact number of iterations is known

Programacion en C++

Terminating Program

There are a few ways that you can terminate your program, before
reaching the end of the programming statements.

exit(): You could invoke the function exit(int exitCode), in <cstdlib>,
to terminate the program and return the control to the Operating
System.

— By convention, return code of zero indicates normal termination; while a non-zero
exitCode (-1) indicates abnormal termination.

abort(): The header <cstdlib> also provide a function called
abort(), which can be used to terminate the program abnormally.

return statement: You could also use a "return returnValue"
statement in the main() function to terminate the program and
return control back to the Operating System.

Programacion en C++

C Nested Loops

 Anested loop is a loop inside the body of another
loop

* |nner (inside), outer (outside) loops:
for (row=1l; row<=3; row++) //outer
for (col=1; col<=3; col++)//inner
cout << row * col << endl;

Inner loop goes through all repetitions for each
repetition of outer loop, complete sooner than outer

loop

Total number of repetitions for inner loop is product of
number of repetitions of the two loops.

Programacion en C++

Nested for-loop

!

initialization

i

test

v

Mext Statement

false

true
—

Outer-loop’s body = Inner Loop

initialization
true
test —» body ~—® post-processing ——
false

post-processing

Programacion en C++

& Strings

 (C++ supports two types of strings:

— the original C-style string: A string is a char array, terminated with a
NULL character \0' (Hex 0). It is also called Character-String or C-
style string.

— the new string class introduced in C++98.

* The "high-level” string class is recommended, because it is
much easier to use and understood. However, many legacy
programs used C-strings; many programmers also use "low-
level" C-strings for full control and efficiency; furthermore, in

some situation such as command-line arguments, only C-
strings are supported.

Programacion en C++

S

Character Testing

* Requires cctype header file

FUNCTION | MEANING

isalpha true if arg. is a letter, false otherwise

isalnum true if arg. is a letter or digit, false otherwise
isdigit true if arg. is a digit 0-9, false otherwise

islower true if arg. is lowercase letter, false otherwise
isprint true if arg. is a printable character, false otherwise
ispunct true if arg. is a punctuation character, false otherwise
isupper true if arg. is an uppercase letter, false otherwise
isspace true if arg. is a whitespace character, false otherwise

Programacion en C++

& Character Case Conversion

* Require cctype header file

* Functions:
toupper:if char argumentis lowercase letter, return
uppercase equivalent; otherwise, return input unchanged
char chl = "H';
char ch2 = 'Te';
cout << toupper(chl); // displays 'H'
cout << toupper(ch2); // displays 'E’
tolower:if char argument is uppercase letter, return lowercase
equivalent; otherwise, return input unchanged
char chl = "H';
char ch2 = 'Te';
cout << tolower(chl); // displays 'h'
cout << tolower (ch2); // displays 'e'

Programacion en C++

C-Strings

C-string: sequence of characters stored in adjacent memory
locations and terminated by NULL character

String literal (string constant): sequence of characters
enclosed in double quotes " " : "Hi there!™"

H 1 t h e r e ! \O

Array of chars can be used to define storage for string:
const 1nt SIZE = 20; char city[SIZE];

Can enter a value using cin or >>
— Input is whitespace-terminated
— No check to see if enough space

For input containing whitespace, and to control amount of
Input, use cin.getline ()

Programacion en C++

& Library Functions for Working with C-
Strings

» Require the cstring header file

* Functions take one or more C-strings as arguments. Can
use:
— C-string name
— pointer to C-string
— literal string

* Functions:
— strlen (str):returns length of C-string str
— strcat (strl, str2):appends str2totheendof strl
— strcpy(strl, str2).copiesstr2tostrl

- strstr(strl, str2):finds the firstoccurrence of str2 in
strl. Returns a pointer to match, or NULL if no match.

Programacion en C++

C C-String/Numeric Conversion Functions

* Requires <cstdlib> header file

FUNCTION | PARAMETER |ACTION

atoi C-string converts C-string to an int value, returns
the value

atol C-string converts C-string to a 1ong value, returns
the value

atof C-string converts C-string to a double value,
returns the value

itoa int, C-string, converts 15t int parameter to a C-string,

int stores it in 2"d parameter. 3" parameter is

base of converted value

Programacion en C++

C C-String/Numeric Conversion Functions

int iNum;

long 1Num;

double dNum;

char intChar[10];

iNum = atoi("1234"); // puts 1234 in iNum

INum = atol("5678"); // puts 5678 in 1Num

dNum = atof ("35.7"); // puts 35.7 in dNum

itoa (iNum, intChar, 8); // puts the string
// "2322" (base 8 for 1234,,) in intChar

* If C-string contains non-digits, results are undefined
— function may return result up to non-digit
— function may return 0

« 1toa does no bounds checking — make sure there is
enough space to store the result

Programacion en C++

string to Number Conversion

string to Number Functions

Function

Description

stoi(string str)

stol(string str)

stoul (string str)

stoll(string str)

stoull (string str)

stof(string str)

stod(string str)

stold(string str)

Accepts a string argument and returns that argument’s value
converted to an int.

Accepts a string argument and returns that argument’s value
converted to a long.

Accepts a string argument and returns that argument’s value
converted to an unsigned Tong.

Accepts a string argument and returns that argument’s value
converted to a Tong Tlong.

Accepts a string argument and returns that argument’s value
converted to an unsigned long long.

Accepts a string argument and returns that argument’s value
converted to a float.

Accepts a string argument and returns that argument’s value
converted to a double.

Accepts a string argument and returns that argument’s value
converted to a Tong double.

Programacion en C++

The to_string Function

Overloaded Versions of the to_string Function

Function

Description

to_string(int value);

to string(long value);

to_string(long long value);

to string(unsigned value);

to_string(unsigned long value);

to_string(unsigned long long value);

to_string(float value);

to_string(double value);

to_string(long double value);

Accepts an int argument and returns that argument
converted to a string object.

Accepts a Tong argument and returns that argument
converted to a string object.

Accepts a Tong Tong argument and returns that
argument converted to a string object.

Accepts an unsigned argument and returns that
argument converted to a string object.

Accepts an unsigned long argument and returns
that argument converted to a string object.

Accepts an unsigned long long argument and
returns that argument converted to a string object.

Accepts a float argument and returns that argument
converted to a string object.

Accepts a double argument and returns that argument
converted to a string object.

Accepts a Tong double argument and returns that
argument converted to a string object.

Programacion en C++

& Writing Your Own C-String Handling
Functions

» Designing C-String Handling Functions
— Can pass arrays or pointers to char arrays

— Can perform bounds checking to ensure enough space for
results

— Can anticipate unexpected user input

Programacion en C++

C The C++ string Class

* To use the string class, include the <string> header and
"using namespace std". Include special data type supports

working with strings
#include <string>
uslng namespace std;

 Can declare and (a) initialize a string with a string literal,

(b) initialize to an empty string, or (c) initialize with another
string object.

string firstName, lastName;

firstName = "George"; lastName = "Washington";
cout << firstName << " " << lastName;

string strl ("Hello"); // Implicit initialization
string str2 = "world"; // Explicit initialization
string str3; // Initialize to an empty string
string str4d(strl); // Initialize by copying

Programacion en C++

S Other C

efinitions of C++ strings

Definition Meaning

string name; defines an empty string object

string myname ("Chris"); defines a string and initializes it

string yourname (myname) ; defines a string and initializes it

string aname (myname, 3); defines a string and initializes it with first 3
characters of myname

string verb (myname, 3, 2); defines a string and initializes it with 2
characters from myname starting at position
3

string noname ('A', 5); defines string and initializes itto 5 'A's

Programacion en C++

S Input into a string Object

- cin >> aStr reads a word (delimited by space)

from cin (keyboard), and assigns to string variable
astr.

» getline(cin, aStr) reads the entire line (up to \n') from
cin, and assigns to aStr. The \n' character is
discarded.

» To flush cin, you could use
ignore(numeric_limits<streamsize>::max(), \n')
function to discard all the characters up to '\n'.
numeric_limits is in the <limits> header.

Programacion en C++

string Operations

Checking the length of a string: str.length(), str.size

Check for empty string: str.empty()

Copying from another string: use the assignment (=) oper.
Concatenated with another string: use the plus (+) operator,
or compound plus (+=) operator

Read/Write individual character of a string: str.at(1), str{1]
Extracting sub-string: str.substr(2, 6)

Comparing with another string: str1.compare(str2), str1 ==
str2

Search/Replacing characters: replace(str.begin(), str.end(),

1)

Programacion en C++

https://en.cppreference.com/w/c/string/byte

string Operators

OPERATOR MEANING

>> extracts characters from stream up to whitespace, insert
into string

<< inserts string into stream

= assigns string on right to string object on left

+= appends string on right to end of contents on left

+ concatenates two strings

[] references character in string using array notation

>, >=, <, relational operators for string comparison. Return true or

false

C string Member Functions

* Are behind many overloaded operators
» (Categories:
— assignment: assign, copy, data

— modification: append, clear, erase,
insert, replace, swap

— space management: capacity, empty,
length, resize, size

— substrings: find, front, back, at,
substr

— comparison: compare

Programacion en C++

Functions

Programacion en C++

C Modular Programming

 Modular programming: breaking a program up into
smaller, manageable functions or modules

» Function: a collection of statements to perform a task
» Motivation for modular programming:

— Improves maintainability of programs

— Simplifies the process of writing programs

Programacion en C++

C Why Functions?

* Attimes, a certain portion of codes has to be used
many times. It is better to put them into a function,
and call this function

* The benefits of using functions are:

— Divide and conquer. construct the program from simple,
small pieces or components.

— Avoid repeating codes: It is easy to copy and paste.

— Software Reuse: you can reuse the functions in other
programs, by packaging them into library codes.

