
1

Programación en C++

Pedro Corcuera
Dpto. Matemática Aplicada y
Ciencias de la Computación
Universidad de Cantabria

corcuerp@unican.es

Programación en C++

Table of Contents

1. Introduction to Programming
2. Introduction to C++
3. Variables, Types and Operations
4. Flow Control
5. Functions
6. Arrays
7. Pointers
8. Structured Data
9. Files

Programación en C++ 2

Introduction to
Programming

Programación en C++ 3

Software Programs That Run on a
Computer

• Categories of software:
– System software: programs that manage the computer

hardware and the programs that run on them.
• Examples: operating systems, utility programs, software

development tools
– Application software: programs that provide services to

the user.
• Examples : word processing, games, programs to solve specific

problems

Programación en C++ 4

Programs and Programming Languages

Program: set of instructions that the
computer follows to perform a task
Programming Language: a special
language used to write programs.
Algorithm: set of well-defined steps.

Types of languages:
• Low-level: used for communication with

computer hardware directly. Often
written in binary machine code (0’s/1’s)
directly.

• High-level: closer to human language

Programación en C++ 5

The Programming Process

1. Define what the program is to do.
2. Visualize the program running on the computer.
3. Use design tools to create a model of the program.

Hierarchy charts, flowcharts, pseudocode, etc.
4. Check the model for logical errors.
5. Write the program source code.
6. Compile the source code.
7. Correct any errors found during compilation.
8. Link the program to create an executable file.
9. Run the program using test data for input.
10. Correct any errors found while running the program.

Repeat steps 4 - 10 as many times as necessary.

11. Validate the results of the program.
Does the program do what was defined in step 1?

Programación en C++ 6

Procedural and Object-Oriented
Programming

• Procedural programming: focus is on the process.
Procedures/functions are written to process data.

• Object-Oriented programming: focus is on objects,
which contain data and algorithms to manipulate the
data. Messages are sent to objects to perform
operations. A program is viewed as interacting
objects.

Programación en C++ 7

OOP Characteristics

• Encapsulation
– Information hiding
– Objects contain their own data and algorithms

• Inheritance
– Writing reusable code
– Objects can inherit characteristics from other objects

• Polymorphism
– A single name can have multiple meanings depending

on its context
Programación en C++ 8

Programming Languages

BASIC

FORTRANCOBOL

C
C++
C#Java

JavaScriptPython
Ruby

Programación en C++ 9

Timeline of programming languages

Ada

Pascal

Lisp

PHP
Julia Go

https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages

Compilers, Linkers

• A compiler translate high-level language to machine
language
– Source code

• The original program in a high level language
– Object code

• The translated version in machine language
• A linker combines

– The object code for the programs we write and
– The object code for the pre-compiled routines into
– The machine language program the CPU can run

Programación en C++ 10

From a High-Level Program to an
Executable File

a) Create file containing the program with a text editor
(program statements: source code, file: source file)

b) Run preprocessor to convert source file directives to
source code program statements.

c) Run compiler to convert source program into machine
instructions (machine code) which is stored in an object
file.

d) Run linker to connect hardware-specific code to
machine instructions, producing an executable file.

• Steps b–d are often performed by a single command or
button click.

• Errors detected at any step will prevent execution of
following steps.

Programación en C++ 11

From a High-Level Program to an
Executable File

Programación en C++ 12

Full process Simplified process

hello.cpp

hello.obj

hello.exe

Integrated Development Environments
(IDEs)

• An integrated development environment, or IDE,
combine all the tools needed to write, compile, and
debug a program into a single software application.

• Examples are Microsoft Visual C++, Eclipse,
CodeBlocks, Turbo C++ Explorer, CodeWarrior, etc.

Programación en C++ 13

Integrated Development Environments
(IDEs) – Code Blocks

Programación en C++ 14

Integrated Development Environments
(IDEs) - Eclipse

Programación en C++ 15

Integrated Development Environments
(IDEs) – Visual Studio

Programación en C++ 16

Compile/Link/Run in Linux

• We need to use g++ command to compile C++
program, as follows: The -o option specify the output file name
$ g++ -o hello hello.cpp

$ chmod a+x hello

$./hello

Programación en C++ 17

Introduction to C++

Programación en C++ 18

C++ History

• Where did C++ come from?
– Derived from the C language
– C was derived from the B language
– B was derived from the BCPL language

• C developed by Dennis Ritchie (AT&T Bell Labs, 1970s)
– Used to maintain UNIX systems
– Many commercial applications written in C

• C++ developed by Bjarne Stroustrup (AT&T Bell Labs, 1980s)
– Overcame several shortcomings of C
– Incorporated object oriented programming
– C remains a subset of C++

Programación en C++ 19

https://www.bell-labs.com/usr/dmr/www/
https://www.stroustrup.com/

C++ Standards

• C++ is standardized as ISO/IEC 14882. Currently, there are two
versions:
– C++98 (ISO/IEC 14882:1998): First standard version of C++.
– C++03 (ISO/IEC 14882:2003): minor "bug-fix" to C++98 with no change to

the language. Commonly refer to as C++98/C++03 or First C++ standard.
– C++11 (ISO/IEC 14882:2011): Second standard version of C++. Informally

called C++0x, as it was expected to finalize in 200x but was not released
until 2011. It adds some new features to the language; more significantly, it
greatly extends the C++ standard library and standard template library
(STL).

– C++14: Informally called C++1y, is a small extension to C++11, with bug
fixes and small improvement.

– C++17: informally called C++1z.
– C++2a: the next planned standard in 2020.

Programación en C++ 20

C++ Features

• C++ is C. C++ supports (almost) all the features of C. Like C,
C++ allows programmers to manage the memory directly, so
as to develop efficient programs.

• C++ is OO. C++ enhances the procedural-oriented C language
with the object-oriented extension. The OO extension facilitates
design, reuse and maintenance for complex software.

• Template C++. C++ introduces generic programming, via the
so-called template. You can apply the same algorithm to
different data types.

• STL. C++ provides a huge set of reusable standard libraries, in
particular, the Standard Template Library (STL).

Programación en C++ 21

What is a Program Made of?

• Common elements in programming languages:
– Key Words
– Programmer-Defined Identifiers
– Operators
– Punctuation
– Syntax

Programación en C++ 22

The Parts of a C++ Program

// sample C++ program

#include <iostream>

using namespace std;

int main()

{

cout << "Hello, world!";

return 0;

}

comment

preprocessor directive

which namespace to use

beginning of function named main

beginning of block for main

output statement

Send 0 to operating system

end of block for main

string literal

Programación en C++ 23

Program hello1.cpp – without namespace

Programación en C++ 24

/***\
* Program: First C++ program that says hello (hello.cpp) *
* Description: Simple program that print the message "hello, world" *
* Autor: Pedro Corcuera *
* Revisión: 1.0 2/02/2008 *
***/

/*
* First C++ program that says hello (hello.cpp)
*/

#include <iostream> // Needed to perform IO operations

int main() {
std::cout << "hello, world" << std::endl;
return 0;

}

Comments

• Used to document parts of the program. Are ignored by the
compiler.

• Intended for persons reading the source code of the program:
– Indicate the purpose of the program
– Describe the use of variables
– Explain complex sections of code

• Types:
– Single-Line begin with // through to the end of line:
int length = 12; // length in inches
// calculate rectangle area
area = length * width;
– Multi-Line comments begins with /*, end with */
/* this is a multi-line

comment */
Programación en C++ 25

The #include directive

• Inserts the contents of another file into the program
• It is a preprocessor directive, not part of C++

language and not seen by compiler

• Example:
#include <iostream>

to include the input/output stream library header into the program, so as to use the IO
library function to carry out input/output operations (such as cin and cout).
Note: Do not place a semicolon at end of #include line

• C++ Standard Library headers

Programación en C++ 26

https://en.cppreference.com/w/cpp/header

Preprocessor Directives

• C++ source code is pre-processed before it is compiled into
object code

• A preprocessor directive, which begins with a # sign, tells the
preprocessor to perform a certain action, before compiling the
source code into object code.

• Preprocessor directives are not programming statements, and
therefore should NOT be terminated with a semi-colon.

• Example:
#include <iostream> // To include the IO library header
#include <cmath> // To include the Math library header
#define PI 3.14159265 // To substitute PI with 3.14159265

Programación en C++ 27

Preprocessor Directives
#include: is most commonly-used to include a header file into
this source file for subsequent compilation

#define, #undef: #define can be used to define a macro. When
the macro pattern appears subsequently in the source codes,
it will be replaced or substituted by the macro's body. Macro
may take parameters. #undef to un-define a macro

#ifdef, #ifndef, #if, #elif, #endif: Conditional directives
can be used to control the sections of program send for
compilation

#pragma: The directive #pragma can be used to direct compiler
for system-dependent information

Programación en C++ 28

Mathematical Library Functions

• Mathematical functions in library <cmath> header file.

• cstdlib header provides a function rand(), which
generates a pseudo-random integral number between 0 and
RAND_MAX (inclusive). RAND_MAX (typically 32767). To
generate a random number between [0,n): rand() % n

• srand(x): seed or initialize the random number generator
with unsigned int x

Programación en C++ 29

sin(x), cos(x), tan(x), asin(x), acos(x), atan(x): Take argument-type and return-type of float, double, long double.
atan2(y, x): Return arc-tan of y/x. Better than atan(x) for handling 90 degree.
sinh(x), cosh(x), tanh(x): hyper-trigonometric functions.
pow(x, y), sqrt(x): power and square root.
ceil(x), floor(x): returns the ceiling and floor integer of floating point number.
fabs(x), fmod(x, y): floating-point absolute and modulus.
exp(x), log(x), log10(x): exponent and logarithm functions.

Mathematical Library Functions

• Require cmath header file. Take double as input, return a
double

• Commonly used functions:

• Require cstdlib header file
• rand(): returns a random number (int) between 0 and

the largest int the compute holds.
• srand(x): initializes random number generator with
unsigned int x

sin Sine
cos Cosine
tan Tangent
sqrt Square root
log Natural (e) log
abs Absolute value (int)

Programación en C++ 30

Namespace, << operator and return

using namespace std;
The names cout and endl belong to the std namespace. They can
be referenced via fully qualified name std::cout and std::endl,
or simply as cout and endl with a "using namespace std;" statement.
<<
stream insertion operator .
return 0;
indicates normal termination; a non-zero (typically 1) indicates abnormal
termination. C++ compiler will automatically insert a "return 0;" at the
end of the the main()function, thus, it statement can be omitted.
Instead you can also use EXIT_SUCCESS or EXIT_FAILURE, which is
defined in the cstdlib header (i.e., you need to "#include <cstdlib>"

Programación en C++ 31

Namespace

• When you use different library modules, there is always a
potential for name crashes, as different library may use the
same name for different purposes

• This problem can be resolved via the use of namespace
• A namespace is a collection for identifiers under the same

naming scope. The entity name under a namespace is
qualified by the namespace name, followed by :: (known as
scope resolution operator), in the form of
namespace::entityName

• A namespace can contain variables, functions, arrays, and
compound types such as classes and structures

Programación en C++ 32

Namespace

• To place an entity under a namespace, use keyword
namespace as follow:

// create a namespace called myNamespace for the enclosed
entities

namespace myNameSpace {
int foo; // variable
int f() { }; // function
class Bar { }; // compound type class and struct

}

// To reference the entities, use
myNameSpace::foo
myNameSpace::f()
myNameSpace::Bar

Programación en C++ 33

Using Namespace

• Example: all the identifiers in the C++ standard libraries are
placed under the namespace called std. To reference an
identifier under a namespace, you have three options:

1. Use the fully qualified names:
std::cout << std::setw(6) << 1234 << std::endl;

2. Use a using declaration to declare the particular
identifiers:

using std::cout;
using std::endl;
......
cout << std::setw(6) << 1234 << endl;

3. Use a using namespace directive:
using namespace std;
......
cout << setw(6) << 1234 << endl;

Programación en C++ 34

Special Characters

Programación en C++ 35

Character Name Description
// Double Slash Begins a comment

Pound Sign Begins preprocessor directive

< > Open, Close Brackets Encloses filename used in
#include directive

() Open, Close Parentheses Used when naming a function

{ } Open, Close Braces Encloses a group of statements

" " Open, Close Double
Quote Marks

Encloses a string of characters

; Semicolon Ends a programming statement

Important Details

• C++ is case-sensitive. Uppercase and lowercase
characters are different characters.

• Formatting Source Codes: extra white spaces are
ignored. Proper indentation (with tabs and blanks)
and extra empty lines greatly improves the readability
of the program.

Programación en C++ 36

The cout Object

• Displays information on the computer screen
• Use << (stream insertion operator) to send

information to cout:
cout << "Programming is fun!";

• Can be used to send multiple items to cout:
cout << "Hello " << "there!";

or:
cout << "Hello ";
cout << "there!";

Programación en C++ 37

The cout Object - The endl Manipulator
Starting a New Line

• This produces one line of output:
cout << "Programming is ";
cout << "fun!";

• You can use the endl manipulator to start a new line of
output. This will produce two lines of output:
cout << "Programming is" << endl;
cout << "fun!";
– Note: You do NOT put quotation marks around endl and the last character in endl is a lowercase L, not the number 1.

• You can also use the \n escape sequence to start a new line
of output. This will produce two lines of output:
cout << "Programming is\n";
cout << "fun!";

Programación en C++ 38

Escape Sequences – More Control Over
Output

Programación en C++ 39

Escape
Sequence

Name Description

\n Newline Causes the cursor to go to the next line for subsequent printing
\t Horizontal tab Causes the cursor to skip over to the next tab stop
\a Alarm Causes the computer to beep
\b Backspace Causes the cursor to back up (i.e., move left) one position
\r Return Causes the computer to go to the beginning of the current line,

not the next line
\\ Backslash Causes a backslash to be printed
\' Single quote Causes a single quotation mark to be printed
\" Double quote Causes a double quotation mark to be printed

SumOddEven.cpp

Programación en C++ 40

/*
* Sum the odd and even numbers, respectively, from 1 to a given upperbound.
* Also compute the absolute difference.
* (SumOddEven.cpp)
*/
#include <iostream> // Needed to use IO functions
using namespace std;

int main() {
int sumOdd = 0; // For accumulating odd numbers, init to 0
int sumEven = 0; // For accumulating even numbers, init to 0
int upperbound; // Sum from 1 to this upperbound
int absDiff; // The absolute difference between the two sums

// Prompt user for an upperbound
cout << "Enter the upperbound: ";
cin >> upperbound;

// Use a while-loop to repeatedly add 1, 2, 3,..., to the upperbound
int number = 1;
while (number <= upperbound) {

if (number % 2 == 0) { // Even number
sumEven += number; // Add number into sumEven

} else { // Odd number
sumOdd += number; // Add number into sumOdd

}
++number; // increment number by 1

}
// Compute the absolute difference between the two sums
if (sumOdd > sumEven) {

absDiff = sumOdd - sumEven;
} else {

absDiff = sumEven - sumOdd;
}

// Print the results
cout << "The sum of odd numbers is " << sumOdd << endl;
cout << "The sum of even numbers is " << sumEven << endl;
cout << "The absolute difference is " << absDiff << endl;

return 0;
}

The cin Object

• Standard input object. Used to read input from keyboard.
Like cout, requires iostream file

• Information retrieved from cin with operator >>
• cin converts data to the type that matches the variable:

int height;
cout << "How tall is the room? ";
cin >> height;

• Can be used to input more than one value:
cin >> height >> width;

• Multiple values from keyboard must be separated by spaces.
Order is important

Programación en C++ 41

Working with Characters and string Objects

• Using cin with the >> operator to input strings can
cause problems:

• It passes over and ignores any leading whitespace
characters (spaces, tabs, or line breaks)

• To work around this problem, you can use a C++
function named getline.

