





| A1 *    | ± 🗙 🗸    | f <sub>x</sub> |   |        |           |        |           |                   |     |   |    |   | V     |
|---------|----------|----------------|---|--------|-----------|--------|-----------|-------------------|-----|---|----|---|-------|
| Α       | В        | С              | D | E      | F         | G      | Н         | I                 | J   | К | L  | М |       |
| 1       | 1        |                |   |        |           |        |           |                   |     |   |    |   |       |
| 2       |          |                |   |        |           |        |           |                   |     |   |    |   |       |
| 3       |          |                |   |        |           |        |           |                   |     |   |    |   |       |
| 4       |          |                |   |        |           |        |           |                   |     |   |    |   |       |
| 5       |          |                |   |        |           |        |           |                   |     |   |    |   |       |
| 6       |          | — (            |   |        |           |        | $(\cdot)$ |                   |     |   |    |   |       |
| 7       |          |                |   |        |           |        | Ur        |                   |     |   |    |   |       |
| 8       |          |                |   |        |           |        |           |                   |     |   |    |   |       |
| 10      |          |                |   |        |           |        |           |                   |     |   |    |   |       |
| 11      |          |                |   |        |           |        | asi       | $\mathbf{CO}^{-}$ |     |   |    |   |       |
| 12      |          |                |   |        |           |        |           |                   |     |   |    |   |       |
| 13      |          |                |   |        |           |        |           |                   |     |   |    |   |       |
| 14      |          |                |   |        |           |        |           |                   |     |   |    |   |       |
| 15      |          |                |   |        |           |        |           |                   |     |   |    |   |       |
| 16      |          |                |   | D      | adro      |        | rou       | ora               |     |   |    |   |       |
| 17      |          |                |   | Γ      | JUIC      |        | JICU      | CIA               |     |   |    |   |       |
| 18      |          |                |   |        | N / - 1 - |        | Λ.        |                   |     |   |    |   |       |
| 19      |          |                |   | Upto.  | Mate      | emati  | ca Ap     | licada            | a y |   |    |   |       |
| 20      |          |                |   | Ciono  | viae d    |        | -<br>amn  | utaci             | ón  |   |    |   |       |
| 21      |          |                |   | CIEIIC | ias u     |        | Jouh      | ulaci             |     |   |    |   |       |
| 22      |          |                |   | Llpiv  | orcid     |        | o Cor     | stahr             | in  |   |    |   |       |
| 24      |          |                |   |        | CI 210    | iau u  | e vai     | πανί              | ia  |   |    |   |       |
| 25      |          |                |   |        |           |        |           |                   |     |   |    |   |       |
| 26      |          |                |   |        |           |        |           |                   |     |   |    |   |       |
| 27      |          |                |   | _      | orcus     | rn@i   | inican    |                   |     |   |    |   |       |
| 28      |          |                |   | C      | ucue      | i h @r | incar     | 1.62              |     |   |    |   |       |
| 29      |          |                |   |        |           |        |           |                   |     |   |    |   | -     |
| 4       | Hoja1 (+ | )              |   |        |           |        |           | 4                 |     |   |    |   | Þ     |
| listo 🔚 |          |                |   |        |           |        |           |                   |     |   | L] | + | 100 % |



- Introducción a las hojas de cálculo
- Manejo de Excel
- Funciones
- Funciones matemáticas
- Gráficos
- Análisis estadístico de datos
- Aproximación
- Análisis de series de tiempo





 Aplicación de hojas de cálculo en problemas de ingeniería.



### Introducción a las hojas de cálculo



- Las hojas de cálculo se han convertido en una de las herramientas principales del ingeniero debido a la facilidad de uso y su aplicación en la solución de problemas numéricos y su representación gráfica.
- Hay hojas de cálculo para todo tipo de plataforma (PCs, Cloud, móvil). Una de las más extendidas para PC es *Excel* que se encuentra dentro del entorno MS Office.
- Hay versiones gratuitas como LibreOffice Calc y OpenOffice Calc.
- Como desventajas de su uso se considera que promueven la dispersión y manipulación hetérogenea de los datos, poca adecuación a documentación de cálculos y depuración.