* Two parties are involved in using a function: a caller
and the function called

Programacion en C++

& Defining and Calling Functions - Function
Definition

* Function call: statement causes a function to execute

» Function definition: statements that make up a
function

 Definition includes:

— return type: data type of the value that function returns to the part of
the program that called it

— name: name of the function. Function names follow same rules as
variables

— parameter list: variables containing values passed to the function
— body: statements that perform the function’s task, enclosed in { }

Programacion en C++

C Using Functions

 Suppose that we need to evaluate the area of a circle
many times, it is better to write a function called
getArea(), and re-use it when needed.

Caller —main()

_ _ Function — getArea
double radius = 1.1; Argument(s) : o

double area; double getArea(double r) {
area = getArea(radius); return r * r * 3.14159265;
cout << area << endl; 1
Result
radius (double) 1.1 1.1 r (double)
XX KX return-value (double)

area (double) XX KX

Programacion en C++

Function example

/* Test Function (TestFunction.cpp) */
#include <iostream>

using namespace std;

const int PI = 3.14159265;

// Function Prototype (Function Declaration)
double getArea (double radius);

int main () {
double radiusl = 1.1, areal, area?l;
areal = getArea(radiusl); // call function getAreal()
cout << "area 1 is " << areal << endl;

area?2 = getArea(2.2); // call function getArea ()
cout << "area 2 is " << area2 << endl;

// call function getArea ()

cout << "area 3 is " << getArea(3.3) << endl;

// Function Definition
// Return the area of a circle given its radius
double getArea (double radius) {

return radius * radius * PI;

Programacion en C++

& Function Definition

* The syntax for function definition is as follows:

returnValueType functionName (parameterList)
{

functionBody ;
)
* The parameterlList consists of comma-separated
parameter-type and parameter-name

* The returnvalueType specifies the type of the return
value, such as int or double. An special return type called
void can be used to denote that the function returns no
value. In C++, a function is allowed to return one value or no
value (void). It cannot return multiple values.

Programacion en C++

sﬂ Function Naming Convention

* Afunction's name shall be a verb or verb phrase (action),
comprising one or more words. The first word is in lowercase,
while the rest are initial-capitalized (known as camel-case).

For example, getArea(), setRadius(), moveDown(), isPrime(),
efc.

Programacion en C++

Function Prototype

order in source file

In C++, a function must be declared before it can be called. It
can be achieved by either placing the function definition
before it is being used, or declare a so-called function
prototype.

A function prototype tells the compiler the function's interface,
.e., the return-type, function name, and the parameter type
list (the number and type of parameters). The function can
now be defined anywhere in the file.

Function prototypes are usually grouped together and placed
In a so-called header file. The header file can be included in
many programs.

When using prototypes, can place function definitions in any

Programacion en C++

C Sending Data into a Function

* (Can pass values into a function at time of call:
c = pow(a, b);
» Values passed to function are arguments

» Variables in a function that hold the values passed as
arguments are parameters

vold displayValue (int num)

{

cout << "The wvalue 1s " << num << endl;

}
The integer variable num is a parameter.

It accepts any integer value passed to the function.

Programacion en C++

ﬁ Parameter Terminology, Parameters,
Prototypes, and Function Headers

A parameter can also be called a formal parameter or a
formal argument. An argument can also be called an actual
parameter or an actual argument

* For each function argument,

— the prototype must include the data type of each parameter inside
its parentheses

— the header must include a declaration for each parameter in its
()

void evenOrOdd (int); //prototype
void evenOrOdd (int num) //header
evenOr0Odd (val) ; //call

Programacion en C++

& Function Call argument/parameter

* Value of argument is copied into parameter when the function
is called

A parameter’s scope is the function which uses it

 There must be a data type listed in the prototype () and an
argument declaration in the function header () for each
parameter

* Arguments will be promoted/demoted as necessary to match
parameters
 When calling a function and passing multiple arguments:

— the number of arguments in the call must match the prototype and
definition

— the first argument will be used to initialize the first parameter, the
second argument to initialize the second parameter, etc.

Programacion en C++

C Passing Data by Value

 Pass by value: when an argument is passed to a
function, its value is copied into the parameter.

Changes to the parameter in the function do not affect
the value of the argument
Example: int val=5;

evenOrOdd (val) ;

val num
5 > 5
argument in parameter in
calling function evenOr0Odd function

« evenOrOdd can change variable num, but it will
have no effect on variable val

Programacion en C++

C Passing Data by Reference

 Pass by reference: in pass-by-reference, a reference of the
caller's variable is passed into the function. In other words,
the invoked function works on the same data. If the invoked
function modifies the parameter, the same caller's copy will be
modified as well.

* In C/C++, arrays are passed by reference. That is, you can
modify the contents of the caller's array inside the invoked
function - there could be side effect in passing arrays into
function.

Programacion en C++

& const Function Parameters

» Pass-by-reference risks corrupting the original
data. If you do not have the intention of modifying
the arrays inside the function, you could use the
const keyword in the function parameter.

* A const function argument cannot be modified
inside the function.

» Use const whenever possible for passing
references as it prevent you from inadvertently
modifying the parameters and protects you against
many programming errors.

Programacion en C++

& The return Statement

« Used to end execution of a function. The return statement in
the function transfers the control back to the caller

* Return a value (of the returnValue Type declared in the
function's header)

* Can be placed anywhere in a function

— Statements that follow the return statement will not be
executed

» Can be used to prevent abnormal termination of program

e |navoid function without a return statement, the
function ends at its last }

Programacion en C++

C A Value-Returning Function

int sum(int numl, 1Int num?2) {
double result;
result = numl + numZ;
return result;

int sum(int numl, 1Int num?2) {
return numl + numZ;

J

Functions can return the values of expressions,
such as numl + num?2

Programacion en C++

‘ﬂ Returning a Boolean Value

* Function canreturn true or false

* Declare return type in function prototype and heading
as bool

* Function body must contain return statement(s)
that return true or false

» (Calling function can use return value in a relational
expression

Programacion en C++

Local Variables

All variables, including function's parameters, declared
inside a function are available only to the function.

They are created when the function is called, and freed
(destroyed) after the function returns.

They are called local variables because they are local to
the function and not available outside the function. They
are also called automatic variables, because they are
created and destroyed automatically - no programmer's
explicit action needed to allocate and deallocate them.

They are hidden from the statements in other functions,
which normally cannot access them.

Programacion en C++

& Local Variable Lifetime

* Afunction’s local variables exist only while the function is
executing. This is known as the lifetime of a local variable.

 When the function begins, its local variables and its
parameter variables are created in memory, and when the
function ends, the local variables and parameter variables
are destroyed.

* This means that any value stored in a local variable is lost
between calls to the function in which the variable is
declared.

Programacion en C++

& Global Variables and Global Constants

* Aglobal variable is any variable defined outside all the
functions in a program.

* The scope of a global variable is the portion of the program
from the variable definition to the end.

* This means that a global variable can be accessed by all
functions that are defined after the global variable is defined.

* You should avoid using global variables because they make
programs difficult to debug.

* Any global that you create should be global constants.

Programacion en C++

S Initializing Local and Global Variables

» Local variables are not automatically initialized.
They must be initialized by programmer.

» Global variables (not constants) are automatically
initialized to O (numeric) or NULL (character) when

the variable is defined.

Programacion en C++

& Static Local Variables

» Local variables only exist while the function is executing.
When the function terminates, the contents of local variables
are lost.

e static local variables retain their contents between
function calls.

« static local variables are defined and initialized only the
first time the function is executed. O is the default

Initialization value.

Programacion en C++

Default Arguments

A Default argument is an argument that is passed
automatically to a parameter if the argument is missing on
the function call.

These default values would be used if the caller omits the
corresponding actual argument in calling the function.

Default arguments are specified in the function prototype,
and cannot be repeated in the function definition.

The default arguments are resolved based on their
positions.

Multi-parameter functions may have default arguments for
some or all of them:

int getSum(int, int=0, 1nt=0);

Programacion en C++

C Default Arguments

* |f not all parameters to a function have default values,
the defaultless ones are declared first in the
parameter list:

int getSum(int, int=0, int=0);// OK
int getSum(int, int=0, int); // NO

» When an argument is omitted from a function call, all
arguments after it must also be omitted:

sum = getSum(numl, num2); // OK
sum = getSum(numl, , num3); // NO

Programacion en C++

& Using Reference Variables as Parameters

* A mechanism that allows a function to work with the
original argument from the function call, not a copy
of the argument

» Allows the function to modify values stored in the
calling environment

* Provides a way for the function to ‘return’ more than
one value

Programacion en C++

C Passing by Reference

A reference variable is an alias for another variable
Defined with an ampersand (&)
vold getDimensions (1nté&, 1nté&);

Changes to a reference variable are made to the
variable it refers to

Use reference variables to implement passing
parameters by reference

Programacion en C++

Reference Variable Notes

Each reference parameter must contain &
Space between type and & Is unimportant
Must use & in both prototype and header

Argument passed to reference parameter must be a
variable — cannot be an expression or constant

Use when appropriate — don’t use when argument
should not be changed by function, or if function
needs to return only 1 value

Programacion en C++

C Overloading Functions

» Overloaded functions (or function polymorphism)
have the same name but different parameter lists

» Can be used to create functions that perform the
same task but take different parameter types or
different number of parameters

» Compiler will determine which version of function to
call by argument and parameter lists

Programacion en C++

S

Function Overloading Examples

Using these overloaded functions,

vold getDimensions (1nt) ;

vold getDimensions (1nt, 1int);

vold getDimensions (1nt, double);
vold getDimensions (double, double);

the compiler will use them as follows:
int length, width;
double base, height;

getDimensions (length) ; //
getDimensions (length, width); //
getDimensions (length, height); //
getDimensions (height, base); //

//
//
//
//

W N

W N

Programacion en C++

The exit () Function

Terminates the execution of a program, can be called
from any function

Can pass an int value to operating system to indicate
status of program termination

Usually used for abnormal termination of program
Example:

ex1t (0);

Requires cstdlib header file. It defines two constants

that are commonly passed, to indicate success or failure:
exit (EXIT SUCCESS) ;
exit (EXIT FAILURE) ;

Programacion en C++

& Stubs and Drivers

» Useful for testing and debugging program and
function logic and design

o Stub: Adummy function used in place of an actual
function
— Usually displays a message indicating it was called. May
also display parameters
* Driver: A function that tests another function by
calling it
— Various arguments are passed and return values are
tested

Programacion en C++

C

Introduction to Recursion

* Arecursive function contains a call to itself:

vold countDown (int num)

{

if (num == 0)

cout << "Blastoff!";
else
{

cout << num << "...\n";

countDown (num-1); // recursive
} // call

Programacion en C++

S What Happens When Called?