Programación en C++ 42

Working with Characters and string
Objects

• To read a single character:
– Use cin:

char ch;
cout << "Strike any key to continue";
cin >> ch;
Problem: will skip over blanks, tabs, <CR>

– Use cin.get():
cin.get(ch);
Will read the next character entered, even whitespace

Programación en C++ 43

Working with Characters and string
Objects

• Mixing cin >> and cin.get() in the same program
can cause input errors that are hard to detect

• To skip over unneeded characters that are still in the
keyboard buffer, use cin.ignore():

cin.ignore(); // skip next char
cin.ignore(10, '\n'); // skip the next

// 10 char. or until a '\n'

Programación en C++ 44

string Member Functions and Operators

• To find the length of a string:

• To concatenate (join) multiple strings:

string state = "Texas";
int size = state.length();

greeting2 = greeting1 + name1;
greeting1 = greeting1 + name2;

Or using the += combined assignment
operator:

greeting1 += name2;

Programación en C++ 45

Formatting Input/Output using IO
Manipulators (Header <iomanip>)

• The <iomanip> header provides so-called I/O manipulators for
formatting input and output:
– setw(int field-widht): set the field width for the next IO operation.

setw() is non-sticky and must be issued prior to each IO operation.
– setfill(char fill-char): set the filled character for padding to the field

width.
– left|right|internal: set the alignment
– fixed/scientific (for floating-point numbers): use fixed-point notation

or scientific notation.
– setprecision(int numDecimalDigits) (for floating-point numbers):

specify the number of digits after the decimal point.
– boolalpha/noboolalpha (for bool): display bool values as alphabetic

string (true/false) or 1/0.

Programación en C++ 46

Stream Manipulators

• Some affect values until changed again:
– fixed: use decimal notation for floating-point values
– setprecision(x): when used with fixed, print floating-point

value using x digits after the decimal. Without fixed, print floating-
point value using x significant digits

– showpoint: always print decimal for floating-point values

Programación en C++ 47

Variables, Types and
Operations

Programación en C++ 48

Variables

• Variable: a named storage location in memory
– Has a name, a type and stores a value.
– Must be defined before it can be used:
int item;

Programación en C++ 49

Literals

• Literal: a value that is written into a program’s code.
"hello, there" // string literal
12 // integer literal
3.14 // floating-point literal

Programación en C++ 50

Integer and String Literals in Program

Programación en C++

// This program uses integer, string literals, and a variable.
#include <iostream>
using namespace std;

int main()
{

int apples;

apples = 20;
cout << "On Sunday we sold " << apples << " bushels of apples. \n";

apples = 15;
cout << "On Monday we sold " << apples << " bushels of apples. \n";
return 0;

}

51

integer literal

These are string literals

Variable Definition

Identifiers

• An identifier is a programmer-defined name for some
part of a program: variables, functions, etc.

• Name should indicate the use of the identifier
• Cannot use C++ key words as identifiers
• Must begin with alphabetic character or _, followed by

any number of alphabetic, numeric, or _ characters.
• Alphabetic characters may be upper or lowercase

Programación en C++ 52

C++ Key Words
List complete

You cannot use any of the C++ key words as an identifier. These words have reserved meaning.

Programación en C++ 53

https://en.cppreference.com/w/cpp/keyword

Variable Names - Identifier Rules

• A variable name should represent the purpose of the variable.
For example: itemsOrdered hold the number of items ordered.

• The first character of an identifier must be an alphabetic
character or and underscore (_). After the first character you
may use alphabetic characters, numbers, or underscore
characters.

• Upper and lowercase characters are distinct

Programación en C++ 54

IDENTIFIER VALID? REASON IF INVALID
totalSales Yes
total_Sales Yes
total.Sales No Cannot contain .
4thQtrSales No Cannot begin with digit
totalSale$ No Cannot contain $

Variable Declaration

• To use a variable in your program, you need to first
"introduce" it by declaring its name and type. Syntaxes:

Programación en C++ 55

Syntax Example
// Declare a variable of a specified type
type identifier;
// Declare multiple variables of the same type, separated by commas
type identifier-1, identifier-2, ..., identifier-n;
// Declare a variable and assign an initial value
type identifier = value;
// Declare multiple variables with initial values
type identifier-1 = value-1, ..., identifier-n = value-n;

int option;

double sum, difference, product, quotient;

int magicNumber = 88;

double sum = 0.0, product = 1.0;

Constants (const)

• Constants are non-modifiable variables, declared with
keyword const.

• Their values cannot be changed during program execution.
• Also, const must be initialized during declaration.
• Constant Naming Convention: Use uppercase words, joined

with underscore. For example, MIN_VALUE, MAX_SIZE.
• Example:
cout << "Programming is fun!";

Programación en C++ 56

Fundamental Types

• Integers: C++ supports these integer types: char, short, int, long,
long long (in C++11) in a non-decreasing order of size. You could
use the keyword unsigned to declare an unsigned integers. There
are a total 10 types of integers.

• Characters: Characters (e.g., 'a', 'Z', '0', '9') are encoded in ASCII
into integers, and kept in type char. Take note that the type char
can be interpreted as character in ASCII code, or an 8-bit integer.

• Floating-point Numbers: There are 3 floating point types: float,
double and long double, for single, double and long double
precision floating point numbers. float and double are represented
as specified by IEEE 754 standard.

• Boolean Numbers: A special type called bool (for boolean), which
takes a value of either true or false.

Programación en C++ 57

Typical size, minimum, maximum for the primitives types

Programación en C++ 58

Category Type Description Bytes
(Typical)

Minimum
(Typical)

Maximum
(Typical)

Integers Int (or signed int) Signed integer (of at least 16 bits) 4 (2) -2147483648 2147483647
unsigned int Unsigned integer (of at least 16 bits) 4 (2) 0 4294967295
char Character (can be either signed or unsigned depends on

implementation)
1

signed char Character or signed tiny integer (guarantee to be signed) 1 -128 127

unsigned char Character or unsigned tiny integer (guarantee to be
unsigned)

1 0 255

short (or short int) (or signed short)
(or signed short int)

Short signed integer (of at least 16 bits) 2 -32768 32767

unsigned short (or unsigned shot int) Unsigned short integer (of at least 16 bits) 2 0 65535

long (or long int) (or signed long)
(or signed long int)

Long signed integer (of at least 32 bits) 4 (8) -2147483648 2147483647

unsigned long (or unsigned long int) Unsigned long integer (of at least 32 bits) 4 (8) 0 same as above

long long (or long long int)
(or signed long long)
(or signed long long int) (C++11)

Very long signed integer (of at least 64 bits) 8 -263 263-1

unsigned long long
(or unsigned long long int) (C++11)

Unsigned very long integer (of at least 64 bits) 8 0 264-1

Real Numbers float Floating-point number, ≈7 digits
(IEEE 754 single-precision floating point format)

4 3.4e38 3.4e-38

double Double precision floating-point number, ≈15 digits
(IEEE 754 double-precision floating point format)

8 1.7e308 1.7e-308

long double Long double precision floating-point number, ≈19 digits
(IEEE 754 quadruple-precision floating point format)

12 (8)

Boolean
Numbers

bool Boolean value of either true or false 1 false (0) true (1 or non-zero)

Wide
Characters

wchar_t
char16_t (C++11)
char32_t (C++11)

Wide (double-byte) character 2 (4)

Integer Data Types

• Integer variables can hold whole numbers such as 12, 7,
and -99.

• Variables of the same type can be defined on separate
lines or on the same line.

Programación en C++ 59

Floating-Point Data Types

• The floating-point data types are:
float
double
long double

• They can hold real numbers such as:
12.45 -3.8

• Stored in a form similar to scientific notation
• All floating-point numbers are signed
• A float can represent a number between ±1.40239846×10-45

and ±3.40282347×1038, approximated. A double can
represented a number between ±4.94065645841246544×10-
324 and ±1.79769313486231570×10308, approximated.

Programación en C++ 60

The sizeof Operator

• C/C++ provides an unary sizeof operator to get the size of the
operand (in bytes).

• The following program (SizeofTypes.cpp) uses sizeof operator
to print the size of the fundamental types

/*
* Print Size of Fundamental Types (SizeofTypes.cpp).
*/

#include <iostream>
using namespace std;

int main() {
cout << "sizeof(char) is " << sizeof(char) << " bytes " << endl;
cout << "sizeof(short) is " << sizeof(short) << " bytes " << endl;
cout << "sizeof(int) is " << sizeof(int) << " bytes " << endl;
cout << "sizeof(long) is " << sizeof(long) << " bytes " << endl;
cout << "sizeof(long long) is " << sizeof(long long) << " bytes " << endl;
cout << "sizeof(float) is " << sizeof(float) << " bytes " << endl;
cout << "sizeof(double) is " << sizeof(double) << " bytes " << endl;
cout << "sizeof(long double) is " << sizeof(long double) << " bytes " << endl;
cout << "sizeof(bool) is " << sizeof(bool) << " bytes " << endl;
return 0;

}

Programación en C++ 61

Literals for Fundamental Types and String

• A literal is a specific constant value, that can be assigned directly to a
variable or used as part of an expression.

• They are called literals because they literally and explicitly identify their
values.

• Integer Literals
– A whole number, is treated as an int by default.
– An int literal may precede with a plus (+) or minus (-) sign, followed by digits. No

commas or special symbols (e.g., $ or space) is allowed. No preceding 0 is
allowed too (e.g., 007 is invalid).

– Besides the default base 10 integers, you can use a prefix '0' (zero) to denote a
value in octal, prefix '0x' for a value in hexadecimal, and prefix '0b' for binary value
(in some compilers), e.g.,

– A long literal is identified by a suffix 'L' or 'l'. A long long int is identified by a suffix
'LL'. You can also use suffix 'U' for unsigned int, 'UL' for unsigned long, and 'ULL'
for unsigned long long int.

Programación en C++ 62

Literals for Fundamental Types and String

• Floating-point Literals
– A number with a decimal point, is treated as a double by default.
– You can also express them in scientific notation, e.g., 1.2e3, -5.5E-6, where e or E

denotes the exponent in power of 10. You could precede the fractional part or
exponent with a plus (+) or minus (-) sign. Exponent shall be an integer. There
should be no space or other characters in the number.

– You MUST use a suffix of 'f' or 'F' for float literals, e.g., -1.2345F. Use suffix 'L' (or
'l') for long double.

• Character Literals and Escape Sequences
– A printable char literal is written by enclosing the character with a pair of single

quotes, e.g., 'z', '$', and '9'. In C++, characters are represented using 8-bit ASCII
code, and can be treated as a 8-bit signed integers in arithmetic operations.

– ASCII code table.
– Non-printable and control characters can be represented by escape sequence,

which begins with a back-slash (\).

Programación en C++ 63

https://www3.ntu.edu.sg/home/ehchua/programming/java/DataRepresentation.html#ASCII

Literals for Fundamental Types and String

• String Literals
– A String literal is composed of zero of more characters surrounded by a pair of

double quotes, e.g., "Hello, world!", "The sum is ", "".
– String literals may contains escape sequences. Inside a String, you need to use \"

for double-quote to distinguish it from the ending double-quote, e.g. "\"quoted\"".
Single quote inside a String does not require escape sequence.

• bool Literals
– There are only two bool literals: true and false.

Programación en C++ 64

Integer, Floating-point and Character
Literals example

int number = -123;
int sum = 4567;
int bigSum = 8234567890; // ERROR: this value is outside the range of int

int number1 = 1234; // Decimal
int number2 = 01234; // Octal 1234, Decimal 2322
int number3 = 0x1abc; // hexadecimal 1ABC, decimal 15274
int number4 = 0b10001001; // binary (may not work in some compilers)

long number = 12345678L; // Suffix 'L' for long
long sum = 123; // int 123 auto-casts to long 123L
long long bigNumber = 987654321LL; // Need suffix 'LL' for long long int

short smallNumber = 1234567890; // ERROR: this value is outside the range of short.
short midSizeNumber = -12345;

float average = 55.66; // Error! RHS is a double. Need suffix 'f' for float.
float average = 55.66f;

char letter = 'a'; // Same as 97
char anotherLetter = 98; // Same as the letter 'b'
cout << letter << endl; // 'a' printed
cout << anotherLetter << endl; // 'b' printed instead of the number
anotherLetter += 2; // 100 or 'd'
cout << anotherLetter << endl; // 'd' printed
cout << (int)anotherLetter << endl; // 100 printed

Programación en C++ 65

TestLiteral.cpp

Programación en C++ 66

/* Testing Primitive Types (TestLiteral.cpp) */
#include <iostream>
using namespace std;

int main() {
char gender = 'm'; // char is single-quoted
bool isMarried = true; // true(non-zero) or false(0)
unsigned short numChildren = 8; // [0, 255]
short yearOfBirth = 1945; // [-32767, 32768]
unsigned int salary = 88000; // [0, 4294967295]
double weight = 88.88; // With fractional part
float gpa = 3.88f; // Need suffix 'f' for float

// "cout <<" can be used to print value of any type
cout << "Gender is " << gender << endl;
cout << "Is married is " << isMarried << endl;
cout << "Number of children is " << numChildren << endl;
cout << "Year of birth is " << yearOfBirth << endl;
cout << "Salary is " << salary << endl;
cout << "Weight is " << weight << endl;
cout << "GPA is " << gpa << endl;
return 0;

}

Enumerated Data Types

• An enumerated data type is a programmer-defined
data type. It consists of values known as enumerators,
which represent integer constants.

• Example:
enum Day { MONDAY, TUESDAY,

WEDNESDAY, THURSDAY,
FRIDAY };

• The identifiers MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, and FRIDAY, which are listed inside
the braces, are enumerators. They represent the
values that belong to the Day data type.

Programación en C++ 67

Enumerated Data Types

• Once you have created an enumerated data type in
your program, you can define variables of that type.
Example:
Day workDay;

• This statement defines workDay as a variable of
the Day type.

• We may assign any of the enumerators MONDAY,
TUESDAY, WEDNESDAY, THURSDAY, or
FRIDAY to a variable of the Day type. Example:

workDay = WEDNESDAY;
Programación en C++ 68

Enumerated Data Types

• Internally, the compiler assigns integer values to the
enumerators, beginning at 0.
enum Day { MONDAY, TUESDAY,

WEDNESDAY, THURSDAY,
FRIDAY };

In memory...
MONDAY = 0
TUESDAY = 1
WEDNESDAY = 2
THURSDAY = 3
FRIDAY = 4

Programación en C++ 69

Enumerated Data Types

• Using the Day declaration, the following code...
cout << MONDAY << " "

<< WEDNESDAY << " “
<< FRIDAY << endl;

...will produce this output:

0 2 4

Programación en C++ 70

Assigning an integer to an enum Variable
Assigning an enum to an int Variable

• You cannot directly assign an integer value to an
enum variable. This will not work:
workDay = 3; // Error!