 Las hojas de cálculo se componen de celdas dispuestas en filas y columnas que pueden contener valores numéricos, alfanuméricos o relaciones entre sí. También permiten graficar los valores de las celdas.





### Manejo de Excel



#### **Iniciar Excel**

- Botón Inicio  $\rightarrow$  Todos los programas  $\rightarrow$  Microsoft Office  $\rightarrow$  Excel



 Haciendo doble click sobre el icono de acceso directo a Microsoft Office Excel



- Botón Cerrar que se encuentra en la parte superior derecha de la venta de Excel ×
- Menú Archivo  $\rightarrow$  Cerrar



• Pulsando teclas Alt + F4



### Nuevo, Abrir, Guardar, Imprimir, Configurar

• Menú Archivo  $\rightarrow$ 



| ${ \bige { \bige \big$ |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Información                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Nuevo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Abrir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Guardar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Guardar como                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Guardar como<br>Adobe PDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Imprimir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Compartir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Exportar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Cerrar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Cuenta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Opciones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |



#### Ventana Excel

| x∎    | 5         | - c≥ - =                       |                   |           |                             |            | Ejemp            | o1.xlsx - Exce            | :1      |                                                                            |                                      |                                  | ?                                         | <u>*</u> – |       | × |
|-------|-----------|--------------------------------|-------------------|-----------|-----------------------------|------------|------------------|---------------------------|---------|----------------------------------------------------------------------------|--------------------------------------|----------------------------------|-------------------------------------------|------------|-------|---|
| ARCH  | IVO I     | VICIO INSE                     | ERTAR DISEÑO      | DE PÁGINA | FÓRMULAS                    | DATO       | DS REVIS         | AR VIST                   | A DESAR | ROLLADOR                                                                   | ACROBAT                              | POWERPIVO                        | DT TEAM                                   |            |       |   |
| Peg   | •         | Calibri<br>N <i>K</i> <u>S</u> | • 11 • 4          |           | = »>.<br>= € <del>•</del> = | ti<br>11 • | General<br>≌ - % | ▼<br>000 ← 0 00<br>00 → 0 | Forma   | ato condicional <del>+</del><br>rmato como tabl<br>; de celda <del>+</del> | a ▼ Inse<br>a ▼ Inse<br>Elim<br>Inse | ertar •<br>ninar • 耳<br>mato • 🍕 | ✓ AZY<br>Ordenar Bu<br>y filtrar + select | iscar y    |       |   |
| Porta | papeles r | a l                            | Fuente            | E.        | Alineación                  | Es.        | Núm              | ero r                     | a       | Estilos                                                                    | Cel                                  | das                              | Modificar                                 |            |       | ~ |
|       | Α         | В                              | С                 | D         | E                           | F          | F                | G                         | Н       | I                                                                          | J                                    | K                                | L                                         | М          |       |   |
| 1     |           |                                |                   |           |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       |   |
| 2     |           | ARTICU                         | LO CANTIDAD       |           |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       |   |
| 3     |           | Llaves                         | 525               | 5         |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       |   |
| 4     |           | Tornillo                       | s 210             | )         |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       |   |
| 5     |           | Tuercas                        | 320               | )         |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       |   |
| 6     |           |                                |                   |           |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       |   |
| 7     |           | TOTAL                          | 1053              | 5         |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       |   |
| 8     |           |                                |                   |           |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       |   |
| 9     |           |                                |                   |           |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       |   |
| 10    |           |                                |                   |           |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       |   |
| 11    |           |                                |                   |           |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       |   |
| 12    |           |                                |                   |           |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       |   |
| 13    |           |                                |                   |           |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       |   |
| 14    |           |                                |                   |           |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       |   |
| 15    |           |                                |                   |           |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       |   |
| 16    |           |                                |                   |           |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       |   |
| 17    |           |                                |                   |           |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       |   |
| 18    |           |                                |                   |           |                             |            |                  |                           |         |                                                                            |                                      |                                  |                                           |            |       | - |
| 4     | •         | Ejemplo                        | <b>1</b> Ejm1_nom | bres Form | nato Fórm                   | ulas       | Hoja y Gra       | áfico G                   | 🕂 :     | •                                                                          |                                      |                                  |                                           |            | Þ     |   |
| LISTO |           |                                |                   |           |                             |            |                  |                           |         |                                                                            | ⊞                                    |                                  | <b>-</b>                                  | +          | 100 % | , |



#### Componentes de la ventana1

Barra de título

Ejemplo1.xlsx - Excel

- Ayuda de Microsoft Excel (F1)
- Opciones de presentación de la cinta de opciones
- Minimizar
- Maximizar 🗖
- Cerrar 🛛 🗙
- Barra de acceso rápido
  - Guardar 🛛 🖯
  - Deshacer 🐤
  - Rehacer
  - Personalizar barra de herramientas de acceso rápido =

?