If a program contains a line like countDown (2) ;

1. countDown (2) generates the output 2. . ., then it calls
countDown (1)
2. countDown (1) generates the output 1. . ., thenitcalls

countDown (0)

3. countDown (0) generates the output Blastoff!,
then returns to countDown (1)

4. countDown (1) returns to countDown (2)
5. countDown (2) returns to the calling function

Programacion en C++

‘ﬂ Recursive Functions

» Recursive functions are used to reduce a complex
problem to a simpler-to-solve problem.

* The simpler-to-solve problem is known as the base
case

* Recursive calls stop when the base case is reached

» Arecursive function must always include a test to
determine if another recursive call should be made, or
if the recursion should stop with this call

Programacion en C++

C Types of Recursion

* Direct
— a function calls itself

 |Indirect
— function A calls function B, and function B calls function A

— function A calls function B, which calls ..., which calls
function A

Programacion en C++

& The Recursive Factorial Function

 The factorial function:
n! = n*(n-1)*(n-2)*...*3*2*1ifn > 0
n! = 1ifn = 0

» Can compute factorial of n if the factorial of
(n-=1) Is known:
n! = n * (n-1)!

e n = 01Isthe base case

Programacion en C++

C

The Recursive Factorial Function

int factorial (int num)
{
1f (num > 0)
return num * factorial (num - 1);
else

return 1;

Programacion en C++

C The Recursive gcd Function

» Greatest common divisor (gcd) is the largest factor
that two integers have in common

Computed using Euclid's algorithm:

gced (x, y) = vy Iifydivides x evenly
gced(x, y) = gcd(y, x % vy) otherwise
e gcd (x, vy) = vylisthe base case

Programacion en C++

C

The Recursive gcd Function

int gcd(int x, 1nt vy)
{
1f (x 5 v == 0)
return vy;
else

return gcd(y, X % V);

Programacion en C++

& Solving Recursively Defined
Problems

* The natural definition of some problems leads to a
recursive solution

» Example: Fibonacci numbers:
o, 1, 1, 2, 3, 5, 8, 13, 21,

o After the starting 0, 1, each number is the sum of
the two preceding numbers

* Recursive solution:
fib(n) = fib(n - 1) + fib(n - 2);
« Basecases:n <= 0, n == 1

Programacion en C++

@ Solving Recursively Defined Problems

int fib(int n)
{
if (n <= 0)
return O;
else 1f (n == 1)
return 1;
else
return fib(n - 1) + fib(n - 2);

Programacion en C++

& ARecursive Binary Search Function

» Binary search algorithm can easily be written to use recursion

» Base cases: desired value is found, or no more array
elements to search

» Algorithm (array in ascending order):
— If middle element of array segment is desired value, then done
— Else, if the middle element is too large, repeat binary search in first
half of array segment
— Else, if the middle element is too small, repeat binary search on the
second half of array segment

Programacion en C++

C

A Recursive Binary Search Function - code

1

int binarySearch(int array[], int first, int last, int value)

int middle; J/ Mid point of search

if (first = last)
return -1;

middle = (first +

if {array[middle]
return middle:

if {array[middle] < wvalue)
return binarvSearch({array, middle+l,last,value);

last) / 2:
== values)

else
return binarySearch({array, first,middle-1,value);

Programacion en C++

& The Towers of Hanoi

 The Towers of Hanoi is a mathematical game that uses three
pegs and a set of discs, stacked on one of the pegs.

=3

* The object of the game is to move the discs from the first peg

to the third peg. Here are the rules:
— Only one disc may be moved at a time.
— Adisc cannot be placed on top of a smaller disc.

— All discs must be stored on a peg except while being moved.

Programacion en C++

C

Moving Three Discs

Original setup. First move: Move disc 1 to peg 3.
7) A A A 7) A A \
Second move: Move disc 2 to peg 2. Third move: Move disc 1 to peg 2.
ﬂ [= @ M A \
Fourth move: Move disc 3 to peg 3. Fifth move: Move disc 1 to peg 1.
T 7 D A ﬂ , ﬂ] \
Sixth move: Move disc 2 to peg 3. Seventh move: Move disc 1 to peg 3.

Programacion en C++

& The Towers of Hanoi

* Algorithm

To move n discs from peg A to peg C, using peg B as a temporary peg:
Ifn>0 Then
Move n — 1 discs from peg A to peg B, using peg C as a temporary peg
Move the remaining disc from the peg A to peg C.
Move n — 1 discs from peg B to peg C, using peg A as a temporary peg

End If

Programacion en C++

C The QuickSort Algorithm

* Recursive algorithm that can sort an array or a linear linked
list

 Determines an element/node to use as pivot value:
pivot

v

{ {
| |

sublist 1 sublist 2
* Once pivot value is determined, values are shifted so that
elements in sublist1 are < pivot and elements in sublist2 are >
pivot
» Algorithm then sorts sublist1 and sublist2
 Base case: sublist has size 1

Programacion en C++

& Exhaustive and Enumeration Algorithms

« Exhaustive algorithm: search a set of combinations to
find an optimal one

Example: change for a certain amount of money that uses
the fewest coins

» Uses the generation of all possible combinations
when determining the optimal one.

Programacion en C++

& Recursion vs. lteration

» Benefits (+), disadvantages(-) for recursion:
+ Models certain algorithms most accurately
+ Results in shorter, simpler functions
— May not execute very efficiently

» Benefits (+), disadvantages(-) for iteration:
+ Executes more efficiently than recursion
— Often is harder to code or understand

Programacion en C++

Arrays

Programacion en C++

C Arrays declaration and Usage

* Array: variable that can store multiple values of the
same type. Values are stored in adjacent memory

locations
* Declared using [] operator:
int al[d];
Array Name: a
Array Length:n
Index: 5] 1 2 3 n-1
Elements: a[e] a[1] a[2] a[3] ... a[n-1]
t t

First Element Last Element

Programacion en C++

C Array Terminology

In the definition int tests[5];
« int is the data type of the array elements
« tests is the name of the array

e 5,1In [5], Isthe size declarator. It shows the
number of elements in the array.
* The size of an array Is:

— the total number of bytes allocated for it
— (number of elements) * (number of bytes for each

element)

» Example: int tests[5] isanarray of 20
bytes, assuming 4 bytes foran int

Programacion en C++

Size Declarators

Named constants are commonly used as size declarators.
const int SIZE = 5;
int tests[SIZE];

To create an array, you need to known the length (or size) of
the array in advance, and allocate accordingly. Once an array
IS created, its length is fixed and cannot be changed.

C++ has a vector template class, which supports dynamic
resizable array.

To find the array length we use the expression
sizeof(arrayName)/sizeof(arrayName[0]).

C/C++ does not perform array index-bound check.

Programacion en C++

‘ﬂ Accessing Array Elements

 Each element in an array is assigned a unique index or
subscript. You can refer to an element of an array via the
iIndex enclosed within the square bracket |]

 Subscripts start at 0. The last element’s subscript is n-1

where n is the number of elements in the array.

subscripts:
0 1 2 3 4

* Array elements can be used as regular variables
* Arrays must be accessed via individual elements

* (Can access element with a constant or literal subscript or
use integer expression as subscript

Programacion en C++

S

Default Initialization - Array Initialization

Global array — all elements initialized to 0 by
default
Local array — all elements uninitialized by default

Arrays can be initialized with an initialization list:
const int SIZE = 5;
int tests|[SIZE] = {79,82,91,77,84};

The values are stored in the array in the order in
which they appear in the list.

The Initialization list cannot exceed the array size.

Programacion en C++

C

Partial Array Initialization

» [farray is initialized with fewer initial values than
the size declarator, the remaining elements will be

setto O:
int numbers[7] = {1, 2, 4, 8};
]
I ‘ Uninitialized Elements
1 2 4 8 0 0 0

numbers numbers numbers numbers numbers numbers numbers

L0} [1] [2] [3] [4] [5] 6]

Programacion en C++

C Implicit Array Sizing

» Can determine array size by the size of the
initialization list:
int quizzes[]={12,17,15,11};

12 17 15 11

 Must use either array size declarator or initialization
list at array definition

Programacion en C++

S

No Bounds Checking in C++

When you use a value as an array subscript, C++
does not check it to make sure it is a valid subscript.

In other words, you can use subscripts that are
beyond the bounds of the array.

Be careful not to use invalid subscripts.

Doing so can corrupt other memory locations, crash
program, or lock up computer, and cause elusive
bugs.

Programacion en C++

C Off-By-One Errors

* An off-by-one error happens when you use array
subscripts that are off by one.

* This can happen when you start subscripts at 1
rather than O:

// This code has an off-by-one error.

const int SIZE = 100;

int numbers[SIZE];

for (int count = 1; count <= SIZE; count++)
numbers|[count] = 0;

Programacion en C++

C The Range-Based for Loop

« C++ 11 provides a specialized version of the for loop that,
In many circumstances, simplifies array processing.

 The range-based for loop is a loop that iterates once for
each element in an array.

 Each time the loop iterates, it copies an element from the
array to a built-in variable, known as the range variable.

 The range-based for loop automatically knows the number
of elements in an array.