• Instead, you must cast the integer:
workDay = static_cast<Day>(3);

• You CAN assign an enumerator to an int variable.
For example:
int x;
x = THURSDAY;

• This code assigns 3 to x.
Programación en C++ 71

Comparing Enumerator Values

• Enumerator values can be compared using the
relational operators. For example, using the Day data
type the following code will display the message
"Friday is greater than Monday.“

if (FRIDAY > MONDAY)
{

cout << "Friday is greater "
<< "than Monday.\n";

}

Programación en C++ 72

Enumerated Data Types

• We can use enumerators for control a loop:

// Get the sales for each day.
for (index = MONDAY; index <= FRIDAY; index++)
{

cout << "Enter the sales for day "
<< index << ": ";

cin >> sales[index];
}

Programación en C++ 73

Anonymous Enumerated Types

• An anonymous enumerated type is simply one that
does not have a name. Example:

enum { MONDAY, TUESDAY,
WEDNESDAY, THURSDAY,
FRIDAY };

Programación en C++ 74

Using an enum Variable to Step through an
Array's Elements

• Because enumerators are stored in memory as integers, you
can use them as array subscripts. For example:

enum Day { MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY };

const int NUM_DAYS = 5;
double sales[NUM_DAYS];
sales[MONDAY] = 1525.0;
sales[TUESDAY] = 1896.5;
sales[WEDNESDAY] = 1975.63;
sales[THURSDAY] = 1678.33;
sales[FRIDAY] = 1498.52;
• Remember, though, you cannot use the ++ operator on an enum

variable.

Programación en C++ 75

Using Strongly Typed enums in C++ 11

• In C++ 11, you can use a new type of enum , known as a
strongly typed enum

• Allows you to have multiple enumerators in the same scope
with the same name

enum class Presidents { MCKINLEY, ROOSEVELT, TAFT };
enum class VicePresidents { ROOSEVELT, FAIRBANKS, SHERMAN };

• Prefix the enumerator with the name of the enum , followed
by the :: operator:

Presidents prez = Presidents::ROOSEVELT;
VicePresidents vp = VicePresidents::ROOSEVELT;

• Use a cast operator to retrieve integer value:
int x = static_cast<int>(Presidents::ROOSEVELT);

Programación en C++ 76

Declaring the Type and Defining the
Variables in One Statement

• You can declare an enumerated data type and
define one or more variables of the type in the same
statement. For example:

enum Car { PORSCHE, FERRARI, JAGUAR } sportsCar;

This code declares the Car data type and defines a
variable named sportsCar.

Programación en C++ 77

The C++ string Class

• Special data type supports working with strings
#include <string>

• Can define string variables in programs:
string firstName, lastName;

• Can receive values with assignment operator:
firstName = "George";
lastName = "Washington";

• Can be displayed via cout
cout << firstName << " " << lastName;

Programación en C++ 78

Variable Assignments and Initialization

• An assignment statement uses the = operator to store a value
in a variable.
item = 12; // assigns value 12 to the item variable.

• The variable receiving the value must appear on the left side
of the = operator.

• To initialize a variable means to assign it a value when it is
defined:
int length = 12;

• Can initialize some or all variables:
int length = 12, width = 5, area;

Programación en C++ 79

Declaring Variables With the auto Key Word

• C++ 11 introduces an alternative way to define variables,
using the auto key word and an initialization value. Here is
an example:

auto amount = 100;

• The auto key word tells the compiler to determine the
variable’s data type from the initialization value.

auto interestRate= 12.0;

auto stockCode = 'D';

auto customerNum = 459L;

int

double

char
long

Programación en C++ 80

Arithmetic Operators

• C++ supports the following arithmetic binary operators for numbers:
short, int, long, long long, char (treated as 8-bit signed integer),
unsigned short, unsigned int, unsigned long, unsigned long long,
unsigned char, float, double and long double.

• The multiplication, division and remainder take precedence over
addition and subtraction. Within the same precedence level, the
expression is evaluated from left to right.

Programación en C++ 81

Operator Description Usage Examples
* Multiplication expr1 * expr2 2 * 3 → 6; 3.3 * 1.0 → 3.3
/ Division expr1 / expr2 1 / 2 → 0; 1.0 / 2.0 → 0.5

% Remainder
(Modulus)

expr1 % expr2 5 % 2 → 1; -5 % 2 → -1

+ Addition expr1 + expr2 1 + 2 → 3; 1.1 + 2.2 → 3.3
- Subtraction expr1 - expr2 1 - 2 → -1; 1.1 - 2.2 → -1.1

Compound Assignment Operators

• C++ also provides the so-called compound assignment operators as
listed:

Programación en C++ 82

Operator Usage Description Example
= var = expr Assign the value of the LHS to the

variable at the RHS
x = 5;

+= var += expr same as var = var + expr x += 5; same as x = x + 5
-= var -= expr same as var = var - expr x -= 5; same as x = x - 5
*= var *= expr same as var = var * expr x *= 5; same as x = x * 5
/= var /= expr same as var = var / expr x /= 5; same as x = x / 5

%= var %= expr same as var = var % expr x %= 5; same as x = x % 5

Increment/Decrement Operators

• C++ supports these unary arithmetic operators: increment '++' and
decrement '--‘

• The increment/decrement unary operator can be placed before the
operand (prefix operator), or after the operands (postfix operator).

Programación en C++ 83

Operator Example Result
++ x++; ++x Increment by 1, same as x += 1
-- x--; --x Decrement by 1, same as x -= 1

Operator Description Example Result
++var Pre-Increment

Increment var, then use the new value of var
y = ++x; same as x=x+1; y=x;

var++ Post-Increment
Use the old value of var, then increment var

y = x++; same as oldX=x; x=x+1; y=oldX;

--var Pre-Decrement y = --x; same as x=x-1; y=x;
var-- Post-Decrement y = x--; same as oldX=x; x=x-1; y=oldX;

Bit-Shift Operations

• Bit-shift operators perform left or right shift on an operand by a specified
number of bits.

• Left-shift is padded with zeros. Right-shift may padded with zero or
sign-bit, depending on implementation.

Programación en C++ 84

Operator Usage Description
<< operand << number Left-shift and padded with zeros
>> operand >> number Right-shift

A Closer Look at the / and % Operators

• / (division) operator performs integer division if both
operands are integers
cout << 13 / 5; // displays 2
cout << 91 / 7; // displays 13

• If either operand is floating point, the result is floating point
cout << 13 / 5.0; // displays 2.6
cout << 91.0 / 7; // displays 13.0

• % (modulus) operator computes the remainder resulting from
integer division
cout << 13 % 5; // displays 3

• % requires integers for both operands
cout << 13 % 5.0; // error

Programación en C++ 85

Mathematical Expressions

• Can create complex expressions using multiple mathematical
operators

• An expression can be a literal, a variable, or a mathematical
combination of constants and variables

• Can be used in assignment, cout, other statements:
area = 2 * PI * radius;
cout << "border is: " << 2*(l+w);

• The following expression:

must be written as
(1+2*a)/3 + (4*(b+c)*(5-d-e))/f - 6*(7/g+h)

Programación en C++ 86

Mathematical Expressions

• Multiplication requires an operator:
Area=lw is written as Area = l * w;

• There is no exponentiation operator:
Area=s2 is written as Area = pow(s, 2);

• Parentheses may be needed to maintain order of
operations:

is written as
m = (y2-y1) /(x2-x1);12

12

xx
yym

−
−

=

Programación en C++ 87

Order and associativity of operations
C++ Operator Precedence

• In an expression with more than one operator, evaluate in this
order:

- (unary negation), in order, left to right
* / %, in order, left to right
+ -, in order, left to right

In the expression 2 + 2 * 2 – 2

• parentheses () can be used to override the order of
operations:
2 + 2 * 2 – 2 = 4
(2 + 2) * 2 – 2 = 6
2 + 2 * (2 – 2) = 2
(2 + 2) * (2 – 2) = 0

evaluate
first

evaluate
second

evaluate
third

Programación en C++ 88

https://en.cppreference.com/w/cpp/language/operator_precedence

Mixed-Type Operations - Type Conversion

• If both the operands of an arithmetic operation belong to the
same type, the operation is carried out in that type, and the
result belongs to that type.

• If the two operands belong to different types, the compiler
promotes the value of the smaller type to the larger type
(known as implicit type-casting).

• Hierarchy of Types: Highest:

Lowest:
Programación en C++ 89

long double
double
float
unsigned
long
long
unsigned int
int

Type Casting

• Used for manual data type conversion
• Useful for floating point division using ints:
double m;
m = static_cast<double>(y2-y1)/(x2-x1);

• Useful to see int value of a char variable:
char ch = 'C';
cout << ch << " is "

<< static_cast<int>(ch);

• C-Style cast: data type name in ()
cout << ch << " is " << (int)ch;

• Prestandard C++ cast: value in ()
cout << ch << " is " << int(ch);

Programación en C++ 90

Overflow and Underflow

• Occurs when assigning a value that is too large
(overflow) or too small (underflow) to be held in a
variable.

• Variable contains value that is ‘wrapped around’ set of
possible values

• Different systems may display a warning/error
message, stop the program, or continue execution
using the incorrect value

• It is important to take note that checking of
overflow/underflow is the programmer's responsibility

Programación en C++ 91

Multiple Assignment and Combined
Assignment

• The = can be used to assign a value to multiple
variables:
x = y = z = 5;

• Value of = is the value that is assigned
• Associates right to left:

x = (y = (z = 5));

value
is 5

value
is 5

value
is 5

Programación en C++ 92

Combined Assignment Operators

• The combined assignment operators provide a shorthand for
these types of statements.

• The statement
sum = sum + 1;

is equivalent to
sum += 1;

Programación en C++ 93

Operator Usage Description Example
= var = expr Assign the value of the LHS to the

variable at the RHS
x = 5;

+= var += expr same as var = var + expr x += 5; same as x = x + 5
-= var -= expr same as var = var - expr x -= 5; same as x = x - 5
*= var *= expr same as var = var * expr x *= 5; same as x = x * 5
/= var /= expr same as var = var / expr x /= 5; same as x = x / 5

%= var %= expr same as var = var % expr x %= 5; same as x = x % 5

Relational Operators

• Used to compare numbers to determine relative order
• Comparison or relational operators:

• These comparison operations returns a bool value of
either false (0) or true (1 or a non-zero value)

Programación en C++ 94

Operator Description Usage Example (x=5, y=8)
== Equal to expr1 == expr2 (x == y) → false
!= Not Equal to expr1 != expr2 (x != y) → true
> Greater than expr1 > expr2 (x > y) → false
>= Greater than or equal to expr1 >= expr2 (x >= 5) → true
< Less than expr1 < expr2 (y < 8) → false
<= Less than or equal to expr1 >= expr2 (y <= 8) → true

Logical Operators

• C++ provides four logical operators (which operate on
boolean operands only):

• ! has highest precedence, followed by &&, then ||
• If the value of an expression can be determined by evaluating

just the sub-expression on left side of a logical operator, then
the sub-expression on the right side will not be evaluated
(short circuit evaluation)

Programación en C++ 95

Operator Description Usage
&& Logical AND expr1 && expr2
|| Logical OR expr1 || expr2
! Logical NOT !expr
^ Logical XOR expr1 ^ expr2

Truth tables of Logical Operators

Programación en C++ 96

AND (&&) true false
true true false
false false false

OR (||) true false
true true true
false true false

NOT (!) true false
false true

XOR (^) true false
true false true
false true false

Flow Control

Programación en C++ 97

Flow Control

• There are three basic flow control constructs -
sequential, conditional (or decision), and loop (or
iteration)

Programación en C++ 98

Conditional (Decision) Flow Control

• There are a few types of conditionals, if-then, if-then-
else, nested-if (if-elseif-elseif-...-else), switch-case,
and conditional expression.

• if-then

Programación en C++ 99

Syntax Example Flowchart

// if-then
if (booleanExpression) {

true-block ;
}

if (mark >= 50) {
cout << "Congratulation!" << endl;
cout << "Keep it up!" << endl;

}

Conditional (Decision) Flow Control

• if-then-else

Programación en C++ 100

Syntax Example Flowchart

// if-then-else
if (booleanExpression) {

true-block ;
} else {

false-block ;
}

if (mark >= 50) {
cout << "Congratulation!" << endl;
cout << "Keep it up!" << endl;

} else {
cout << "Try Harder!" << endl;

}

Conditional (Decision) Flow Control

• nested-if

Programación en C++ 101

Syntax Example Flowchart

// nested-if
if (booleanExpr-1) {

block-1 ;
} else if (booleanExpr-2) {

block-2 ;
} else if (booleanExpr-3) {

block-3 ;
} else if (booleanExpr-4) {

......
} else {

elseBlock ;
}

if (mark >= 80) {
cout << "A" << endl;

} else if (mark >= 70) {
cout << "B" << endl;

} else if (mark >= 60) {
cout << "C" << endl;

} else if (mark >= 50) {
cout << "D" << endl;

} else {
cout << "F" << endl;

}

Conditional (Decision) Flow Control

• switch-case is an alternative to the "nested-if"

Programación en C++ 102

Syntax Example Flowchart
// switch-case
switch (selector) {

case value-1:
block-1; break;

case value-2:
block-2; break;

case value-3:
block-3; break;

......
case value-n:

block-n; break;
default:

default-block;
}

char oper; int num1, num2, result;
......
switch (oper) {

case '+':
result = num1 + num2; break;

case '-':
result = num1 - num2; break;

case '*':
result = num1 * num2; break;

case '/':
result = num1 / num2; break;

default:
cout << "Unknown operator" << endl;

}

Conditional Operator

• A conditional operator is a ternary (3-operand) operator, in the
form of booleanExpr ? trueExpr : falseExpr.
Depending on the booleanExpr, it evaluates and returns the
value of trueExpr or falseExpr.

• Parentheses () may be needed in an expression due to
precedence of conditional operator

Programación en C++ 103

Syntax Example
booleanExpr ? trueExpr : falseExpr cout << (mark >= 50) ? "PASS" : "FAIL" << endl;

// return either "PASS" or "FAIL", and put to cout
max = (a > b) ? a : b; // RHS returns a or b
abs = (a > 0) ? a : -a; // RHS returns a or -a

Flags

• Variable that signals a condition
• Usually implemented as a bool variable
• Can also be an integer

– The value 0 is considered false
– Any nonzero value is considered true

• As with other variables in functions, must be assigned
an initial value before it is used

Programación en C++ 104

Menus - Menu-Driven Program
Organization

• Menu-driven program: program execution controlled
by user selecting from a list of actions

• Menu: list of choices on the screen
• Menus can be implemented using if/else if

statements
• Display list of numbered or lettered choices for

actions
• Prompt user to make selection
• Test user selection in expression

– if a match, then execute code for action
– if not, then go on to next expression

Programación en C++ 105

Using switch in Menu Systems

• switch statement is a natural choice for menu-
driven program:
– display the menu
– then, get the user's menu selection
– use user input as expression in switch statement
– use menu choices as expr in case statements

Programación en C++ 106

Validating User Input

• Input validation: inspecting input data to determine
whether it is acceptable

• Bad output will be produced from bad input
• Can perform various tests:

– Range
– Reasonableness
– Valid menu choice
– Divide by zero

Programación en C++ 107

Comparing Characters

• Characters are compared using their ASCII values
• 'A' < 'B'

– The ASCII value of 'A' (65) is less than the ASCII value of
'B'(66)

• '1' < '2'
– The ASCII value of '1' (49) is less than the ASCI value of

'2' (50)
• Lowercase letters have higher ASCII codes than

uppercase letters, so 'a' > 'Z'

Programación en C++ 108

Comparing string Objects

• Like characters, strings are compared using their
ASCII values

string name1 = "Mary";
string name2 = "Mark";

name1 > name2 // true
name1 <= name2 // false
name1 != name2 // true

name1 < "Mary Jane" // true

The characters in each
string must match before
they are equal

Programación en C++ 109

break Statement

• Used to exit a switch statement
• If it is left out, the program "falls through" the

remaining statements in the switch statement

Programación en C++ 110

Blocks and Scope

• Scope of a variable is the block in which it is defined,
from the point of definition to the end of the block

• Usually defined at beginning of function
• May be defined close to first use

Programación en C++ 111

Variables with the Same Name

• Variables defined inside { } have local or block
scope

• When inside a block within another block, can define
variables with the same name as in the outer block.
– When in inner block, outer definition is not available
– Not a good idea

Programación en C++ 112

Loop Flow Control

• There are a few types of loops: for-loop, while-do, and
do-while.

Programación en C++ 113

Syntax Example Flowchart
// for-loop
for (init; test; post-proc) {

body ;
}

// Sum from 1 to 1000
int sum = 0;
for (int number = 1;

number <= 1000;
++number) {

sum += number;
}

Loop Flow Control

• while-do

Programación en C++ 114

Syntax Example Flowchart
// while-do
while (condition) {

body ;
}

int sum = 0, number = 1;
while (number <= 1000) {

sum += number;
++number;

}

Loop Flow Control

• do-while

• The difference between while-do and do-while lies in the
order of the body and condition.
– In while-do, the condition is tested first. The body will be executed if

the condition is true and the process repeats.
– In do-while, the body is executed and then the condition is tested.

Programación en C++ 115

Syntax Example Flowchart
// do-while
do {

body ;
} while (condition) ;

int sum = 0, number = 1;
do {

sum += number;
++number;

} while (number <= 1000);

Interrupting Loop Flow - break and continue

• The break statement breaks out and exits the current
(innermost) loop.

• The continue statement aborts the current iteration
and continue to the next iteration of the current
(innermost) loop.

• break and continue are poor structures as they are
hard to read and hard to follow. Use them only if
absolutely necessary. You can always write the same
program without using break and continue.

Programación en C++ 116

Using the while Loop for Input Validation

• Input validation is the process of inspecting data that
is given to the program as input and determining
whether it is valid.

• The while loop can be used to create input routines
that reject invalid data, and repeat until valid data is
entered. Here's the general approach, in pseudocode:

Programación en C++ 117

Read an item of input.
While the input is invalid

Display an error message.
Read the input again.

End While

Input Validation Example

cout << "Enter a number less than 10: ";
cin >> number;
while (number >= 10)
{

cout << "Invalid Entry!"
<< "Enter a number less than 10: ";

cin >> number;
}

Programación en C++ 118

Flowchart for Input Validation

Counters

• Counter: a variable that is incremented or
decremented each time a loop repeats

• Can be used to control execution of the loop (also
known as the loop control variable)

• Must be initialized before entering loop

Programación en C++ 119

for Loop - Modifications

• You can have multiple statements in the
initialization expression and in the
update expression. Separate the statements with
a comma:
int x, y;
for (x=1, y=1; x <= 5; x++, y++)
{

cout << x << " plus " << y
<< " equals " << (x+y)
<< endl;

}

Update Expression

Programación en C++ 120

Initialization Expression

for Loop - Modifications

• You can omit the initialization expression if
it has already been done:

int sum = 0, num = 1;
for (; num <= 10; num++)

sum += num;

• You can declare variables in the
initialization expression:
int sum = 0;
for (int num = 0; num <= 10; num++)

sum += num;

The scope of the variable num is the for loop.
Programación en C++ 121

Sentinels

• sentinel: value in a list of values that indicates end of
data

• Special value that cannot be confused with a valid
value, e.g., -999 for a test score

• Used to terminate input when user may not know how
many values will be entered

Programación en C++ 122

Deciding Which Loop to Use

• The while loop is a conditional pretest loop
– Iterates as long as a certain condition exits
– Validating input
– Reading lists of data terminated by a sentinel

• The do-while loop is a conditional posttest loop
– Always iterates at least once
– Repeating a menu

• The for loop is a pretest loop
– Built-in expressions for initializing, testing, and updating
– Situations where the exact number of iterations is known

Programación en C++ 123

Terminating Program

• There are a few ways that you can terminate your program, before
reaching the end of the programming statements.

• exit(): You could invoke the function exit(int exitCode), in <cstdlib>,
to terminate the program and return the control to the Operating
System.
– By convention, return code of zero indicates normal termination; while a non-zero

exitCode (-1) indicates abnormal termination.

• abort(): The header <cstdlib> also provide a function called
abort(), which can be used to terminate the program abnormally.

• return statement: You could also use a "return returnValue"
statement in the main() function to terminate the program and
return control back to the Operating System.

Programación en C++ 124

Nested Loops

• A nested loop is a loop inside the body of another
loop

• Inner (inside), outer (outside) loops:
for (row=1; row<=3; row++) //outer
for (col=1; col<=3; col++)//inner

cout << row * col << endl;

• Inner loop goes through all repetitions for each
repetition of outer loop, complete sooner than outer
loop

• Total number of repetitions for inner loop is product of
number of repetitions of the two loops.

Programación en C++ 125

Nested for-loop

Programación en C++ 126

Strings

• C++ supports two types of strings:
– the original C-style string: A string is a char array, terminated with a

NULL character '\0' (Hex 0). It is also called Character-String or C-
style string.

– the new string class introduced in C++98.
• The "high-level" string class is recommended, because it is

much easier to use and understood. However, many legacy
programs used C-strings; many programmers also use "low-
level" C-strings for full control and efficiency; furthermore, in
some situation such as command-line arguments, only C-
strings are supported.

Programación en C++ 127

Character Testing

• Requires cctype header file

FUNCTION MEANING

isalpha true if arg. is a letter, false otherwise
isalnum true if arg. is a letter or digit, false otherwise
isdigit true if arg. is a digit 0-9, false otherwise
islower true if arg. is lowercase letter, false otherwise
isprint true if arg. is a printable character, false otherwise
ispunct true if arg. is a punctuation character, false otherwise
isupper true if arg. is an uppercase letter, false otherwise
isspace true if arg. is a whitespace character, false otherwise

Programación en C++ 128

Character Case Conversion

• Require cctype header file
• Functions:

toupper: if char argument is lowercase letter, return
uppercase equivalent; otherwise, return input unchanged
char ch1 = 'H';
char ch2 = 'e';
cout << toupper(ch1); // displays 'H'
cout << toupper(ch2); // displays 'E'
tolower: if char argument is uppercase letter, return lowercase
equivalent; otherwise, return input unchanged
char ch1 = 'H';
char ch2 = 'e';
cout << tolower(ch1); // displays 'h'
cout << tolower(ch2); // displays 'e'

Programación en C++ 129

C-Strings

• C-string: sequence of characters stored in adjacent memory
locations and terminated by NULL character

• String literal (string constant): sequence of characters
enclosed in double quotes " " : "Hi there!"

• Array of chars can be used to define storage for string:
const int SIZE = 20; char city[SIZE];

• Can enter a value using cin or >>
– Input is whitespace-terminated
– No check to see if enough space

• For input containing whitespace, and to control amount of
input, use cin.getline()

H i t h e r e ! \0

Programación en C++ 130

Library Functions for Working with C-
Strings

• Require the cstring header file
• Functions take one or more C-strings as arguments. Can

use:
– C-string name
– pointer to C-string
– literal string

• Functions:
– strlen(str): returns length of C-string str
– strcat(str1, str2): appends str2 to the end of str1
– strcpy(str1, str2): copies str2 to str1
– strstr(str1, str2): finds the first occurrence of str2 in
str1. Returns a pointer to match, or NULL if no match.

Programación en C++ 131

C-String/Numeric Conversion Functions

• Requires <cstdlib> header file

FUNCTION PARAMETER ACTION

atoi C-string converts C-string to an int value, returns
the value

atol C-string converts C-string to a long value, returns
the value

atof C-string converts C-string to a double value,
returns the value

itoa int,C-string,
int

converts 1st int parameter to a C-string,
stores it in 2nd parameter. 3rd parameter is
base of converted value

Programación en C++ 132

C-String/Numeric Conversion Functions

int iNum;
long lNum;
double dNum;
char intChar[10];
iNum = atoi("1234"); // puts 1234 in iNum
lNum = atol("5678"); // puts 5678 in lNum
dNum = atof("35.7"); // puts 35.7 in dNum
itoa(iNum, intChar, 8); // puts the string

// "2322" (base 8 for 123410) in intChar

Programación en C++ 133

• if C-string contains non-digits, results are undefined
– function may return result up to non-digit
– function may return 0

• itoa does no bounds checking – make sure there is
enough space to store the result

string to Number Conversion

Programación en C++ 134

The to_string Function

Programación en C++ 135

Writing Your Own C-String Handling
Functions

• Designing C-String Handling Functions
– Can pass arrays or pointers to char arrays
– Can perform bounds checking to ensure enough space for

results
– Can anticipate unexpected user input

Programación en C++ 136

The C++ string Class

• To use the string class, include the <string> header and
"using namespace std“. Include special data type supports
working with strings
#include <string>
using namespace std;

• Can declare and (a) initialize a string with a string literal,
(b) initialize to an empty string, or (c) initialize with another
string object.
string firstName, lastName;
firstName = "George"; lastName = "Washington";
cout << firstName << " " << lastName;
string str1("Hello"); // Implicit initialization
string str2 = "world"; // Explicit initialization
string str3; // Initialize to an empty string
string str4(str1); // Initialize by copying

Programación en C++ 137

Other Definitions of C++ strings

Definition Meaning
string name; defines an empty string object
string myname("Chris"); defines a string and initializes it
string yourname(myname); defines a string and initializes it
string aname(myname, 3); defines a string and initializes it with first 3

characters of myname

string verb(myname,3,2); defines a string and initializes it with 2
characters from myname starting at position
3

string noname('A', 5); defines string and initializes it to 5 'A's

Programación en C++ 138

Input into a string Object

• cin >> aStr reads a word (delimited by space)
from cin (keyboard), and assigns to string variable
aStr.

• getline(cin, aStr) reads the entire line (up to '\n') from
cin, and assigns to aStr. The '\n' character is
discarded.

• To flush cin, you could use
ignore(numeric_limits<streamsize>::max(), '\n')
function to discard all the characters up to '\n'.
numeric_limits is in the <limits> header.

Programación en C++ 139

string Operations

• Checking the length of a string: str.length(), str.size
• Check for empty string: str.empty()
• Copying from another string: use the assignment (=) oper.
• Concatenated with another string: use the plus (+) operator,

or compound plus (+=) operator
• Read/Write individual character of a string: str.at(1), str[1]
• Extracting sub-string: str.substr(2, 6)
• Comparing with another string: str1.compare(str2), str1 ==

str2
• Search/Replacing characters: replace(str.begin(), str.end(),

'l', '_');
• Many others

Programación en C++ 140

https://en.cppreference.com/w/c/string/byte

string Operators

OPERATOR MEANING

>> extracts characters from stream up to whitespace, insert
into string

<< inserts string into stream

= assigns string on right to string object on left

+= appends string on right to end of contents on left

+ concatenates two strings

[] references character in string using array notation

>, >=, <,
<=, ==, !=

relational operators for string comparison. Return true or
false

10-141

string Member Functions

• Are behind many overloaded operators
• Categories:

– assignment: assign, copy, data
– modification: append, clear, erase,
insert, replace, swap

– space management: capacity, empty,
length, resize, size

– substrings: find, front, back, at,
substr

– comparison: compare

Programación en C++ 142

Functions

Programación en C++ 143

Modular Programming

• Modular programming: breaking a program up into
smaller, manageable functions or modules

• Function: a collection of statements to perform a task
• Motivation for modular programming:

– Improves maintainability of programs
– Simplifies the process of writing programs

Programación en C++ 144

Why Functions?

• At times, a certain portion of codes has to be used
many times. It is better to put them into a function,
and call this function

• The benefits of using functions are:
– Divide and conquer: construct the program from simple,

small pieces or components.
– Avoid repeating codes: It is easy to copy and paste.
– Software Reuse: you can reuse the functions in other

programs, by packaging them into library codes.
• Two parties are involved in using a function: a caller

and the function called
Programación en C++ 145

Defining and Calling Functions - Function
Definition

• Function call: statement causes a function to execute

• Function definition: statements that make up a
function

• Definition includes:
– return type: data type of the value that function returns to the part of

the program that called it
– name: name of the function. Function names follow same rules as

variables
– parameter list: variables containing values passed to the function
– body: statements that perform the function’s task, enclosed in {}

Programación en C++ 146

Using Functions

• Suppose that we need to evaluate the area of a circle
many times, it is better to write a function called
getArea(), and re-use it when needed.

Programación en C++ 147

Function example
/* Test Function (TestFunction.cpp) */
#include <iostream>
using namespace std;
const int PI = 3.14159265;

// Function Prototype (Function Declaration)
double getArea(double radius);

int main() {
double radius1 = 1.1, area1, area2;
area1 = getArea(radius1); // call function getArea()
cout << "area 1 is " << area1 << endl;
area2 = getArea(2.2); // call function getArea()
cout << "area 2 is " << area2 << endl;
// call function getArea()
cout << "area 3 is " << getArea(3.3) << endl;

}

// Function Definition
// Return the area of a circle given its radius
double getArea(double radius) {

return radius * radius * PI;
}

Programación en C++ 148

Function Definition

• The syntax for function definition is as follows:
returnValueType functionName (parameterList)
{

functionBody ;
}

• The parameterList consists of comma-separated
parameter-type and parameter-name

• The returnValueType specifies the type of the return
value, such as int or double. An special return type called
void can be used to denote that the function returns no
value. In C++, a function is allowed to return one value or no
value (void). It cannot return multiple values.

Programación en C++ 149

Function Naming Convention

• A function's name shall be a verb or verb phrase (action),
comprising one or more words. The first word is in lowercase,
while the rest are initial-capitalized (known as camel-case).
For example, getArea(), setRadius(), moveDown(), isPrime(),
etc.

Programación en C++ 150

Function Prototype

• In C++, a function must be declared before it can be called. It
can be achieved by either placing the function definition
before it is being used, or declare a so-called function
prototype.

• A function prototype tells the compiler the function's interface,
i.e., the return-type, function name, and the parameter type
list (the number and type of parameters). The function can
now be defined anywhere in the file.

• Function prototypes are usually grouped together and placed
in a so-called header file. The header file can be included in
many programs.

• When using prototypes, can place function definitions in any
order in source file

Programación en C++ 151

Sending Data into a Function

• Can pass values into a function at time of call:
c = pow(a, b);

• Values passed to function are arguments
• Variables in a function that hold the values passed as

arguments are parameters
void displayValue(int num)
{

cout << "The value is " << num << endl;
}
The integer variable num is a parameter.
It accepts any integer value passed to the function.

Programación en C++ 152

Parameter Terminology, Parameters,
Prototypes, and Function Headers

• A parameter can also be called a formal parameter or a
formal argument. An argument can also be called an actual
parameter or an actual argument

• For each function argument,
– the prototype must include the data type of each parameter inside

its parentheses
– the header must include a declaration for each parameter in its
()

void evenOrOdd(int); //prototype
void evenOrOdd(int num) //header
evenOrOdd(val); //call

Programación en C++ 153

Function Call argument/parameter

• Value of argument is copied into parameter when the function
is called

• A parameter’s scope is the function which uses it
• There must be a data type listed in the prototype () and an

argument declaration in the function header () for each
parameter

• Arguments will be promoted/demoted as necessary to match
parameters

• When calling a function and passing multiple arguments:
– the number of arguments in the call must match the prototype and

definition
– the first argument will be used to initialize the first parameter, the

second argument to initialize the second parameter, etc.
Programación en C++ 154

Passing Data by Value

• Pass by value: when an argument is passed to a
function, its value is copied into the parameter.