— You do not have to use a counter variable.

— You do not have to worry about stepping outside the bounds of the
array.

Programacion en C++

C The Range-Based for Loop

 The general format of the range-based for loop:
for (dataType rangeVariable : array)

statement;
« dataType is the data type of the range variable.

« rangeVariable isthe name of the range variable. This
variable will receive the value of a different array element
during each loop iteration.

« array Isthe name of an array on which you wish the loop
{o operate.

« statement Is a statement that executes during a loop

iteration. If you need to execute more than one statement in
the loop, enclose the statements in a set of braces.

Programacion en C++

C: Modifying an Array with a Range-Based
for Loop

* As the range-based for loop executes, its range variable
contains only a copy of an array element.

* You cannot use a range-based for loop to modify the
contents of an array unless you declare the range variable as
a reference.

* To declare the range variable as a reference variable, simply
write an ampersand (&) in front of its name in the loop header.

Programacion en C++

@ The range-based for loop - Example

/* Testing For-each loop (TestForEach.cpp) */
#include <iostream>

using namespace std;

int main () {
int numbers[] = {11, 22, 33, 44, 55};

// For each member called number of array numbers - read only
for (int number : numbers) {
cout << number << endl;

}

// To modify members, need to use reference (&)

for (int &number : numbers) {
number = 99;

}

for (int number : numbers) {

cout << number << endl;

}

return 0O;

Programacion en C++

& The Range-Based for Loop versus the
Regqular for Loop

* The range-based for loop can be used in any situation
where you need to step through the elements of an
array, and you do not need to use the element
subscripts.

* |f you need the element subscript for some purpose,
use the regular for loop.

Programacion en C++

C Processing Array Contents

* Array elements can be treated as ordinary variables
of the same type as the array

» When using ++, —— operators, don’t confuse the
element with the subscript:
tests[1]++; // add 1 to tests[i]
tests[i++]; // increment i, no
// effect on tests
* To copy one array to another,
for (1 = 0; 1 < ARRAY_SIZE; 1++)
newlTests[1] = tests[1];
tests; // Won't work

newlests

Programacion en C++

C Printing the Contents of an Array

* You can display the contents of a character array by
sending its name to coult:
char fName|[] = "Henry";

cout << fName << endl;
But, this ONLY works with character arrays!

* For other types of arrays, you must print element-
by-element:
for (1 = 0; i < ARRAY SIZE; i++)
cout << tests[1] << endl;
* In C++ 11 you can use the range-based for loop

for (int val : numbers)

to display an array's contents .ot << val << enar;

Programacion en C++

& Summing and Averaging Array Elements

 Use a simple loop to add together array elements:
int tnum;
double average, sum = 0O;
for(tnum = 0; tnum < SIZE; tnum+t+)
sum += tests|[tnum];

» Once summed, can compute average:

average = sum / SIZE;

* In C++ 11 you can use the range-based for loop, as

shown here:

double total = 0; double average;
for (int val : scores) total += val;
average = total / NUM SCORES;

Programacion en C++

@ Finding the Highest/ Lowest Value in an

Array

When this code is finished,
the highest variable will

contains the highest value
in the numbers array.

When this code is finished,
the 1owest variable will

contains the lowest value in
the numbers array.

int count;

int highest;

highest = numbers[0];

for (count = 1,; count < SIZE;

{

count++)

i1f (numbers[count]
highest =

> highest)
numbers [count];

int count;

int lowest;

lowest = numbers[0];

for (count = 1; count < SIZE;

{

count++)

if (numbers|[count]
lowest =

< lowest)
numbers[count];

Programacion en C++

S Comparing Arrays

* To compare two arrays, you must compare element-by-

element:
const int SIZE = 5;
int firstArray[SIZE] = { 5, 10, 15, 20, 25 };
int secondArray[SIZE] = { 5, 10, 15, 20, 25 };
bool arraysEqual = true; // Flag variable
int count = 0; // Loop counter variable

// Compare the two arrays.
while (arraysEqual && count < SIZE)

{

1f (firstArrayl[count] != secondArray[count])
arraysEqual = false;
count++;

}
1if (arraysEqual)

cout << "The arrays are equal.\n";
else

cout << "The arrays are not equal.\n";

Programacion en C++

C Using Parallel Arrays

» Parallel arrays: two or more arrays that contain related data

 Asubscript is used to relate arrays: elements at same
subscript are related

* Arrays may be of different types

const int SIZE = 5; // Array size

int 1d[SIZE]; // student ID
double average[SIZE]; // course average
char grade[SIZE]; // course grade

for(int i = 0; 1 < SIZE; i++)
{

cout << "Student ID: " << id[1]
<< " average: " << average[i]
<< " grade: " << gradel[i]
<< endl;

Programacion en C++

C Arrays as Function Arguments

* To pass an array to a function, just use the array name:
showScores (tests) ;

* To define a function that takes an array parameter, use empty

[] for array argument:

// function prototype // function header
vold showScores (int []) ;]| volid showScores (int tests|[])

* When passing an array to a function, it is common to pass
array size so that function knows how many elements to

Process.
showScores (tests, ARRAY SIZE);

* Array size must also be reflected in prototype, header:

// function prototype

vold showScores(int [], 1int):;

// function header

vold showScores (int tests[], 1nt size)

Programacion en C++

C Modifying Arrays in Functions

» Array names in functions are like reference

variables — changes made to array in a function are
reflected in actual array in calling function

* Need to exercise caution that array Is not
inadvertently changed by a function

Programacion en C++

‘ﬂ wo-Dimensional Arrays

* Like a table in a spreadsheet. Use two size declarators in
definition:
const int ROWS = 4, COLS = 3;
int exams[ROWS] [COLS];

 Firstindex is the row number, second index is the column
number. The elements are stored in a so-called row-major
manner, where the column index runs out first

» Two subscripts to access element: exams [2] [2] = 86;

Column 0 Column 1 Column 2 Column 3

Row 0 a[e][e] a[e][1] a[e][2] a[e][3]

Row 1 a[1][e] a[1][1] a[1][2] a[1][3]

Row Column
Index Index

Programacion en C++

S 2D Array Initialization

 Two-dimensional arrays are Initialized row-by-row:
const int ROWS = 2, COLS = 2;
int exams[ROWS] [COLS] = { {84, 78},

{92, 97} };

84 |78

92 | 97

» Canomitinner { }, some initial values in a row — array
elements without initial values will be setto 0 or NULL

Programacion en C++

&9 Two-Dimensional Array as Parameter,
Argument

* Use array name as argument in function call:
getExams (exams, 2);

« Use empty [] for row, size declarator for column in

prototype, header:
const i1nt COLS = 2;

// Prototype

volid getExams (int [] [COLS], 1int);
// Header
vold getExams (int exams|[] [COLS], 1nt rows)

Programacion en C++

Example — Multi-dimensional array

/* Test Multi-dimensional Array (Test2DArray.cpp) */

#include <iostream>
using namespace std;
void printArray(const int[][3], int);

int main() {

int myArray[][3] = {{8, 2, 4}, {7, 5, 2}}; // 2x3 initialized

// Only the first index can be omitted and implied
printArray (myArray, 2);

return 0;

}

// Print the contents of rows-by-3 array (columns is fixed)
void printArray(const int array[][3], int rows) {
for (int 1 = 0; i < rows; ++1i) {
for (int 7 = 0; J < 3; ++73) {

n

cout << arrayl[i][]J] << " ";

}

cout << endl;

Programacion en C++

Summing All the Elements in a Two-
Dimensional Array

C

* Given the following definitions:

const int NUM ROWS = 5; // Number of rows
const int NUM COLS = 5; // Number of columns

int total = 0; // Accumulator

int numbers[NUM ROWS] [NUM COLS] = {{2, 7, 9, o, 4},
{e, 1, 8, 9, 4},
{4, 3, 7, 2, 9},
{9, 9, 0, 3, 1},
{e, 2, 7, 4, 1}};

// Sum the array elements.
for (int row = 0; row < NUM ROWS; rowt++) ({
for (int col = 0; col < NUM COLS; col++)
total += numbers|[row] [col];

}

// Display the sum.
cout << "The total is " << total << endl;

Programacion en C++

@ Summing the Rows of a Two-Dimensional
Array

* Given the following definitions:

const int NUM STUDENTS = 3;
const int NUM SCORES = 5;
double total; // Accumulator
double average; // To hold average scores
double scores[NUM STUDENTS] [NUM SCORES] =
{{88, 97, 79, 86, 94},
{86, 91, 78, 79, 84},
{82, 73, 77, 82, 89}1};
// Get each student's average score.
for (int row = 0; row < NUM STUDENTS; row++)
{
// Set the accumulator.
total = 0;
// Sum a row.
for (int col = 0; col < NUM SCORES; col++)
total += scores|[row] [col];
// Get the average
average = total / NUM SCORES;
// Display the average.
cout << "Score average for student "
<< (row + 1) << " 1is " << average <<endl;

Programacion en C++

Summing the Columns of a Two-
Dimensional Array

* (Given the following definitions:

const int NUM STUDENTS = 3;
const int NUM SCORES = 5;
double total; // Accumulator
double average; // To hold average scores
double scores[NUM STUDENTS] [NUM SCORES] =
{{88, 97, 79, 86, 94},
{86, 91, 78, 79, 84},
{82, 73, 77, 82, 89}};

// Get the class average for each score.
for (int col = 0; col < NUM SCORES; col++)
{
// Reset the accumulator.
total = 0;
// Sum a column
for (int row = 0; row < NUM STUDENTS; row++)
total += scores|[row] [col];
// Get the average
average = total / NUM STUDENTS;
// Display the class average.
cout << "Class average for test " << (col + 1)
<< " 1s " << average << endl;

Programacion en C++

& Arrays with Three or More
Dimensions

» Can define arrays with any number of dimensions:
short rectSolid[2][3]1[5];
double timeGrid([3][4]1([3][4];