• Changes to the parameter in the function do not affect
the value of the argument

• Example: int val=5;
evenOrOdd(val);

• evenOrOdd can change variable num, but it will
have no effect on variable val

Programación en C++ 155

5
val

argument in
calling function

5
num

parameter in
evenOrOdd function

Passing Data by Reference

• Pass by reference: in pass-by-reference, a reference of the
caller's variable is passed into the function. In other words,
the invoked function works on the same data. If the invoked
function modifies the parameter, the same caller's copy will be
modified as well.

• In C/C++, arrays are passed by reference. That is, you can
modify the contents of the caller's array inside the invoked
function - there could be side effect in passing arrays into
function.

Programación en C++ 156

const Function Parameters

• Pass-by-reference risks corrupting the original
data. If you do not have the intention of modifying
the arrays inside the function, you could use the
const keyword in the function parameter.

• A const function argument cannot be modified
inside the function.

• Use const whenever possible for passing
references as it prevent you from inadvertently
modifying the parameters and protects you against
many programming errors.

Programación en C++ 157

The return Statement

• Used to end execution of a function. The return statement in
the function transfers the control back to the caller

• Return a value (of the returnValueType declared in the
function's header)

• Can be placed anywhere in a function
– Statements that follow the return statement will not be

executed
• Can be used to prevent abnormal termination of program
• In a void function without a return statement, the

function ends at its last }

Programación en C++ 158

A Value-Returning Function

int sum(int num1, int num2){
double result;
result = num1 + num2;
return result;

}

Return Type

Value Being Returned

Programación en C++ 159

int sum(int num1, int num2){
return num1 + num2;

}
Functions can return the values of expressions,
such as num1 + num2

Returning a Boolean Value

• Function can return true or false
• Declare return type in function prototype and heading

as bool
• Function body must contain return statement(s)

that return true or false
• Calling function can use return value in a relational

expression

Programación en C++ 160

Local Variables

• All variables, including function's parameters, declared
inside a function are available only to the function.

• They are created when the function is called, and freed
(destroyed) after the function returns.

• They are called local variables because they are local to
the function and not available outside the function. They
are also called automatic variables, because they are
created and destroyed automatically - no programmer's
explicit action needed to allocate and deallocate them.

• They are hidden from the statements in other functions,
which normally cannot access them.

Programación en C++ 161

Local Variable Lifetime

• A function’s local variables exist only while the function is
executing. This is known as the lifetime of a local variable.

• When the function begins, its local variables and its
parameter variables are created in memory, and when the
function ends, the local variables and parameter variables
are destroyed.

• This means that any value stored in a local variable is lost
between calls to the function in which the variable is
declared.

Programación en C++ 162

Global Variables and Global Constants

• A global variable is any variable defined outside all the
functions in a program.

• The scope of a global variable is the portion of the program
from the variable definition to the end.

• This means that a global variable can be accessed by all
functions that are defined after the global variable is defined.

• You should avoid using global variables because they make
programs difficult to debug.

• Any global that you create should be global constants.

Programación en C++ 163

Initializing Local and Global Variables

• Local variables are not automatically initialized.
They must be initialized by programmer.

• Global variables (not constants) are automatically
initialized to 0 (numeric) or NULL (character) when
the variable is defined.

Programación en C++ 164

Static Local Variables

• Local variables only exist while the function is executing.
When the function terminates, the contents of local variables
are lost.

• static local variables retain their contents between
function calls.

• static local variables are defined and initialized only the
first time the function is executed. 0 is the default
initialization value.

Programación en C++ 165

Default Arguments

• A Default argument is an argument that is passed
automatically to a parameter if the argument is missing on
the function call.

• These default values would be used if the caller omits the
corresponding actual argument in calling the function.

• Default arguments are specified in the function prototype,
and cannot be repeated in the function definition.

• The default arguments are resolved based on their
positions.

• Multi-parameter functions may have default arguments for
some or all of them:

int getSum(int, int=0, int=0);

Programación en C++ 166

Default Arguments

• If not all parameters to a function have default values,
the defaultless ones are declared first in the
parameter list:
int getSum(int, int=0, int=0);// OK
int getSum(int, int=0, int); // NO

• When an argument is omitted from a function call, all
arguments after it must also be omitted:
sum = getSum(num1, num2); // OK
sum = getSum(num1, , num3); // NO

Programación en C++ 167

Using Reference Variables as Parameters

• A mechanism that allows a function to work with the
original argument from the function call, not a copy
of the argument

• Allows the function to modify values stored in the
calling environment

• Provides a way for the function to ‘return’ more than
one value

Programación en C++ 168

Passing by Reference

• A reference variable is an alias for another variable
• Defined with an ampersand (&)

void getDimensions(int&, int&);

• Changes to a reference variable are made to the
variable it refers to

• Use reference variables to implement passing
parameters by reference

Programación en C++ 169

Reference Variable Notes

• Each reference parameter must contain &
• Space between type and & is unimportant
• Must use & in both prototype and header
• Argument passed to reference parameter must be a

variable – cannot be an expression or constant
• Use when appropriate – don’t use when argument

should not be changed by function, or if function
needs to return only 1 value

Programación en C++ 170

Overloading Functions

• Overloaded functions (or function polymorphism)
have the same name but different parameter lists

• Can be used to create functions that perform the
same task but take different parameter types or
different number of parameters

• Compiler will determine which version of function to
call by argument and parameter lists

Programación en C++ 171

Function Overloading Examples

Using these overloaded functions,
void getDimensions(int); // 1
void getDimensions(int, int); // 2
void getDimensions(int, double); // 3
void getDimensions(double, double);// 4

the compiler will use them as follows:
int length, width;
double base, height;
getDimensions(length); // 1
getDimensions(length, width); // 2
getDimensions(length, height); // 3
getDimensions(height, base); // 4

Programación en C++ 172

The exit() Function

• Terminates the execution of a program, can be called
from any function

• Can pass an int value to operating system to indicate
status of program termination

• Usually used for abnormal termination of program
• Example:
exit(0);

• Requires cstdlib header file. It defines two constants
that are commonly passed, to indicate success or failure:
exit(EXIT_SUCCESS);
exit(EXIT_FAILURE);

Programación en C++ 173

Stubs and Drivers

• Useful for testing and debugging program and
function logic and design

• Stub: A dummy function used in place of an actual
function
– Usually displays a message indicating it was called. May

also display parameters
• Driver: A function that tests another function by

calling it
– Various arguments are passed and return values are

tested

Programación en C++ 174

Introduction to Recursion

• A recursive function contains a call to itself:
void countDown(int num)
{

if (num == 0)
cout << "Blastoff!";

else
{

cout << num << "...\n";
countDown(num-1); // recursive

} // call
}

Programación en C++ 175

What Happens When Called?

If a program contains a line like countDown(2);
1. countDown(2) generates the output 2..., then it calls

countDown(1)
2. countDown(1) generates the output 1..., then it calls

countDown(0)
3. countDown(0) generates the output Blastoff!,

then returns to countDown(1)
4. countDown(1) returns to countDown(2)
5. countDown(2)returns to the calling function

Programación en C++ 176

Recursive Functions

• Recursive functions are used to reduce a complex
problem to a simpler-to-solve problem.

• The simpler-to-solve problem is known as the base
case

• Recursive calls stop when the base case is reached
• A recursive function must always include a test to

determine if another recursive call should be made, or
if the recursion should stop with this call

Programación en C++ 177

Types of Recursion

• Direct
– a function calls itself

• Indirect
– function A calls function B, and function B calls function A
– function A calls function B, which calls …, which calls

function A

Programación en C++ 178

The Recursive Factorial Function

• The factorial function:
n! = n*(n-1)*(n-2)*...*3*2*1 if n > 0
n! = 1 if n = 0

• Can compute factorial of n if the factorial of
(n-1) is known:
n! = n * (n-1)!

• n = 0 is the base case

Programación en C++ 179

The Recursive Factorial Function

int factorial (int num)

{

if (num > 0)

return num * factorial(num - 1);

else

return 1;

}

Programación en C++ 180

The Recursive gcd Function

• Greatest common divisor (gcd) is the largest factor
that two integers have in common

• Computed using Euclid's algorithm:
gcd(x, y) = y if y divides x evenly
gcd(x, y) = gcd(y, x % y) otherwise

• gcd(x, y) = y is the base case

Programación en C++ 181

The Recursive gcd Function

int gcd(int x, int y)

{

if (x % y == 0)

return y;

else

return gcd(y, x % y);

}

Programación en C++ 182

Solving Recursively Defined
Problems

• The natural definition of some problems leads to a
recursive solution

• Example: Fibonacci numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, ...

• After the starting 0, 1, each number is the sum of
the two preceding numbers

• Recursive solution:
fib(n) = fib(n – 1) + fib(n – 2);

• Base cases: n <= 0, n == 1

Programación en C++ 183

Solving Recursively Defined Problems

int fib(int n)

{

if (n <= 0)

return 0;

else if (n == 1)

return 1;

else

return fib(n – 1) + fib(n – 2);
}

Programación en C++ 184

A Recursive Binary Search Function

• Binary search algorithm can easily be written to use recursion
• Base cases: desired value is found, or no more array

elements to search
• Algorithm (array in ascending order):

– If middle element of array segment is desired value, then done
– Else, if the middle element is too large, repeat binary search in first

half of array segment
– Else, if the middle element is too small, repeat binary search on the

second half of array segment

Programación en C++ 185

A Recursive Binary Search Function - code

Programación en C++ 186

The Towers of Hanoi

• The Towers of Hanoi is a mathematical game that uses three
pegs and a set of discs, stacked on one of the pegs.

• The object of the game is to move the discs from the first peg
to the third peg. Here are the rules:
– Only one disc may be moved at a time.
– A disc cannot be placed on top of a smaller disc.
– All discs must be stored on a peg except while being moved.

Programación en C++ 187

Moving Three Discs

Programación en C++ 188

The Towers of Hanoi

• Algorithm
To move n discs from peg A to peg C, using peg B as a temporary peg:
If n > 0 Then

Move n – 1 discs from peg A to peg B, using peg C as a temporary peg

Move the remaining disc from the peg A to peg C.

Move n – 1 discs from peg B to peg C, using peg A as a temporary peg

End If

Programación en C++ 189

The QuickSort Algorithm

• Recursive algorithm that can sort an array or a linear linked
list

• Determines an element/node to use as pivot value:

• Once pivot value is determined, values are shifted so that
elements in sublist1 are < pivot and elements in sublist2 are >
pivot

• Algorithm then sorts sublist1 and sublist2
• Base case: sublist has size 1

pivot

sublist 1 sublist 2

Programación en C++ 190

Exhaustive and Enumeration Algorithms

• Exhaustive algorithm: search a set of combinations to
find an optimal one
Example: change for a certain amount of money that uses

the fewest coins
• Uses the generation of all possible combinations

when determining the optimal one.

Programación en C++ 191

Recursion vs. Iteration

• Benefits (+), disadvantages(-) for recursion:
+ Models certain algorithms most accurately
+ Results in shorter, simpler functions
– May not execute very efficiently

• Benefits (+), disadvantages(-) for iteration:
+ Executes more efficiently than recursion
– Often is harder to code or understand

Programación en C++ 192

Arrays

Programación en C++ 193

Arrays declaration and Usage

• Array: variable that can store multiple values of the
same type. Values are stored in adjacent memory
locations

• Declared using [] operator:
int a[5];

Programación en C++ 194

Array Terminology

In the definition int tests[5];
• int is the data type of the array elements
• tests is the name of the array
• 5, in [5], is the size declarator. It shows the

number of elements in the array.
• The size of an array is:

– the total number of bytes allocated for it
– (number of elements) * (number of bytes for each

element)
• Example: int tests[5] is an array of 20

bytes, assuming 4 bytes for an int
Programación en C++ 195

Size Declarators

• Named constants are commonly used as size declarators.
const int SIZE = 5;
int tests[SIZE];

• To create an array, you need to known the length (or size) of
the array in advance, and allocate accordingly. Once an array
is created, its length is fixed and cannot be changed.

• C++ has a vector template class, which supports dynamic
resizable array.

• To find the array length we use the expression
sizeof(arrayName)/sizeof(arrayName[0]).

• C/C++ does not perform array index-bound check.
Programación en C++ 196

Accessing Array Elements

• Each element in an array is assigned a unique index or
subscript. You can refer to an element of an array via the
index enclosed within the square bracket []

• Subscripts start at 0. The last element’s subscript is n-1
where n is the number of elements in the array.

• Array elements can be used as regular variables
• Arrays must be accessed via individual elements
• Can access element with a constant or literal subscript or

use integer expression as subscript

0 1 2 3 4
subscripts:

Programación en C++ 197

Default Initialization - Array Initialization

• Global array → all elements initialized to 0 by
default

• Local array → all elements uninitialized by default
• Arrays can be initialized with an initialization list:
const int SIZE = 5;
int tests[SIZE] = {79,82,91,77,84};

• The values are stored in the array in the order in
which they appear in the list.

• The initialization list cannot exceed the array size.

Programación en C++ 198

Partial Array Initialization

• If array is initialized with fewer initial values than
the size declarator, the remaining elements will be
set to 0:

Programación en C++ 199

Implicit Array Sizing

• Can determine array size by the size of the
initialization list:
int quizzes[]={12,17,15,11};

• Must use either array size declarator or initialization
list at array definition

12 17 15 11

Programación en C++ 200

No Bounds Checking in C++

• When you use a value as an array subscript, C++
does not check it to make sure it is a valid subscript.

• In other words, you can use subscripts that are
beyond the bounds of the array.

• Be careful not to use invalid subscripts.
• Doing so can corrupt other memory locations, crash

program, or lock up computer, and cause elusive
bugs.

Programación en C++ 201

Off-By-One Errors

• An off-by-one error happens when you use array
subscripts that are off by one.

• This can happen when you start subscripts at 1
rather than 0:

// This code has an off-by-one error.
const int SIZE = 100;
int numbers[SIZE];
for (int count = 1; count <= SIZE; count++)

numbers[count] = 0;

Programación en C++ 202

The Range-Based for Loop

• C++ 11 provides a specialized version of the for loop that,
in many circumstances, simplifies array processing.

• The range-based for loop is a loop that iterates once for
each element in an array.

• Each time the loop iterates, it copies an element from the
array to a built-in variable, known as the range variable.

• The range-based for loop automatically knows the number
of elements in an array.
– You do not have to use a counter variable.
– You do not have to worry about stepping outside the bounds of the

array.

Programación en C++ 203

The Range-Based for Loop

• The general format of the range-based for loop:

• dataType is the data type of the range variable.
• rangeVariable is the name of the range variable. This

variable will receive the value of a different array element
during each loop iteration.

• array is the name of an array on which you wish the loop
to operate.

• statement is a statement that executes during a loop
iteration. If you need to execute more than one statement in
the loop, enclose the statements in a set of braces.

for (dataType rangeVariable : array)
statement;

Programación en C++ 204

Modifying an Array with a Range-Based
for Loop

• As the range-based for loop executes, its range variable
contains only a copy of an array element.

• You cannot use a range-based for loop to modify the
contents of an array unless you declare the range variable as
a reference.

• To declare the range variable as a reference variable, simply
write an ampersand (&) in front of its name in the loop header.

Programación en C++ 205

The range-based for loop - Example

Programación en C++ 206

/* Testing For-each loop (TestForEach.cpp) */

#include <iostream>

using namespace std;

int main() {

int numbers[] = {11, 22, 33, 44, 55};

// For each member called number of array numbers - read only

for (int number : numbers) {

cout << number << endl;

}

// To modify members, need to use reference (&)

for (int &number : numbers) {

number = 99;

}

for (int number : numbers) {

cout << number << endl;

}

return 0;

}

The Range-Based for Loop versus the
Regular for Loop

• The range-based for loop can be used in any situation
where you need to step through the elements of an
array, and you do not need to use the element
subscripts.

• If you need the element subscript for some purpose,
use the regular for loop.

Programación en C++ 207

Processing Array Contents

• Array elements can be treated as ordinary variables
of the same type as the array

• When using ++, -- operators, don’t confuse the
element with the subscript:

tests[i]++; // add 1 to tests[i]
tests[i++]; // increment i, no

// effect on tests

• To copy one array to another,
for (i = 0; i < ARRAY_SIZE; i++)

newTests[i] = tests[i];

newTests = tests; // Won't work
Programación en C++ 208

Printing the Contents of an Array

• You can display the contents of a character array by
sending its name to cout:
char fName[] = "Henry";
cout << fName << endl;
But, this ONLY works with character arrays!

• For other types of arrays, you must print element-
by-element:
for (i = 0; i < ARRAY_SIZE; i++)

cout << tests[i] << endl;
• In C++ 11 you can use the range-based for loop

to display an array's contents
Programación en C++ 209

for (int val : numbers)
cout << val << endl;

Summing and Averaging Array Elements

• Use a simple loop to add together array elements:
int tnum;
double average, sum = 0;
for(tnum = 0; tnum < SIZE; tnum++)

sum += tests[tnum];

• Once summed, can compute average:
average = sum / SIZE;

• In C++ 11 you can use the range-based for loop, as
shown here:
double total = 0; double average;
for (int val : scores) total += val;
average = total / NUM_SCORES;

Programación en C++ 210

Finding the Highest/ Lowest Value in an
Array

int count;
int highest;
highest = numbers[0];
for (count = 1; count < SIZE; count++)
{

if (numbers[count] > highest)
highest = numbers[count];

}

When this code is finished,
the highest variable will
contains the highest value
in the numbers array.

Programación en C++ 211

int count;
int lowest;
lowest = numbers[0];
for (count = 1; count < SIZE; count++)
{

if (numbers[count] < lowest)
lowest = numbers[count];

}

When this code is finished,
the lowest variable will
contains the lowest value in
the numbers array.

Comparing Arrays

• To compare two arrays, you must compare element-by-
element:

const int SIZE = 5;
int firstArray[SIZE] = { 5, 10, 15, 20, 25 };
int secondArray[SIZE] = { 5, 10, 15, 20, 25 };
bool arraysEqual = true; // Flag variable
int count = 0; // Loop counter variable
// Compare the two arrays.
while (arraysEqual && count < SIZE)
{

if (firstArray[count] != secondArray[count])
arraysEqual = false;

count++;
}
if (arraysEqual)

cout << "The arrays are equal.\n";
else

cout << "The arrays are not equal.\n";

Programación en C++ 212

Using Parallel Arrays

• Parallel arrays: two or more arrays that contain related data
• A subscript is used to relate arrays: elements at same

subscript are related
• Arrays may be of different types

const int SIZE = 5; // Array size
int id[SIZE]; // student ID
double average[SIZE]; // course average
char grade[SIZE]; // course grade
...
for(int i = 0; i < SIZE; i++)
{

cout << "Student ID: " << id[i]
<< " average: " << average[i]
<< " grade: " << grade[i]
<< endl;

}

Programación en C++ 213

Arrays as Function Arguments

• To pass an array to a function, just use the array name:
showScores(tests);

• To define a function that takes an array parameter, use empty
[] for array argument:

// function prototype // function header
void showScores(int []); void showScores(int tests[])

• When passing an array to a function, it is common to pass
array size so that function knows how many elements to
process:

showScores(tests, ARRAY_SIZE);
• Array size must also be reflected in prototype, header:

// function prototype
void showScores(int [], int);
// function header
void showScores(int tests[], int size)

Programación en C++ 214

Modifying Arrays in Functions

• Array names in functions are like reference
variables – changes made to array in a function are
reflected in actual array in calling function

• Need to exercise caution that array is not
inadvertently changed by a function

Programación en C++ 215

Two-Dimensional Arrays

• Like a table in a spreadsheet. Use two size declarators in
definition:

const int ROWS = 4, COLS = 3;
int exams[ROWS][COLS];

• First index is the row number, second index is the column
number. The elements are stored in a so-called row-major
manner, where the column index runs out first

• Two subscripts to access element: exams[2][2] = 86;

Programación en C++ 216

2D Array Initialization

• Two-dimensional arrays are initialized row-by-row:
const int ROWS = 2, COLS = 2;
int exams[ROWS][COLS] = { {84, 78},

{92, 97} };

• Can omit inner { }, some initial values in a row – array
elements without initial values will be set to 0 or NULL

84 78

92 97

Programación en C++ 217

Two-Dimensional Array as Parameter,
Argument

• Use array name as argument in function call:
getExams(exams, 2);

• Use empty [] for row, size declarator for column in
prototype, header:
const int COLS = 2;
// Prototype
void getExams(int [][COLS], int);

// Header
void getExams(int exams[][COLS], int rows)

Programación en C++ 218

Example – Multi-dimensional array

Programación en C++ 219

/* Test Multi-dimensional Array (Test2DArray.cpp) */

#include <iostream>

using namespace std;

void printArray(const int[][3], int);

int main() {

int myArray[][3] = {{8, 2, 4}, {7, 5, 2}}; // 2x3 initialized

// Only the first index can be omitted and implied

printArray(myArray, 2);

return 0;

}

// Print the contents of rows-by-3 array (columns is fixed)

void printArray(const int array[][3], int rows) {

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < 3; ++j) {

cout << array[i][j] << " ";

}

cout << endl;

}

}

Summing All the Elements in a Two-
Dimensional Array

• Given the following definitions:
const int NUM_ROWS = 5; // Number of rows
const int NUM_COLS = 5; // Number of columns
int total = 0; // Accumulator
int numbers[NUM_ROWS][NUM_COLS] = {{2, 7, 9, 6, 4},

{6, 1, 8, 9, 4},
{4, 3, 7, 2, 9},
{9, 9, 0, 3, 1},
{6, 2, 7, 4, 1}};

Programación en C++ 220

// Sum the array elements.
for (int row = 0; row < NUM_ROWS; row++) {

for (int col = 0; col < NUM_COLS; col++)
total += numbers[row][col];

}

// Display the sum.
cout << "The total is " << total << endl;

Summing the Rows of a Two-Dimensional
Array

• Given the following definitions:
const int NUM_STUDENTS = 3;
const int NUM_SCORES = 5;
double total; // Accumulator
double average; // To hold average scores
double scores[NUM_STUDENTS][NUM_SCORES] =

{{88, 97, 79, 86, 94},
{86, 91, 78, 79, 84},
{82, 73, 77, 82, 89}};

// Get each student's average score.
for (int row = 0; row < NUM_STUDENTS; row++)
{

// Set the accumulator.
total = 0;
// Sum a row.
for (int col = 0; col < NUM_SCORES; col++)

total += scores[row][col];
// Get the average
average = total / NUM_SCORES;
// Display the average.
cout << "Score average for student "

<< (row + 1) << " is " << average <<endl;
}

Programación en C++ 221

Summing the Columns of a Two-
Dimensional Array

• Given the following definitions:
const int NUM_STUDENTS = 3;
const int NUM_SCORES = 5;
double total; // Accumulator
double average; // To hold average scores
double scores[NUM_STUDENTS][NUM_SCORES] =

{{88, 97, 79, 86, 94},
{86, 91, 78, 79, 84},
{82, 73, 77, 82, 89}};

// Get the class average for each score.
for (int col = 0; col < NUM_SCORES; col++)
{

// Reset the accumulator.
total = 0;
// Sum a column
for (int row = 0; row < NUM_STUDENTS; row++)

total += scores[row][col];
// Get the average
average = total / NUM_STUDENTS;
// Display the class average.
cout << "Class average for test " << (col + 1)

<< " is " << average << endl;
}

Programación en C++ 222

Arrays with Three or More
Dimensions

• Can define arrays with any number of dimensions:
short rectSolid[2][3][5];
double timeGrid[3][4][3][4];

• When used as parameter, specify all but 1st

dimension in prototype, heading:
void getRectSolid(short [][3][5]);

Programación en C++ 223

Introduction to the STL vector

• A data type defined in the Standard Template
Library

• Can hold values of any type:
vector<int> scores;

• Automatically adds space as more is needed – no
need to determine size at definition

• Can use [] to access elements

Programación en C++ 224

Declaring Vectors

• You must #include <vector>
• Declare a vector to hold int element:

vector<int> scores;

• Declare a vector with initial size 30:
vector<int> scores(30);

• Declare a vector and initialize all elements to 0:
vector<int> scores(30, 0);

• Declare a vector initialized to size and contents of another
vector:

vector<int> finals(scores);

Programación en C++ 225

Adding Elements to a Vector

• If you are using C++ 11, you can initialize a vector with a list
of values:
vector<int> scores { 10, 20, 30, 40 };

• Use push_back member function to add element to a full
array or to an array that had no defined size:
scores.push_back(75);

• Use size member function to determine size of a vector:
howbig = scores.size();

Programación en C++ 226

Removing Vector Elements

• Use pop_back member function to remove last element
from vector:

scores.pop_back();
• To remove all contents of vector, use clear member

function:
scores.clear();

• To determine if vector is empty, use empty member
function:

while (!scores.empty()) ...

Programación en C++ 227

Other Useful Member Functions

Member
Function

Description Example

at(i) Returns the value of the element at
position i in the vector

cout <<
vec1.at(i);

capacity() Returns the maximum number of
elements a vector can store without
allocating more memory

maxElements =
vec1.capacity();

reverse() Reverse the order of the elements
in a vector

vec1.reverse();

resize
(n, val)

Resizes the vector so it contains n
elements. If new elements are
added, they are initialized to val.

vec1.resize(5, 0);

swap(vec2) Exchange the contents of two
vectors

vec1.swap(vec2);

Programación en C++ 228

Search Algorithms

• Search: locate an item in a list of information

• Two algorithms are:
– Linear search
– Binary search

Programación en C++ 229

Linear Search

• Also called the sequential search
• Starting at the first element, this algorithm sequentially

steps through an array examining each element until
it locates the value it is searching for.

• Example: Array numlist contains:

• Searching for the the value 11, linear search
examines 17, 23, 5, and 11

• Searching for the the value 7, linear search examines
17, 23, 5, 11, 2, 29, and 3

Programación en C++ 230

17 23 5 11 2 29 3

Linear Search

• Algorithm:
set found to false; set position to –1; set index to 0
while index < number of elts. and found is false

if list[index] is equal to search value
found = true
position = index

end if
add 1 to index

end while
return position

Programación en C++ 231

A Linear Search Function

int linearSearch(int arr[], int size, int value)
{

int index = 0; // Used as a subscript to search the array
int position = -1; // To record the position of search value
bool found = false; // Flag to indicate if value was found

while (index < size && !found)
{

if (arr[index] == value) // If the value is found
{

found = true; // Set the flag
position = index; // Record the value's subscript

}
index++; // Go to the next element

}
return position; // Return the position, or -1

}

Programación en C++ 232

Linear Search - Tradeoffs

• Benefits:
– Easy algorithm to understand
– Array can be in any order

• Disadvantages:
– Inefficient (slow): for array of N elements, examines N/2

elements on average for value in array, N elements for
value not in array

Programación en C++ 233

Binary Search

Requires array elements to be in order
1. Divides the array into three sections:

– middle element
– elements on one side of the middle element
– elements on the other side of the middle element

2. If the middle element is the correct value, done. Otherwise,
go to step 1. using only the half of the array that may
contain the correct value.

3. Continue steps 1. and 2. until either the value is found or
there are no more elements to examine

Programación en C++ 234

Binary Search - Example

• Array numlist2 contains:

• Searching for the the value 11, binary search
examines 11 and stops

• Searching for the the value 7, linear search
examines 11, 3, 5, and stops

2 3 5 11 17 23 29

Programación en C++ 235

Binary Search

Set first to 0
Set last to the last subscript in the array
Set found to false
Set position to -1
While found is not true and first is less than or equal to last

Set middle to the subscript half-way between array[first] and array[last].
If array[middle] equals the desired value

Set found to true
Set position to middle

Else If array[middle] is greater than the desired value
Set last to middle - 1

Else
Set first to middle + 1

End If.
End While.
Return position.

Programación en C++ 236

A Binary Search Function

int binarySearch(int array[], int size, int value)
{

int first = 0, // First array element
last = size - 1, // Last array element
middle, // Mid point of search
position = -1; // Position of search value

bool found = false; // Flag

while (!found && first <= last)
{

middle = (first + last) / 2; // Calculate mid point
if (array[middle] == value) // If value is found at mid
{

found = true;
position = middle;

}
else if (array[middle] > value) // If value is in lower half

last = middle - 1;
else

first = middle + 1; // If value is in upper half
}
return position;

}

Programación en C++ 237

Binary Search - Tradeoffs

• Benefits:
– Much more efficient than linear search. For array of N

elements, performs at most log2N comparisons

• Disadvantages:
– Requires that array elements be sorted

Programación en C++ 238

Introduction to Sorting Algorithms

• Sort: arrange values into an order:
– Alphabetical
– Ascending numeric
– Descending numeric

• Some algorithms are:
– Bubble sort
– Insertion sort
– Selection sort

Programación en C++ 239

Bubble Sort

Concept:
– Compare 1st two elements

• If out of order, exchange them to put in order
– Move down one element, compare 2nd and 3rd elements,

exchange if necessary. Continue until end of array.
– Pass through array again, exchanging as necessary
– Repeat until pass made with no exchanges

Programación en C++ 240

Selection Sort

• Concept for sort in ascending order:
– Locate smallest element in array. Exchange it with

element in position 0
– Locate next smallest element in array. Exchange it with

element in position 1.
– Continue until all elements are arranged in order

Programación en C++ 241

Sorting and Searching Vectors

• Sorting and searching algorithms can be applied to
vectors as well as arrays

• Need slight modifications to functions to use vector
arguments:
– vector <type> & used in prototype
– No need to indicate vector size – functions can use size

member function to calculate

Programación en C++ 242

Pointers

Programación en C++ 243

Getting the Address of a Variable

• Each variable in program is stored at a unique
address

• Use address operator & to get address of a variable:
int num = -99;
cout << # // prints address

// in hexadecimal

Programación en C++ 244

Pointer Variables

• Pointer variable : Often just called a pointer, it's a
variable that holds an address

• Because a pointer variable holds the address of
another piece of data, it "points" to the data

Programación en C++ 245

Something Like Pointers: Arrays

• Something similar to pointers are arrays as arguments to
functions.

• For example, suppose we use this statement to pass the
array numbers to the showValues function:
showValues(numbers, SIZE);

Programación en C++ 246

The values parameter, in the showValues
function, points to the numbers array.