 When used as parameter, specify all but 18
dimension in prototype, heading:
vold getRectSolid(short [][3]1[5]);

Programacion en C++

& Introduction to the STL vector

A data type defined in the Standard Template
Library

Can hold values of any type:
vector<int> scores;

Automatically adds space as more is needed — no
need to determine size at definition

Can use [] to access elements

Programacion en C++

Declaring Vectors

Youmust #include <vector>

Declare a vector to hold int element:
vector<int> scores;

Declare a vector with initial size 30:
vector<int> scores (30) ;

Declare a vector and initialize all elements to 0:
vector<int> scores (30, 0);

Declare a vector initialized to size and contents of another
vector:

vector<int> finals(scores);

Programacion en C++

C Adding Elements to a Vector

* |f you are using C++ 11, you can initialize a vector with a list
of values:

vector<int> scores { 10, 20, 30, 40 };

* Use push back member function to add element to a full
array or to an array that had no defined size:

scores.push back(75);
« Use size member function to determine size of a vector:

howbig = scores.size();

Programacion en C++

C Removing Vector Elements

* Use pop back member function to remove last element
from vector:
scores.pop back();
« To remove all contents of vector, use c1ear member
function:
scores.clear () ;
* To determine if vector is empty, use empty member
function:
while (!scores.empty())

Programacion en C++

& Other Useful Member Functions

Member Description Example
Function
at (1) Returns the value of the element at | cout <<
position i in the vector vecl.at (i)
capacity () Returns the maximum number of maxElements =
elemer_1ts a vector can store without | vecl.capacity () ;
allocating more memory
reverse () Reverse the order of the elements | vecl.reverse () ;
in a vector
resize Resizes the vector so it contains n | vecl.resize (5, 0);
(n, val) elements. If new elements are
added, they are initialized to val.
swap (vecZ2) | Exchange the contents of two vecl.swap (vec2) ;
vectors

Programacion en C++

C Search Algorithms

« Search: locate an item in a list of information

* Two algorithms are:
— Linear search
— Binary search

Programacion en C++

Linear Search

Also called the sequential search

Starting at the first element, this algorithm sequentially
steps through an array examining each element until
it locates the value it is searching for.

Example: Array num1 i st contains:
17 23 5 11 2 29 3

Searching for the the value 11, linear search
examines 17, 23, 5, and11

Searching for the the value 7, linear search examines
17, 23, 5, 11, 2, 29, and3

Programacion en C++

& Linear Search

» Algorithm:
set found to false; set position to —1; set index to 0
while index < number of elts. and found is false
if list[index] is equal to search value
found = true
position = index
end if
add 1 to index
end while
return position

Programacion en C++

A Linear Search Function

int linearSearch(int arr[], int size, int value)

{
int index = 0; // Used as a subscript to search the array
int position = -1; // To record the position of search value
bool found = false; // Flag to indicate if wvalue was found

while (index < size && !found)

{

if (arr[index] == value) // If the value is found

{
found = true; // Set the flag

position = index; // Record the value's subscript

}
index++; // Go to the next element

}

return position; // Return the position, or -1

Programacion en C++

& Linear Search - Tradeoffs

* Benefits:
— Easy algorithm to understand
— Array can be in any order

» Disadvantages:

— Inefficient (slow): for array of N elements, examines N/2
elements on average for value in array, N elements for
value not in array

Programacion en C++

C Binary Search

Requires array elements to be in order

1. Divides the array into three sections:
— middle element
— elements on one side of the middle element
— elements on the other side of the middle element

2. If the middle element is the correct value, done. Otherwise,
go to step 1. using only the half of the array that may
contain the correct value.

3. Continue steps 1. and 2. until either the value is found or
there are no more elements to examine

Programacion en C++

C Binary Search - Example

* Array numlist2 contains:

2 3 5 11 17 23 29

» Searching for the the value 11, binary search
examines 11 and stops

» Searching for the the value 7, linear search
examines 11, 3, 5, andstops

Programacion en C++

C Binary Search

Set first to 0
Set last to the last subscript in the array
Set found to false
Set position to -1
While found is not true and first is less than or equal to last
Set middle to the subscript half-way between array(first] and array[last].
If array[middle] equals the desired value
Set found to true
Set position to middle
Else If array[middle] is greater than the desired value
Set last to middle - 1
Else
Set first to middle + 1
End If.
End While.
Return position.

Programacion en C++

A Binary Search Function

int binarySearch(int arrayl[],

{

int first = 0, //
last = size - 1, //
middle, //
position = -1; //
bool found = false; // Flag
while (!found && first <= last)
{
middle = (first + last) / 2;
if (array[middle] == value)
{
found = true;
position = middle;
}
else if (array[middle] > value)
last = middle - 1;
else
first = middle + 1;

}

return position;

int size,

int value)

//
//

//

//

First array element

Last array element

Mid point of search
Position of search wvalue

Calculate mid point
If value is found at mid

If value is in lower half

If value is in upper half

Programacion en C++

C Binary Search - Tradeoffs

* Benefits:

— Much more efficient than linear search. For array of N
elements, performs at most log,/N comparisons

» Disadvantages:
— Requires that array elements be sorted

Programacion en C++

C Introduction to Sorting Algorithms

» Sort: arrange values into an order:
— Alphabetical
— Ascending numeric
— Descending numeric

» Some algorithms are:
— Bubble sort
— Insertion sort
— Selection sort

Programacion en C++

S Bubble Sort

Concept:

— Compare 15t two elements
« If out of order, exchange them to put in order

— Move down one element, compare 2" and 3 elements,
exchange if necessary. Continue until end of array.

— Pass through array again, exchanging as necessary
— Repeat until pass made with no exchanges

Programacion en C++

& Selection Sort

» Concept for sort in ascending order:

— Locate smallest element in array. Exchange it with
element in position 0

— Locate next smallest element in array. Exchange it with
element in position 1.

— Continue until all elements are arranged in order

Programacion en C++

& Sorting and Searching Vectors

» Sorting and searching algorithms can be applied to
vectors as well as arrays

* Need slight modifications to functions to use vector
arguments:
—vector <type> & Used in prototype

— No need to indicate vector size — functions can use size
member function to calculate

Programacion en C++

Pointers

Programacion en C++

& Getting the Address of a Variable

 Each variable in program is stored at a unique

address
» Use address operator & to get address of a variable:
int num = -99;

cout << # // prints address

// 1n hexadecimal

Programacion en C++

& Pointer Variables

* Pointer variable : Often just called a pointer, it's a
variable that holds an address

 Because a pointer variable holds the address of
another piece of data, it "points" to the data

Programacion en C++

& Something Like Pointers: Arrays

 Something similar to pointers are arrays as arguments to
functions.

* For example, suppose we use this statement to pass the
array numbers to the showValues function:
showValues (numbers, SIZE);

numbers array

= 1 1213|445

showValues (numbers, SIZE);

| L
add 5

)

void showValues(int values[], int size)
{
for (int count = 0; count < size; count++)
cout << values[count] << endl;

}

Programacion en C++

Something Like Pointers:
Reference Variables

» Something like pointers is to use reference variables. Example:

vold getOrder (int &donuts) {
cout << "How many doughnuts do you want? ";
cin >> donuts;

C

}

 And we call it with this code:
int jellyDonuts;
getOrder (JellyDonuts) ;

jellyDonuts variable

getOrder(jellyDonuts);

address
|

void getOrder(int &donuts)

{
cout << "How many doughnuts do you want? ";
cin >> donuts;

}

Programacion en C++

Pointer Variables

Pointer variables are yet another way using a memory
address to work with a piece of data.

Pointers are more "low-level" than arrays and reference
variables.

This means you are responsible for finding the address you
want to store in the pointer and correctly using it.

Definition: int *intptr;
Read as: “intptr can hold the address of an int”

Spacing in definition does not matter:
int * intptr; // same as above
int* intptr; // same as above

Programacion en C++

S

Pointer Variables

Assigning an address to a pointer variable:
int num = 25;
int *intptr;

intptr = # |
num intptr

Memory layout: 25 |, 0x%4a00
address of num: 0x4a00

You can initialize a pointer to 0 or NULL, it points to nothing.
In C++ 11, the nul lptr key word was introduced to

represent the address 0.

Example of how you define a pointer variable and initialize it
with the value nullptr: int *ptr = nullptr;

Programacion en C++

C The Indirection Operator

* The indirection operator (*) dereferences a pointer.
» |t allows you to access the item that the pointer points to.

int x = 25;
int *1ntptr = &x;
cout << *intptr << endl;

Programacion en C++

ﬁ The Relationship Between Arrays and
Pointers

* Array name is starting address of array
int vals[] = {4, 7, 11};
4 | 7 |11

starting address of vals: 0x4a00

cout << vals; // displays 0x4a00

cout << wvals[0]; // displays 4
* Array name can be used as a pointer constant:

int vals[] = {4, 7, 11};

cout << *vals; // displays 4
* Pointer can be used as an array nhame:

int *valptr = vals;

cout << valptr([l]; // displays 7

Programacion en C++

S Pointers in Expressions

Given:
int vals[]={4,7,11}, *valptr;

valptr = vals;

Whatis valptr + 17 Itmeans (addressin valptr)
+ (1 * size of an int)
cout << *(valptr+l); //displays 7
cout << * (valptr+2); //displays 11

Must use () as shown in the expressions

Programacion en C++

S

Array Access

* Array elements can be accessed in many ways:

Array access method Example
array name and [] vals[2] = 17;
pointer to array and [] valptr[2] = 17;
array name and subscript arithmetic *(vals + 2) = 17;
pointer to array and subscript arithmetic | * (valptr + 2) = 17;

» Conversion: vals[1i] Isequivalentto * (vals + 1)

* No bounds checking performed on array access, whether

using array name or a pointer

Programacion en C++

S

Pointer Arithmetic

* Qperations on pointer variables:

Operation Example
int vals([]={4,7,11};
int *valptr = vals;

+4+, —- valptr++; // points at 7
valptr--; // now points at 4

+, - (pointer and int)

cout << *(valptr + 2);

+=, -= (pointer and int)

valptr vals;
valptr += 2;

- (pointer from pointer)

cout << valptr-val;
// (number of ints)
// and val

Programacion en C++

// 11

// points at 4
// points at 11

// difference
between valptr

C Initializing Pointers

 Can initialize at definition time:
int num, *numptr = #
int val[3], *valptr = val;
» Cannot mix data types:
double cost;

int *ptr = &cost; // won't work
» Can test for an invalid address for pt r with:
1f (!ptr)

Programacion en C++

C Comparing Pointers

» Relational operators (<, >=, etc.) can be used to
compare addresses in pointers

» Comparing addresses in pointers is not the same as
comparing contents pointed at by pointers:

if (ptrl == ptr2) // compares
// addresses
if (*ptrl == *ptr2) // compares

// contents

Programacion en C++

& Pointers as Function Parameters

* Apointer can be a parameter

« Works like reference variable to allow change to argument
from within function

* Requires:
1) asterisk * on parameter in prototype and heading
void getNum(int *ptr); // ptr is pointer to an int
2) asterisk * in body to dereference the pointer
cin >> *ptr;
3) address as argument to the function
getNum (&num); // pass address of num to getNum

Programacion en C++

Example

vold swap (int *x, 1nt *vy)

{ int temp;
temp = *Xx;
*X — *y;
*y = temp;
}
// call
int numl = 2, num?2 = -3;

swap (&numl, &num2) ;

Programacion en C++

& Pointers to Constants

* |f we want to store the address of a constant in a
pointer, then we need to store it in a pointer-to-const.
» Example: Suppose we have the following definitions:
const i1nt SIZE = 6;
const double payRates [SIzZE] =
{ 18.55, 17.45, 12.85,
14.97, 10.35, 18.89 };
* In this code, payRates Is an array of constant
doubles.

Programacion en C++

& Pointers to Constants

* Suppose we wish to pass the payRates array to
a function? Here's an example of how we can do it.

vold displayPayRates (const double *rates, 1nt size)

{

for (int count = 0; count < size; count++)
{
cout << "Pay rate for employee " << (count + 1)
<< " is $" << *(rates + count) << endl;

The asterisk indicates that
rates is a pointer

|

const double *rates, 1int size)

\ J
|

This is what rates points to

Programacion en C++

& Constant Pointers

* A constant pointer is a pointer that is initialized with an
address, and cannot point to anything else.

» Example
int value = 22;
int * const ptr = &value;

* const indicates that
ptr is a constant pointer.

: |
|lnt”* const ptr

This is what ptr points to.

Programacion en C++

& Constant Pointers to Constants

* A constant pointer to a constant is:
— a pointer that points to a constant
— a pointer that cannot point to anything except what it is

pointing to
» Example:
int value = 22;
const i1int * const ptr = &value;

* const indicates that
ptr is a constant pointer.

const int”* const ptr

This is what ptr points to.

Programacion en C++

S

Dynamic Memory Allocation

Can allocate storage for a variable while program is running
Computer returns address of newly allocated variable
Uses new operator to allocate memory (returns address of
memory location):
double *dptr = nullptr;
dptr = new double;
Can also use new to allocate array:
const 1nt SIZE = 25;
arrayPtr = new double[SIZE];
Can then use [] or pointer arithmetic to access array:

for (i=0; i<SIZE; i++) *arrayptr[i] = i*i;
Or
for (i=0; i<SIZE; i++) * (arrayptr+i) = 1i*i;

Program will terminate if not memory available to allocate

Programacion en C++

sﬂ Releasing Dynamic Memory

» Use delete to free dynamic memory:
delete fptr;

» Use [] to free dynamic array:
delete [] arrayptr;

* Only use delete with dynamic memory!

Programacion en C++

sﬂ Returning Pointers from Functions

* Pointer can be the return type of a function:
int* newNum() ;
* The function must not return a pointer to a local variable in the
function.

* Afunction should only return a pointer:
— to data that was passed to the function as an argument, or

— to dynamically allocated memory

Programacion en C++

C: Using Smart Pointers to Avoid Memory
Leaks

* In C++ 11, you can use smart pointers to dynamically allocate
memory and not worry about deleting the memory when you
are finished using it.

* Three types of smart pointer:
unique ptr
shared ptr
weak ptr

* Must #include the memory header file:
#include <memory>

* Next, we introduce unique ptr:
unique ptr<int> ptr(new int);

Programacion en C++

Using Smart Pointers to Avoid Memory
Leaks

Mame of the pointer

|

unique ptr<int> ptr{lnew int I} :

Data type that the pointer Expression that dynamically
will point to allocates the memory

The notation <int> Indicates that the pointer can pointto an int .
The name of the pointer is ptr .

The expression new int allocates a chunk of memory to hold an
int.

The address of the chunk of memory will be assigned to ptr.

Programacion en C++

& Function Pointer

* The name of a function is the starting address where the
function resides in the memory, and therefore, can be treated
as a pointer.

 We can pass a function pointer into function as well. The
syntax for declaring a function pointer

// Function-pointer declaration
return-type (* function-ptr-name) (parameter-1list)

// Examples

// fp points to a function

double (*fp) (int, int)

// £ is a function that takes two ints and returns a double
double f (int, int);

// Assign function f to fp function-pointer

fp = £;

Programacion en C++

C Command-Line Arguments

» We can include arguments in the command-line, when
running a program

* To process command-line argument, the main() function shall
use this header:

int main(int argc, char *argv[]) {

 The second parameter char *argv| | captures the string array,
while the first parameter capture the size of the array, or the
number of arguments

Programacion en C++

Structured Data

Programacion en C++

C Abstract Data Types

» Adata type that specifies
— values that can be stored
— operations that can be done on the values

» User of an abstract data type does not need to
Know the implementation of the data type, e.g.,
now the data is stored

* ADTs are created by programmers

Programacion en C++

C Abstraction and Data Types

» Abstraction: a definition that captures general
characteristics without details

— Ex: An abstract triangle is a 3-sided polygon. A specific
triangle may be scalene, isosceles, or equilateral
 Data Type defines the values that can be stored in a

variable and the operations that can be performed on
it

Programacion en C++

C Combining Data into Structures

o Structure: C++ construct that allows multiple variables to be
grouped together

 General Format:
struct StructName
{
typel fieldl;
type2 field2;

}; // need to terminate by a semi-colon

Programacion en C++

C

Example struct Declaration

struct Student

{
int studentID;
string name;
short yearInSchool;

double gpa;
bi

Programacion en C++

& struct Declaration

» Must have ; after closing }
e struct names commonly begin with uppercase
letter

» Multiple fields of same type can be in comma-

separated list:
string name,
address;

Programacion en C++

C Defining Variables

« struct declaration does not allocate memory or
create variables

* To define variables, use structure tag as type name:
Student bill;

bill
studentID

name

vearInSchool

gpa

Programacion en C++

& Accessing Structure Members

« Usethedot (.) operator to refer to members of struct
variables:
cln >> stul.studentID;
getline(cin, stul.name);

stul.gpa = 3.75;

* Member variables can be used in any manner appropriate for
their data type

Programacion en C++

C Displaying a struct Variable

* To display the contents of a st ruct variable, must
display each field separately, using the dot operator:
cout << bill; // won't work
cout << bill.studentID << endl;
cout << bill.name << endl;
cout << bill.yearInSchool;
cout << " " << bill.gpa;

Programacion en C++

S Comparing struct Variables

» Cannot compare struct variables directly:
if (bill == william) // won't work

* [nstead, must compare on a field basis:
1f (bi1ll.studentID ==
wililllam.studentID)

Programacion en C++

C Initializing a Structure

e struct variable can be initialized when defined:
Student s = {11465, "Joan", 2, 3.75};

Can also be initialized member-by-member after
definition:

s.name = "Joan"; s.gpa = 3.75;
May initialize only some members:

Student bill = {14579},

Cannot skip over members (illegal):

Student s = {1234, "John", , 2.83};
Cannot initialize in the structure declaration, since
this does not allocate memory

Programacion en C++

S Arrays of Structures

o Structures can be defined in arrays

 Can be used in place of parallel arrays
const 1nt NUM STUDENTS = 20;
Student stuList[NUM STUDENTS];

* Individual structures accessible using subscript notation

* Fields within structures accessible using dot notation:
cout << stulist[5].studentID;

Programacion en C++

& Nested Structures

A structure can contain another structure as a member:
struct PersonInfo
{ string name,
address,
city;
b7
struct Student
{ int studentID;
PersonInfo pData;
short yearInSchool;
double gpa;

b

Programacion en C++

& Members of Nested Structures

» Use the dot operator multiple times to refer to fields of
nested structures:

Student s;
s.pData.name = "Joanne";
s.pData.city = "Tulsa";

Programacion en C++

S

Structures as Function Arguments

May pass members of struct variables to functions:
computeGPA (stu.gpa) ;

May pass entire st ruct variables to functions:
showData (stu) ;

Can use reference parameter if function needs to modify
contents of structure variable

Using value parameter for structure can slow down a
program, waste space

Using a reference parameter will speed up program, but
function may change data in structure

Using a const reference parameter allows read-only
access to reference parameter, does not waste space,
speed

Programacion en C++

C

Example showItem Function

vold showlItem{const InventorvItem &p)

1
cout
cout
cout
cout
cout
¥

L
<
<
<
L

fixed << showpoint << setprecisicn(2);

"Part Number: " << p.partBNum << endl;
"Description: " << p.description << endl;
"Units On Hand: " << p.onHand << endl;

"Price: §" << p.price =< endl;

Programacion en C++

C Returning a Structure from a Function

* Functioncanreturna struct:

Student getStudentData(); // prototype
stul = getStudentData () ; // call

* Function must define a local structure

— for internal use
— for use with return statement

Programacion en C++

@ Returning a Structure from a Function -
Example

Student getStudentData ()

{ Student tempStu;
cin >> tempStu.studentID;
getline(cin, tempStu.pData.name);
getline(cin, tempStu.pData.address);
getline(cin, tempStu.pData.city);
cin >> tempStu.yearInSchool;
cin >> tempStu.gpa;
return tempsStu;

Programacion en C++

& Pointers to Structures

A structure variable has an address

Pointers to structures are variables that can hold the
address of a structure:

Student *stuPtr;

Can use & operator to assign address:
stuPtr = & stul;

Structure pointer can be a function parameter

Programacion en C++

ﬁ Accessing Structure Members via Pointer
Variables

» Mustuse () to dereference pointer variable, not field

within structure:
cout << (*stuPtr) .studentlID;

» Can use structure pointer operator to eliminate ()

and use clearer notation:
cout << stuPtr—->studentlID;

Programacion en C++

Files

Programacion en C++

C Using Files for Data Storage

File: a set of data stored on a computer, often on a
disk drive

Programs can read from, write to files

Can use files instead of keyboard, monitor screen for
program input, output

Allows data to be retained between program runs
Steps:

— Open the file

— Use the file (read from, write to, or both)

— Close the file

Programacion en C++

C Files: What is Needed

Use £stream header file for file access
Can use >>, << to read from, write to a file

Can use eof member function to test for end of input
file

File stream types:
i fstream forinput from a file
of stream for output to a file
f st ream for input from or output to a file

Define file stream objects:
1fstream infile;
ofstream outfile;

Programacion en C++

& Opening Files

Create a link between file name (outside the program)
and file stream object (inside the program)

Use the open member function:
infile.open("inventory.dat");

outfile.open ("report.txt");

Filename may include drive, path info.

Output file will be created if necessary; existing file
will be erased first

Input file must exist for open to work

Programacion en C++

C Testing for File Open Errors

» Can test a file stream object to detect if an open
operation failed:

infile.open("test.txt");
1f (!'infile)
{

cout << "File open failure!";

}
« Can also use the £ail member function

Programacion en C++

C Using Files

» Can use output file object and << to send data to a
file:
outfile << "Inventory report";
» Can use input file object and >> to copy data from file

to variables:
infile >> partNum;
infile >> gtyInStock >> gtyOnOrder;

Programacion en C++

& Using Loops to Process Files

* The stream extraction operator >> returns true
when a value was successfully read, false

otherwise

» Can be tested in a while loop to continue execution

as long as values are read from the file:
while (inputFile >> number)

Programacion en C++

& Closing Files

¢ Use the c1ose member function:

infile.close () ;
outfile.close () ;

» Don't wait for operating system to close files at
program end:
— may be limit on number of open files
— may be buffered output data waiting to send to file

Programacion en C++

C Letting the User Specify a Filename

* |In many cases, you will want the user to specify the
name of a file for the program to open.

* |In C++ 11, you can pass a string object as an
argument to a file stream object’s open member

function.

Programacion en C++

~§Using the ¢ str Member Function in Older
Versions of C++

* Prior to C++ 11, the open member function requires

that you pass the name of the file as a null-terminated
string, which is also known as a C-string.

o String literals are stored in memory as null-terminated
C-strings, but string objects are not.

Programacion en C++

$Using the ¢ str Member Function in Older
Versions of C++

« string objects have a member function named ¢ str

— It returns the contents of the object formatted as a null-
terminated C-string.

— Here is the general format of how you callthe ¢ str
function:

stringObject.c str ()

» Example:
inputFile.open(filename.c str());

Programacion en C++

fstream Object

f st ream object can be used for either input or output
Must specify mode on the open statement
Sample modes:

ios::in —input

ios: :out —output

Can be combined on open call:
dFile.open("class.txt", 10s::1n | 1o0s::out);

Programacion en C++

C

File Access Flags

File Access Flag Meaning

ios:app Append mode. It the file already exists, its contents are preserved and all output
is written to the end of the file. By detfault, this flag causes the file to be created it
it does not exist.

ics::ate It the file already exists, the program goes directly to the end of it. Output may
be written anywhere in the file.

ios::binary Binary mode. When a file is opened in binary mode, data is written to or read

trom it in pure binary format. {The default mode is text.)

ios::in Input mode. Data will be read from the file. It the file does not exist, it will not be
created and the open function will fail.

ios::out Output mode. Data will be written to the file. By default, the file’s contents will
be deleted if it already exists.

ios::trunc It the file already exists, its contents will be deleted (truncated). This is the

default mode used by ios: :out.

Programacion en C++

Using Files - Example

// copy 10 numbers between files
// open the files
fstream infile ("input.txt", 10s::1n);
fstream outfile("output.txt", 1os::out);
int num;
for (int 1 = 1; 1 <= 10; 1++)
{
infile >> num; // use the files
outfile << num;
}
infile.close () ; // close the files
outfile.close();

Programacion en C++

C Default File Open Modes

e 1fstream:
— open for input only

— file cannot be written to
— open fails if file does not exist

e ofstream:
— open for output only
— file cannot be read from
— file created if no file exists
— file contents erased if file exists

Programacion en C++

S More File Open Details

» Can use filename, flags in definition:
1fstream gradelist ("grades.txt");

* File stream object setto 0 (false)if open failed:
1f (!'gradelist)

« (Can also check £ail member function to detect file
open error:

1f (gradelList.fail())

Programacion en C++

C File Output Formatting

» Use the same techniques with file stream objects as
with cout: showpoint, setw(x),

showprecision (x), efc.

» Requires iomanip to use manipulators

Programacion en C++

& Passing File Stream Objects to Functions

* |tis very useful to pass file stream objects to
functions

* Be sure to always pass file stream objects by
reference

Programacion en C++

S

More Detailed Error Testing

« (Can examine error state bits to determine stream status
* Bits tested/cleared by stream member functions

ios::eofbit set when end of file detected
ios::failbit set when operation failed
ios::hardfail set when error occurred and no recovery
ios::badbit set when invalid operation attempted
ios::goodbit set when no other bits are set

Programacion en C++

C Member Functions / Flags

eof () true if eofbit set, false otherwise

fail () true if failbit or hardfail set, false otherwise
bad () true if badbit set, false otherwise

good () true if goodbit set, false otherwise

clear () clear all flags (no arguments), or clear a specific flag

& Member Functions for Reading and Writing
Files

* Functions that may be used for input with
whitespace, to perform single character I/O, or to
return to the beginning of an input file

» Member functions:
getline:reads input including whitespace
get:reads a single character
put: writes a single character

Programacion en C++

C The get1ine Function

* Three arguments:
— Name of a file stream object
— Name of a st ring object
— Delimiter character of your choice

— Examples, using the file stream object myFile, andthe
string objects name and address:

getline (myFile, name) ;
getline (myFile, address, '\t');

— Ifleftout, ' \n" is default for third argument

Programacion en C++

C Single Character I/O

e get:read a single character from a file
char letterGrade;

gradeFile.get (letterGrade);
Will read any character, including whitespace

« put: write a single character to a file
reportFile.put (letterGrade) ;

Programacién en C++

C Working with Multiple Files

» Can have more than file open at a time in a program

* Files may be open for input or output

* Need to define file stream object for each file

Programacion en C++

C Binary Files

* Binary file contains unformatted, non-ASCII data

* Indicate by using binary flag on open:
inFile.open("nums.dat",10s::1n|10s::binary);
¢ Use readand write instead of <<, >>

char ch;

// read 1n a letter from file
inFile.read (&ch, sizeof(ch));

// send a character to a file
outFile.write (&ch, sizeof(ch));

Programacion en C++

C Binary Files

* To read, write non-character data, must use a typecast

operator to treat the address of the data as a character
address

int num;
// read in a binary number from a file
inFile.read(reinterpret cast<char *>&num,

sizeof (num)) ;

// send a binary value to a file
outf.write(reilnterpret cast<char *>&num,
sizeof (num)) ;

Programacion en C++

C Creating Records with Structures

 (Can write structures to, read structures from files

 To work with structures and files,
— use ios: :binary file flag upon open

— use read, write member functions
struct TestScore
{
int studentId;
double score;
char grade;
}

TestScore oneTest;

// write out oneTest to a file
gradeFile.write (reinterpret cast<char *>
(&oneTest), sizeof (oneTest)):;

Programacion en C++

& Random-Access Files

 Sequential access: start at beginning of file and go
through data in file, in order, to end

— to access 100" entry in file, go through 99 preceding
entries first

» Random access: access data in a file in any order
— can access 100" entry directly

Programacion en C++

& Random Access Member Functions

« seekqg (seek get): used with files open for input
« seekp (seek put): used with files open for output
» Used to go to a specific position in a file

 seekqg, seekp arguments:
offset: number of bytes,asa long
mode flag: starting point to compute offset

» Examples:
inData.seekg(25L, 10s::beqg);
// set read position at 26th byte
// from beginning of file
outData.seekp (-10L, 1os::cur);
// set write position 10 bytes
// before current position

Programacion en C++

& Important Note on Random Access

 [feof istrue, it must be cleared before seekg or
seekp:

gradeFile.clear();
gradeFile.seekg (0L, 1o0s::beqg);
// go to the beginning of the file

Programacion en C++

& Random Access Information

« tellg member function: return current byte position
in input file
long 1nt whereAmI;

whereAmI = 1nData.tellg();

« tellp member function: return current byte position

in output file
whereAmI = outData.tellp();

Programacion en C++

C: Opening a File for
Both Input and Output

* File can be open for input and output simultaneously
* Supports updating a file:

— read data from file into memory

— update data

— write data back to file

» Use fstream for file object definition:

fstream gradelist ("grades.dat",10s::1n |
10s::0ut) ;