C++ automatically stores
the address of numbers in

the values parameter.

Something Like Pointers:
Reference Variables

• Something like pointers is to use reference variables. Example:
void getOrder(int &donuts) {

cout << "How many doughnuts do you want? ";
cin >> donuts;

}

• And we call it with this code:
int jellyDonuts;
getOrder(jellyDonuts);

Programación en C++ 247

The donuts parameter, in the getOrder function,
points to the jellyDonuts variable.

C++ automatically stores
the address of

jellyDonuts in the
donuts parameter.

Pointer Variables

• Pointer variables are yet another way using a memory
address to work with a piece of data.

• Pointers are more "low-level" than arrays and reference
variables.

• This means you are responsible for finding the address you
want to store in the pointer and correctly using it.

• Definition: int *intptr;

• Read as: “intptr can hold the address of an int”
• Spacing in definition does not matter:

int * intptr; // same as above
int* intptr; // same as above

Programación en C++ 248

Pointer Variables

• Assigning an address to a pointer variable:
int num = 25;
int *intptr;
intptr = #

• Memory layout:

• You can initialize a pointer to 0 or NULL, it points to nothing.
In C++ 11, the nullptr key word was introduced to
represent the address 0.

• Example of how you define a pointer variable and initialize it
with the value nullptr: int *ptr = nullptr;

num intptr
25 0x4a00

address of num: 0x4a00

Programación en C++ 249

The Indirection Operator

• The indirection operator (*) dereferences a pointer.
• It allows you to access the item that the pointer points to.

int x = 25;
int *intptr = &x;
cout << *intptr << endl;

This prints 25

Programación en C++ 250

The Relationship Between Arrays and
Pointers

• Array name is starting address of array
int vals[] = {4, 7, 11};

cout << vals; // displays 0x4a00

cout << vals[0]; // displays 4

• Array name can be used as a pointer constant:
int vals[] = {4, 7, 11};
cout << *vals; // displays 4

• Pointer can be used as an array name:
int *valptr = vals;
cout << valptr[1]; // displays 7

4 7 11starting address of vals: 0x4a00

Programación en C++ 251

Pointers in Expressions

Given:
int vals[]={4,7,11}, *valptr;
valptr = vals;

What is valptr + 1? It means (address in valptr)
+ (1 * size of an int)
cout << *(valptr+1); //displays 7
cout << *(valptr+2); //displays 11

Must use () as shown in the expressions

Programación en C++ 252

Array Access

• Array elements can be accessed in many ways:

• Conversion: vals[i] is equivalent to *(vals + i)

• No bounds checking performed on array access, whether
using array name or a pointer

Array access method Example

array name and [] vals[2] = 17;

pointer to array and [] valptr[2] = 17;

array name and subscript arithmetic *(vals + 2) = 17;

pointer to array and subscript arithmetic *(valptr + 2) = 17;

Programación en C++ 253

Pointer Arithmetic

• Operations on pointer variables:
Operation Example

int vals[]={4,7,11};
int *valptr = vals;

++, -- valptr++; // points at 7
valptr--; // now points at 4

+, - (pointer and int) cout << *(valptr + 2); // 11

+=, -= (pointer and int) valptr = vals; // points at 4
valptr += 2; // points at 11

- (pointer from pointer) cout << valptr–val; // difference
//(number of ints) between valptr
// and val

Programación en C++ 254

Initializing Pointers

• Can initialize at definition time:
int num, *numptr = #
int val[3], *valptr = val;

• Cannot mix data types:
double cost;
int *ptr = &cost; // won’t work

• Can test for an invalid address for ptr with:
if (!ptr) ...

Programación en C++ 255

Comparing Pointers

• Relational operators (<, >=, etc.) can be used to
compare addresses in pointers

• Comparing addresses in pointers is not the same as
comparing contents pointed at by pointers:
if (ptr1 == ptr2) // compares

// addresses
if (*ptr1 == *ptr2) // compares

// contents

Programación en C++ 256

Pointers as Function Parameters

• A pointer can be a parameter
• Works like reference variable to allow change to argument

from within function
• Requires:

1) asterisk * on parameter in prototype and heading
void getNum(int *ptr); // ptr is pointer to an int

2) asterisk * in body to dereference the pointer
cin >> *ptr;

3) address as argument to the function
getNum(&num); // pass address of num to getNum

Programación en C++ 257

Example

void swap(int *x, int *y)
{ int temp;

temp = *x;
*x = *y;
*y = temp;

}
// call
int num1 = 2, num2 = -3;
swap(&num1, &num2);

Programación en C++ 258

Pointers to Constants

• If we want to store the address of a constant in a
pointer, then we need to store it in a pointer-to-const.

• Example: Suppose we have the following definitions:
const int SIZE = 6;
const double payRates[SIZE] =

{ 18.55, 17.45, 12.85,
14.97, 10.35, 18.89 };

• In this code, payRates is an array of constant
doubles.

Programación en C++ 259

Pointers to Constants

• Suppose we wish to pass the payRates array to
a function? Here's an example of how we can do it.

void displayPayRates(const double *rates, int size)
{

for (int count = 0; count < size; count++)
{

cout << "Pay rate for employee " << (count + 1)
<< " is $" << *(rates + count) << endl;

}
}

The parameter, rates, is a pointer to const double.

Programación en C++ 260

const double *rates, int size)

This is what rates points to

The asterisk indicates that
rates is a pointer

Constant Pointers

• A constant pointer is a pointer that is initialized with an
address, and cannot point to anything else.

• Example
int value = 22;
int * const ptr = &value;

Programación en C++ 261

Constant Pointers to Constants

• A constant pointer to a constant is:
– a pointer that points to a constant
– a pointer that cannot point to anything except what it is

pointing to
• Example:
int value = 22;
const int * const ptr = &value;

Programación en C++ 262

Dynamic Memory Allocation

• Can allocate storage for a variable while program is running
• Computer returns address of newly allocated variable
• Uses new operator to allocate memory (returns address of

memory location):
double *dptr = nullptr;
dptr = new double;

• Can also use new to allocate array:
const int SIZE = 25;
arrayPtr = new double[SIZE];

• Can then use [] or pointer arithmetic to access array:
for(i=0; i<SIZE; i++) *arrayptr[i] = i*i;
Or
for(i=0; i<SIZE; i++) *(arrayptr+i) = i*i;

• Program will terminate if not memory available to allocate
Programación en C++ 263

Releasing Dynamic Memory

• Use delete to free dynamic memory:
delete fptr;

• Use [] to free dynamic array:
delete [] arrayptr;

• Only use delete with dynamic memory!

Programación en C++ 264

Returning Pointers from Functions

• Pointer can be the return type of a function:
int* newNum();

• The function must not return a pointer to a local variable in the
function.

• A function should only return a pointer:
– to data that was passed to the function as an argument, or
– to dynamically allocated memory

Programación en C++ 265

Using Smart Pointers to Avoid Memory
Leaks

• In C++ 11, you can use smart pointers to dynamically allocate
memory and not worry about deleting the memory when you
are finished using it.

• Three types of smart pointer:

• Must #include the memory header file:

• Next, we introduce unique_ptr:

unique_ptr
shared_ptr
weak_ptr

#include <memory>

unique_ptr<int> ptr(new int);

Programación en C++ 266

Using Smart Pointers to Avoid Memory
Leaks

• The notation <int> indicates that the pointer can point to an int .
• The name of the pointer is ptr .
• The expression new int allocates a chunk of memory to hold an
int.

• The address of the chunk of memory will be assigned to ptr.

Programación en C++ 267

Function Pointer

• The name of a function is the starting address where the
function resides in the memory, and therefore, can be treated
as a pointer.

• We can pass a function pointer into function as well. The
syntax for declaring a function pointer

// Function-pointer declaration
return-type (* function-ptr-name) (parameter-list)

// Examples
// fp points to a function
double (*fp)(int, int)
// f is a function that takes two ints and returns a double
double f(int, int);
// Assign function f to fp function-pointer
fp = f;

Programación en C++ 268

Command-Line Arguments

• We can include arguments in the command-line, when
running a program

• To process command-line argument, the main() function shall
use this header:

• The second parameter char *argv[] captures the string array,
while the first parameter capture the size of the array, or the
number of arguments

int main(int argc, char *argv[]) {
...... }

Programación en C++ 269

Structured Data

Programación en C++ 270

Abstract Data Types

• A data type that specifies
– values that can be stored
– operations that can be done on the values

• User of an abstract data type does not need to
know the implementation of the data type, e.g.,
how the data is stored

• ADTs are created by programmers

Programación en C++ 271

Abstraction and Data Types

• Abstraction: a definition that captures general
characteristics without details
– Ex: An abstract triangle is a 3-sided polygon. A specific

triangle may be scalene, isosceles, or equilateral
• Data Type defines the values that can be stored in a

variable and the operations that can be performed on
it

Programación en C++ 272

Combining Data into Structures

• Structure: C++ construct that allows multiple variables to be
grouped together

• General Format:
struct StructName

{

type1 field1;
type2 field2;
. . .

}; // need to terminate by a semi-colon

Programación en C++ 273

Example struct Declaration

struct Student

{

int studentID;

string name;

short yearInSchool;

double gpa;

};

structure tag

structure members

Programación en C++ 274

struct Declaration

• Must have ; after closing }
• struct names commonly begin with uppercase

letter
• Multiple fields of same type can be in comma-

separated list:
string name,

address;

Programación en C++ 275

Defining Variables

• struct declaration does not allocate memory or
create variables

• To define variables, use structure tag as type name:
Student bill;

studentID

name

yearInSchool

gpa

bill

Programación en C++ 276

Accessing Structure Members

• Use the dot (.) operator to refer to members of struct
variables:

cin >> stu1.studentID;

getline(cin, stu1.name);
stu1.gpa = 3.75;

• Member variables can be used in any manner appropriate for
their data type

Programación en C++ 277

Displaying a struct Variable

• To display the contents of a struct variable, must
display each field separately, using the dot operator:
cout << bill; // won’t work
cout << bill.studentID << endl;
cout << bill.name << endl;
cout << bill.yearInSchool;
cout << " " << bill.gpa;

Programación en C++ 278

Comparing struct Variables

• Cannot compare struct variables directly:
if (bill == william) // won’t work

• Instead, must compare on a field basis:
if (bill.studentID ==

william.studentID) ...

Programación en C++ 279

Initializing a Structure

• struct variable can be initialized when defined:
Student s = {11465, "Joan", 2, 3.75};

• Can also be initialized member-by-member after
definition:

s.name = "Joan"; s.gpa = 3.75;

• May initialize only some members:
Student bill = {14579};

• Cannot skip over members (illegal):
Student s = {1234, "John", , 2.83};

• Cannot initialize in the structure declaration, since
this does not allocate memory

Programación en C++ 280

Arrays of Structures

• Structures can be defined in arrays
• Can be used in place of parallel arrays
const int NUM_STUDENTS = 20;
Student stuList[NUM_STUDENTS];

• Individual structures accessible using subscript notation
• Fields within structures accessible using dot notation:

cout << stuList[5].studentID;

Programación en C++ 281

Nested Structures

A structure can contain another structure as a member:
struct PersonInfo
{ string name,

address,
city;

};
struct Student
{ int studentID;

PersonInfo pData;
short yearInSchool;
double gpa;

};

Programación en C++ 282

Members of Nested Structures

• Use the dot operator multiple times to refer to fields of
nested structures:

Student s;
s.pData.name = "Joanne";

s.pData.city = "Tulsa";

Programación en C++ 283

Structures as Function Arguments

• May pass members of struct variables to functions:
computeGPA(stu.gpa);

• May pass entire struct variables to functions:
showData(stu);

• Can use reference parameter if function needs to modify
contents of structure variable

• Using value parameter for structure can slow down a
program, waste space

• Using a reference parameter will speed up program, but
function may change data in structure

• Using a const reference parameter allows read-only
access to reference parameter, does not waste space,
speed

Programación en C++ 284

Example showItem Function

Programación en C++ 285

Returning a Structure from a Function

• Function can return a struct:
Student getStudentData(); // prototype

stu1 = getStudentData(); // call

• Function must define a local structure
– for internal use
– for use with return statement

Programación en C++ 286

Returning a Structure from a Function -
Example

Student getStudentData()
{ Student tempStu;

cin >> tempStu.studentID;
getline(cin, tempStu.pData.name);
getline(cin, tempStu.pData.address);
getline(cin, tempStu.pData.city);
cin >> tempStu.yearInSchool;
cin >> tempStu.gpa;
return tempStu;

}

Programación en C++ 287

Pointers to Structures

• A structure variable has an address
• Pointers to structures are variables that can hold the

address of a structure:
Student *stuPtr;

• Can use & operator to assign address:
stuPtr = & stu1;

• Structure pointer can be a function parameter

Programación en C++ 288

Accessing Structure Members via Pointer
Variables

• Must use () to dereference pointer variable, not field
within structure:
cout << (*stuPtr).studentID;

• Can use structure pointer operator to eliminate ()
and use clearer notation:
cout << stuPtr->studentID;

Programación en C++ 289

Files

Programación en C++ 290

Using Files for Data Storage

• File: a set of data stored on a computer, often on a
disk drive

• Programs can read from, write to files
• Can use files instead of keyboard, monitor screen for

program input, output
• Allows data to be retained between program runs
• Steps:

– Open the file
– Use the file (read from, write to, or both)
– Close the file

Programación en C++ 291

Files: What is Needed

• Use fstream header file for file access
• Can use >>, << to read from, write to a file
• Can use eof member function to test for end of input

file
• File stream types:

ifstream for input from a file
ofstream for output to a file
fstream for input from or output to a file

• Define file stream objects:
ifstream infile;
ofstream outfile;

Programación en C++ 292

Opening Files

• Create a link between file name (outside the program)
and file stream object (inside the program)

• Use the open member function:
infile.open("inventory.dat");
outfile.open("report.txt");

• Filename may include drive, path info.
• Output file will be created if necessary; existing file

will be erased first
• Input file must exist for open to work

Programación en C++ 293

Testing for File Open Errors

• Can test a file stream object to detect if an open
operation failed:
infile.open("test.txt");
if (!infile)
{
cout << "File open failure!";

}

• Can also use the fail member function

Programación en C++ 294

Using Files

• Can use output file object and << to send data to a
file:
outfile << "Inventory report";

• Can use input file object and >> to copy data from file
to variables:
infile >> partNum;

infile >> qtyInStock >> qtyOnOrder;

Programación en C++ 295

Using Loops to Process Files

• The stream extraction operator >> returns true
when a value was successfully read, false
otherwise

• Can be tested in a while loop to continue execution
as long as values are read from the file:
while (inputFile >> number) ...

Programación en C++ 296

Closing Files

• Use the close member function:
infile.close();
outfile.close();

• Don’t wait for operating system to close files at
program end:
– may be limit on number of open files
– may be buffered output data waiting to send to file

Programación en C++ 297

Letting the User Specify a Filename

• In many cases, you will want the user to specify the
name of a file for the program to open.

• In C++ 11, you can pass a string object as an
argument to a file stream object’s open member
function.

Programación en C++ 298

Using the c_str Member Function in Older
Versions of C++

• Prior to C++ 11, the open member function requires
that you pass the name of the file as a null-terminated
string, which is also known as a C-string.

• String literals are stored in memory as null-terminated
C-strings, but string objects are not.

Programación en C++ 299

Using the c_str Member Function in Older
Versions of C++

• string objects have a member function named c_str
– It returns the contents of the object formatted as a null-

terminated C-string.
– Here is the general format of how you call the c_str

function:
stringObject.c_str()

• Example:
inputFile.open(filename.c_str());

Programación en C++ 300

fstream Object

• fstream object can be used for either input or output
• Must specify mode on the open statement
• Sample modes:

ios::in – input
ios::out – output

• Can be combined on open call:
dFile.open("class.txt", ios::in | ios::out);

Programación en C++ 301

File Access Flags

Programación en C++ 302

Using Files - Example

// copy 10 numbers between files
// open the files
fstream infile("input.txt", ios::in);
fstream outfile("output.txt", ios::out);
int num;
for (int i = 1; i <= 10; i++)
{

infile >> num; // use the files
outfile << num;

}
infile.close(); // close the files
outfile.close();

Programación en C++ 303

Default File Open Modes

• ifstream:
– open for input only
– file cannot be written to
– open fails if file does not exist

• ofstream:
– open for output only
– file cannot be read from
– file created if no file exists
– file contents erased if file exists

Programación en C++ 304

More File Open Details

• Can use filename, flags in definition:
ifstream gradeList("grades.txt");

• File stream object set to 0 (false) if open failed:
if (!gradeList) ...

• Can also check fail member function to detect file
open error:
if (gradeList.fail()) ...

Programación en C++ 305

File Output Formatting

• Use the same techniques with file stream objects as
with cout: showpoint, setw(x),
showprecision(x), etc.

• Requires iomanip to use manipulators

Programación en C++ 306

Passing File Stream Objects to Functions

• It is very useful to pass file stream objects to
functions

• Be sure to always pass file stream objects by
reference

Programación en C++ 307

More Detailed Error Testing

• Can examine error state bits to determine stream status
• Bits tested/cleared by stream member functions

ios::eofbit set when end of file detected

ios::failbit set when operation failed

ios::hardfail set when error occurred and no recovery

ios::badbit set when invalid operation attempted

ios::goodbit set when no other bits are set

Programación en C++ 308

Member Functions / Flags

eof() true if eofbit set, false otherwise

fail() true if failbit or hardfail set, false otherwise

bad() true if badbit set, false otherwise

good() true if goodbit set, false otherwise

clear() clear all flags (no arguments), or clear a specific flag

10-309

Member Functions for Reading and Writing
Files

• Functions that may be used for input with
whitespace, to perform single character I/O, or to
return to the beginning of an input file

• Member functions:
getline: reads input including whitespace
get: reads a single character
put: writes a single character

Programación en C++ 310

The getline Function

• Three arguments:
– Name of a file stream object
– Name of a string object
– Delimiter character of your choice
– Examples, using the file stream object myFile, and the
string objects name and address:
getline(myFile, name);
getline(myFile, address, '\t');

– If left out, '\n' is default for third argument

Programación en C++ 311

Single Character I/O

• get: read a single character from a file
char letterGrade;

gradeFile.get(letterGrade);

Will read any character, including whitespace

• put: write a single character to a file
reportFile.put(letterGrade);

Programación en C++ 312

Working with Multiple Files

• Can have more than file open at a time in a program

• Files may be open for input or output

• Need to define file stream object for each file

Programación en C++ 313

Binary Files

• Binary file contains unformatted, non-ASCII data
• Indicate by using binary flag on open:
inFile.open("nums.dat",ios::in|ios::binary);

• Use read and write instead of <<, >>
char ch;
// read in a letter from file
inFile.read(&ch, sizeof(ch));

// send a character to a file
outFile.write(&ch, sizeof(ch));

Programación en C++ 314

address of where to put
the data being read in.
The read function expects
to read chars

how many bytes to
read from the file

Binary Files

• To read, write non-character data, must use a typecast
operator to treat the address of the data as a character
address
int num;
// read in a binary number from a file
inFile.read(reinterpret_cast<char *>&num,

sizeof(num));

// send a binary value to a file
outf.write(reinterpret_cast<char *>&num,

sizeof(num));

treat the address of num as
the address of a char

Programación en C++ 315

Creating Records with Structures

• Can write structures to, read structures from files
• To work with structures and files,

– use ios::binary file flag upon open
– use read, write member functions
struct TestScore
{
int studentId;
double score;
char grade;

};
TestScore oneTest;
...
// write out oneTest to a file
gradeFile.write(reinterpret_cast<char *>
(&oneTest), sizeof(oneTest));

Programación en C++ 316

Random-Access Files

• Sequential access: start at beginning of file and go
through data in file, in order, to end
– to access 100th entry in file, go through 99 preceding

entries first
• Random access: access data in a file in any order

– can access 100th entry directly

Programación en C++ 317

Random Access Member Functions

• seekg (seek get): used with files open for input
• seekp (seek put): used with files open for output
• Used to go to a specific position in a file
• seekg,seekp arguments:

offset: number of bytes, as a long
mode flag: starting point to compute offset

• Examples:
inData.seekg(25L, ios::beg);
// set read position at 26th byte
// from beginning of file
outData.seekp(-10L, ios::cur);
// set write position 10 bytes
// before current position

Programación en C++ 318

Important Note on Random Access

• If eof is true, it must be cleared before seekg or
seekp:

gradeFile.clear();
gradeFile.seekg(0L, ios::beg);
// go to the beginning of the file

Programación en C++ 319

Random Access Information

• tellg member function: return current byte position
in input file
long int whereAmI;
whereAmI = inData.tellg();

• tellp member function: return current byte position
in output file
whereAmI = outData.tellp();

Programación en C++ 320

Opening a File for
Both Input and Output

• File can be open for input and output simultaneously
• Supports updating a file:

– read data from file into memory
– update data
– write data back to file

• Use fstream for file object definition:
fstream gradeList("grades.dat",ios::in |

ios::out);

• Can also use ios::binary flag for binary data

Programación en C++ 321

Referencias

• Starting out with C++ : from control structures
through objects, Tony Gaddis, Pearson

• C++ Programming Tutorial
• A Tour of C++

Programación en C++ 322

https://www.pearson.com/us/higher-education/program/Gaddis-Starting-Out-with-C-From-Control-Structures-through-Objects-Brief-Version-Plus-My-Lab-Programming-with-Pearson-e-Text-Access-Card-Package-9th-Edition/PGM2059253.html
https://www.ntu.edu.sg/home/ehchua/programming/#Cpp
http://www.stroustrup.com/tour2.html

	Programación en C++
	Table of Contents
	Introduction to Programming
	Software Programs That Run on a Computer
	Programs and Programming Languages
	The Programming Process
	Procedural and Object-Oriented Programming
	OOP Characteristics
	Programming Languages
	Compilers, Linkers
	From a High-Level Program to an Executable File
	From a High-Level Program to an Executable File
	Integrated Development Environments (IDEs)
	Integrated Development Environments (IDEs) – Code Blocks
	Integrated Development Environments (IDEs) - Eclipse
	Integrated Development Environments (IDEs) – Visual Studio
	Compile/Link/Run in Linux
	Introduction to C++
	C++ History
	C++ Standards
	C++ Features
	What is a Program Made of?
	The Parts of a C++ Program
	Program hello1.cpp – without namespace
	Comments
	The #include directive
	Preprocessor Directives
	Preprocessor Directives
	Mathematical Library Functions
	Mathematical Library Functions
	Namespace, << operator and return
	Namespace
	Namespace
	Using Namespace
	Special Characters
	Important Details
	The cout Object
	The cout Object - The endl Manipulator�Starting a New Line
	Escape Sequences – More Control Over Output
	SumOddEven.cpp
	The cin Object
	�Working with Characters and string Objects�
	Working with Characters and string Objects
	Working with Characters and string Objects
	string Member Functions and Operators
	Formatting Input/Output using IO Manipulators (Header <iomanip>)
	Stream Manipulators
	Variables, Types and Operations
	Variables
	Literals
	Integer and String Literals in Program
	Identifiers
	C++ Key Words�List complete
	Variable Names - Identifier Rules
	Variable Declaration
	Constants (const)
	Fundamental Types
	 Typical size, minimum, maximum for the primitives types
	Integer Data Types
	Floating-Point Data Types
	The sizeof Operator
	Literals for Fundamental Types and String
	Literals for Fundamental Types and String
	Literals for Fundamental Types and String
	Integer, Floating-point and Character Literals example
	TestLiteral.cpp
	Enumerated Data Types
	Enumerated Data Types
	Enumerated Data Types
	Enumerated Data Types
	Assigning an integer to an enum Variable Assigning an enum to an int Variable
	Comparing Enumerator Values
	Enumerated Data Types
	Anonymous Enumerated Types
	Using an enum Variable to Step through an Array's Elements
	Using Strongly Typed enums in C++ 11
	Declaring the Type and Defining the Variables in One Statement
	The C++ string Class
	Variable Assignments and Initialization
	Declaring Variables With the auto Key Word
	Arithmetic Operators
	Compound Assignment Operators
	Increment/Decrement Operators
	Bit-Shift Operations
	A Closer Look at the / and % Operators
	Mathematical Expressions
	Mathematical Expressions
	Order and associativity of operations�C++ Operator Precedence
	Mixed-Type Operations - Type Conversion
	Type Casting
	Overflow and Underflow
	Multiple Assignment and Combined Assignment
	Combined Assignment Operators
	Relational Operators
	Logical Operators
	Truth tables of Logical Operators
	Flow Control
	Flow Control
	Conditional (Decision) Flow Control
	Conditional (Decision) Flow Control
	Conditional (Decision) Flow Control
	Conditional (Decision) Flow Control
	Conditional Operator
	Flags
	Menus - Menu-Driven Program Organization
	Using switch in Menu Systems
	Validating User Input
	Comparing Characters
	Comparing string Objects
	break Statement
	Blocks and Scope
	Variables with the Same Name
	Loop Flow Control
	Loop Flow Control
	Loop Flow Control
	Interrupting Loop Flow - break and continue
	Using the while Loop for Input Validation
	Input Validation Example
	Counters
	for Loop - Modifications
	for Loop - Modifications
	Sentinels
	Deciding Which Loop to Use
	Terminating Program
	Nested Loops
	Nested for-loop
	Strings
	Character Testing
	Character Case Conversion
	C-Strings
	Library Functions for Working with C-Strings
	C-String/Numeric Conversion Functions
	C-String/Numeric Conversion Functions
	string to Number Conversion
	The to_string Function
	Writing Your Own C-String Handling Functions
	The C++ string Class
	Other Definitions of C++ strings
	Input into a string Object
	string Operations
	string Operators
	string Member Functions
	Functions
	Modular Programming
	 Why Functions?
	Defining and Calling Functions - Function Definition
	Using Functions
	Function example
	Function Definition
	Function Naming Convention
	Function Prototype
	Sending Data into a Function
	Parameter Terminology, Parameters, Prototypes, and Function Headers
	Function Call argument/parameter
	Passing Data by Value
	Passing Data by Reference
	 const Function Parameters
	The return Statement
	A Value-Returning Function
	Returning a Boolean Value
	Local Variables
	Local Variable Lifetime
	Global Variables and Global Constants
	Initializing Local and Global Variables
	Static Local Variables
	Default Arguments
	Default Arguments
	Using Reference Variables as Parameters
	Passing by Reference
	Reference Variable Notes
	Overloading Functions
	Function Overloading Examples
	The exit() Function
	Stubs and Drivers
	Introduction to Recursion
	What Happens When Called?
	Recursive Functions
	Types of Recursion
	The Recursive Factorial Function
	The Recursive Factorial Function
	The Recursive gcd Function
	The Recursive gcd Function
	Solving Recursively Defined�Problems
	Solving Recursively Defined Problems
	A Recursive Binary Search Function
	Número de diapositiva 186
	The Towers of Hanoi
	Moving Three Discs
	The Towers of Hanoi
	The QuickSort Algorithm
	Exhaustive and Enumeration Algorithms
	Recursion vs. Iteration
	Arrays
	Arrays declaration and Usage
	Array Terminology
	Size Declarators
	Accessing Array Elements
	Default Initialization - Array Initialization
	Partial Array Initialization
	Implicit Array Sizing
	No Bounds Checking in C++
	Off-By-One Errors
	The Range-Based for Loop
	The Range-Based for Loop
	Modifying an Array with a Range-Based for Loop
	The range-based for loop - Example
	The Range-Based for Loop versus the Regular for Loop
	Processing Array Contents
	Printing the Contents of an Array
	Summing and Averaging Array Elements
	Finding the Highest/ Lowest Value in an Array
	Comparing Arrays
	Using Parallel Arrays
	Arrays as Function Arguments
	Modifying Arrays in Functions
	Two-Dimensional Arrays
	2D Array Initialization
	Two-Dimensional Array as Parameter, Argument
	Example – Multi-dimensional array
	Summing All the Elements in a Two-Dimensional Array
	Summing the Rows of a Two-Dimensional Array
	Summing the Columns of a Two-Dimensional Array
	Arrays with Three or More�Dimensions
	Introduction to the STL vector
	Declaring Vectors
	Adding Elements to a Vector
	Removing Vector Elements
	Other Useful Member Functions
	Search Algorithms
	Linear Search
	Linear Search
	A Linear Search Function
	Linear Search - Tradeoffs
	Binary Search
	Binary Search - Example
	Binary Search
	A Binary Search Function
	Binary Search - Tradeoffs
	Introduction to Sorting Algorithms
	Bubble Sort
	Selection Sort
	Sorting and Searching Vectors
	Pointers
	Getting the Address of a Variable
	Pointer Variables
	Something Like Pointers: Arrays
	Something Like Pointers: Reference Variables
	Pointer Variables
	Pointer Variables
	The Indirection Operator
	The Relationship Between Arrays and Pointers
	Pointers in Expressions
	Array Access
	Pointer Arithmetic
	Initializing Pointers
	Comparing Pointers
	Pointers as Function Parameters
	Example
	Pointers to Constants
	Pointers to Constants
	Constant Pointers
	Constant Pointers to Constants
	Dynamic Memory Allocation
	Releasing Dynamic Memory
	Returning Pointers from Functions
	Using Smart Pointers to Avoid Memory Leaks
	Using Smart Pointers to Avoid Memory Leaks
	Function Pointer
	Command-Line Arguments
	Structured Data
	Abstract Data Types
	Abstraction and Data Types
	Combining Data into Structures
	Example struct Declaration
	struct Declaration
	Defining Variables
	Accessing Structure Members
	Displaying a struct Variable
	Comparing struct Variables
	Initializing a Structure
	Arrays of Structures
	Nested Structures
	Members of Nested Structures
	Structures as Function Arguments
	Example showItem Function
	Returning a Structure from a Function
	Returning a Structure from a Function - Example
	Pointers to Structures
	Accessing Structure Members via Pointer Variables
	Files
	Using Files for Data Storage
	Files: What is Needed
	Opening Files
	Testing for File Open Errors
	Using Files
	Using Loops to Process Files
	Closing Files
	Letting the User Specify a Filename
	Using the c_str Member Function in Older Versions of C++
	Using the c_str Member Function in Older Versions of C++
	fstream Object
	File Access Flags
	Using Files - Example
	Default File Open Modes
	More File Open Details
	File Output Formatting
	Passing File Stream Objects to Functions
	More Detailed Error Testing
	Member Functions / Flags
	Member Functions for Reading and Writing Files
	The getline Function
	Single Character I/O
	Working with Multiple Files
	Binary Files
	Binary Files
	Creating Records with Structures
	Random-Access Files
	Random Access Member Functions
	Important Note on Random Access
	Random Access Information
	Opening a File for �Both Input and Output
	Referencias