» Canalsouse ios: :binary flag for binary data

Programacion en C++

Referencias

Pearson

Programacion en C++

https://www.pearson.com/us/higher-education/program/Gaddis-Starting-Out-with-C-From-Control-Structures-through-Objects-Brief-Version-Plus-My-Lab-Programming-with-Pearson-e-Text-Access-Card-Package-9th-Edition/PGM2059253.html
https://www.ntu.edu.sg/home/ehchua/programming/#Cpp
http://www.stroustrup.com/tour2.html

	Programación en C++
	Table of Contents
	Introduction to Programming
	Software Programs That Run on a Computer
	Programs and Programming Languages
	The Programming Process
	Procedural and Object-Oriented Programming
	OOP Characteristics
	Programming Languages
	Compilers, Linkers
	From a High-Level Program to an Executable File
	From a High-Level Program to an Executable File
	Integrated Development Environments (IDEs)
	Integrated Development Environments (IDEs) – Code Blocks
	Integrated Development Environments (IDEs) - Eclipse
	Integrated Development Environments (IDEs) – Visual Studio
	Compile/Link/Run in Linux
	Introduction to C++
	C++ History
	C++ Standards
	C++ Features
	What is a Program Made of?
	The Parts of a C++ Program
	Program hello1.cpp – without namespace
	Comments
	The #include directive
	Preprocessor Directives
	Preprocessor Directives
	Mathematical Library Functions
	Mathematical Library Functions
	Namespace, << operator and return
	Namespace
	Namespace
	Using Namespace
	Special Characters
	Important Details
	The cout Object
	The cout Object - The endl Manipulator�Starting a New Line
	Escape Sequences – More Control Over Output
	SumOddEven.cpp
	The cin Object
	�Working with Characters and string Objects�
	Working with Characters and string Objects
	Working with Characters and string Objects
	string Member Functions and Operators
	Formatting Input/Output using IO Manipulators (Header <iomanip>)
	Stream Manipulators
	Variables, Types and Operations
	Variables
	Literals
	Integer and String Literals in Program
	Identifiers
	C++ Key Words�List complete
	Variable Names - Identifier Rules
	Variable Declaration
	Constants (const)
	Fundamental Types
	 Typical size, minimum, maximum for the primitives types
	Integer Data Types
	Floating-Point Data Types
	The sizeof Operator
	Literals for Fundamental Types and String
	Literals for Fundamental Types and String
	Literals for Fundamental Types and String
	Integer, Floating-point and Character Literals example
	TestLiteral.cpp
	Enumerated Data Types
	Enumerated Data Types
	Enumerated Data Types
	Enumerated Data Types
	Assigning an integer to an enum Variable Assigning an enum to an int Variable
	Comparing Enumerator Values
	Enumerated Data Types
	Anonymous Enumerated Types
	Using an enum Variable to Step through an Array's Elements
	Using Strongly Typed enums in C++ 11
	Declaring the Type and Defining the Variables in One Statement
	The C++ string Class
	Variable Assignments and Initialization
	Declaring Variables With the auto Key Word
	Arithmetic Operators
	Compound Assignment Operators
	Increment/Decrement Operators
	Bit-Shift Operations
	A Closer Look at the / and % Operators
	Mathematical Expressions
	Mathematical Expressions
	Order and associativity of operations�C++ Operator Precedence
	Mixed-Type Operations - Type Conversion
	Type Casting
	Overflow and Underflow
	Multiple Assignment and Combined Assignment
	Combined Assignment Operators
	Relational Operators
	Logical Operators
	Truth tables of Logical Operators
	Flow Control
	Flow Control
	Conditional (Decision) Flow Control
	Conditional (Decision) Flow Control
	Conditional (Decision) Flow Control
	Conditional (Decision) Flow Control
	Conditional Operator
	Flags
	Menus - Menu-Driven Program Organization
	Using switch in Menu Systems
	Validating User Input
	Comparing Characters
	Comparing string Objects
	break Statement
	Blocks and Scope
	Variables with the Same Name
	Loop Flow Control
	Loop Flow Control
	Loop Flow Control
	Interrupting Loop Flow - break and continue
	Using the while Loop for Input Validation
	Input Validation Example
	Counters
	for Loop - Modifications
	for Loop - Modifications
	Sentinels
	Deciding Which Loop to Use
	Terminating Program
	Nested Loops
	Nested for-loop
	Strings
	Character Testing
	Character Case Conversion
	C-Strings
	Library Functions for Working with C-Strings
	C-String/Numeric Conversion Functions
	C-String/Numeric Conversion Functions
	string to Number Conversion
	The to_string Function
	Writing Your Own C-String Handling Functions
	The C++ string Class
	Other Definitions of C++ strings
	Input into a string Object
	string Operations
	string Operators
	string Member Functions
	Functions
	Modular Programming
	 Why Functions?
	Defining and Calling Functions - Function Definition
	Using Functions
	Function example
	Function Definition
	Function Naming Convention
	Function Prototype
	Sending Data into a Function
	Parameter Terminology, Parameters, Prototypes, and Function Headers
	Function Call argument/parameter
	Passing Data by Value
	Passing Data by Reference
	 const Function Parameters
	The return Statement
	A Value-Returning Function
	Returning a Boolean Value
	Local Variables
	Local Variable Lifetime
	Global Variables and Global Constants
	Initializing Local and Global Variables
	Static Local Variables
	Default Arguments
	Default Arguments
	Using Reference Variables as Parameters
	Passing by Reference
	Reference Variable Notes
	Overloading Functions
	Function Overloading Examples
	The exit() Function
	Stubs and Drivers
	Introduction to Recursion
	What Happens When Called?
	Recursive Functions
	Types of Recursion
	The Recursive Factorial Function
	The Recursive Factorial Function
	The Recursive gcd Function
	The Recursive gcd Function
	Solving Recursively Defined�Problems
	Solving Recursively Defined Problems
	A Recursive Binary Search Function
	Número de diapositiva 186
	The Towers of Hanoi
	Moving Three Discs
	The Towers of Hanoi
	The QuickSort Algorithm
	Exhaustive and Enumeration Algorithms
	Recursion vs. Iteration
	Arrays
	Arrays declaration and Usage
	Array Terminology
	Size Declarators
	Accessing Array Elements
	Default Initialization - Array Initialization
	Partial Array Initialization
	Implicit Array Sizing
	No Bounds Checking in C++
	Off-By-One Errors
	The Range-Based for Loop
	The Range-Based for Loop
	Modifying an Array with a Range-Based for Loop
	The range-based for loop - Example
	The Range-Based for Loop versus the Regular for Loop
	Processing Array Contents
	Printing the Contents of an Array
	Summing and Averaging Array Elements
	Finding the Highest/ Lowest Value in an Array
	Comparing Arrays
	Using Parallel Arrays
	Arrays as Function Arguments
	Modifying Arrays in Functions
	Two-Dimensional Arrays
	2D Array Initialization
	Two-Dimensional Array as Parameter, Argument
	Example – Multi-dimensional array
	Summing All the Elements in a Two-Dimensional Array
	Summing the Rows of a Two-Dimensional Array
	Summing the Columns of a Two-Dimensional Array
	Arrays with Three or More�Dimensions
	Introduction to the STL vector
	Declaring Vectors
	Adding Elements to a Vector
	Removing Vector Elements
	Other Useful Member Functions
	Search Algorithms
	Linear Search
	Linear Search
	A Linear Search Function
	Linear Search - Tradeoffs
	Binary Search
	Binary Search - Example
	Binary Search
	A Binary Search Function
	Binary Search - Tradeoffs
	Introduction to Sorting Algorithms
	Bubble Sort
	Selection Sort
	Sorting and Searching Vectors
	Pointers
	Getting the Address of a Variable
	Pointer Variables
	Something Like Pointers: Arrays
	Something Like Pointers: Reference Variables
	Pointer Variables
	Pointer Variables
	The Indirection Operator
	The Relationship Between Arrays and Pointers
	Pointers in Expressions
	Array Access
	Pointer Arithmetic
	Initializing Pointers
	Comparing Pointers
	Pointers as Function Parameters
	Example
	Pointers to Constants
	Pointers to Constants
	Constant Pointers
	Constant Pointers to Constants
	Dynamic Memory Allocation
	Releasing Dynamic Memory
	Returning Pointers from Functions
	Using Smart Pointers to Avoid Memory Leaks
	Using Smart Pointers to Avoid Memory Leaks
	Function Pointer
	Command-Line Arguments
	Structured Data
	Abstract Data Types
	Abstraction and Data Types
	Combining Data into Structures
	Example struct Declaration
	struct Declaration
	Defining Variables
	Accessing Structure Members
	Displaying a struct Variable
	Comparing struct Variables
	Initializing a Structure
	Arrays of Structures
	Nested Structures
	Members of Nested Structures
	Structures as Function Arguments
	Example showItem Function
	Returning a Structure from a Function
	Returning a Structure from a Function - Example
	Pointers to Structures
	Accessing Structure Members via Pointer Variables
	Files
	Using Files for Data Storage
	Files: What is Needed
	Opening Files
	Testing for File Open Errors
	Using Files
	Using Loops to Process Files
	Closing Files
	Letting the User Specify a Filename
	Using the c_str Member Function in Older Versions of C++
	Using the c_str Member Function in Older Versions of C++
	fstream Object
	File Access Flags
	Using Files - Example
	Default File Open Modes
	More File Open Details
	File Output Formatting
	Passing File Stream Objects to Functions
	More Detailed Error Testing
	Member Functions / Flags
	Member Functions for Reading and Writing Files
	The getline Function
	Single Character I/O
	Working with Multiple Files
	Binary Files
	Binary Files
	Creating Records with Structures
	Random-Access Files
	Random Access Member Functions
	Important Note on Random Access
	Random Access Information
	Opening a File for �Both Input and Output
	Referencias