市

个

×



#### Componentes de la ventana2

• Cinta de Opciones



#### - Pulsando tecla ALT (modo de acceso por teclado)





 Cuadro de nombres y Barra de fórmulas: muestra el contenido de la celda activa

|   | 1. | × f. f. manuar                    |  |
|---|----|-----------------------------------|--|
| • |    | $\wedge \sqrt{Jx} = C3 + C4 + C5$ |  |

Hoja de cálculo: contiene celdas identificadas por la columna
 (letra) y fila (número)

|    | А | В         | С        | D | E | F | G | Н |
|----|---|-----------|----------|---|---|---|---|---|
| 1  |   |           |          |   |   |   |   |   |
| 2  |   | ARTICULO  | CANTIDAD |   |   |   |   |   |
| 3  |   | Llaves    | 525      |   |   |   |   |   |
| 4  |   | Tornillos | 210      |   |   |   |   |   |
| 5  |   | Tuercas   | 320      |   |   |   |   |   |
| 6  |   |           |          |   |   |   |   |   |
| 7  |   | TOTAL     | 1055     |   |   |   |   |   |
| 8  |   |           |          |   |   |   |   |   |
| 9  |   |           |          |   |   |   |   |   |
| 10 |   |           |          |   |   |   |   |   |
| 11 |   |           |          |   |   |   |   |   |
| 12 |   |           |          |   |   |   |   |   |



#### Componentes de la ventana4

• Barra de hojas de trabajo

| Ejemplo1         Ejm1_nombres         Formato         Fórmulas         Hoja y Gráfico         Gráfico1 |
|--------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------|

Barra de estado y visualización

|       | _ |  |      |    |       |
|-------|---|--|------|----|-------|
| LISTO | Ħ |  | <br> | -+ | 100 % |



- Un *libro de trabajo (workbook)* es el archivo que creamos con Excel.
- Un libro de trabajo está formado por varias *hojas de trabajo (worksheet)*.
- La *hoja de cálculo* es uno de los distintos tipos de hojas que puede contener un libro de trabajo. Es como una gran hoja cuadriculada formada por 16.384 columnas y 1.048.576 filas.
- Los elementos individuales (intersección de una columna y una fila) dentro de una hoja de cálculo se llaman *celdas*.



- Un *rango* de celdas es un bloque rectangular de una o más celdas que Excel trata como una unidad.
- Una celda puede contener dos tipos diferentes de datos:
  - una constante numérica (un número) o
  - una constante de texto (etiqueta o cadena de caracteres).
- Cada celda se referencia o llama por su columna (normalmente una letra) y el número de fila. Ejm: B3 referencia la celda en la columna B y fila 3.





- Un conjunto de celdas forman una *hoja de trabajo*.
- Si una celda contiene un valor numérico, el número puede haberse escrito directamente o ser el resultado de la evaluación de una *fórmula*.
- Una fórmula expresa interdependencias entre celdas. Ejm: el valor numérico en la celda C7 es generado por la fórmula =(C3+C4+C5).
- Esta importante característica permite análisis del tipo qué pasa si (what-if).



- La celda activa en curso se identifica con un rectángulo alrededor de ella.
- El puntero del ratón se indica por un cursor en cruz que indica la posición del ratón.
- Para moverse por la hoja de cálculo se puede usar:
  - Ratón
  - Teclas
  - Barra de desplazamiento
  - Cuadro de nombres
  - Opción: Inicio  $\rightarrow$  Buscar y seleccionar  $\rightarrow$  Ir a... (F5)



 Las teclas o combinación de ellas para moverse rápidamente por la hoja de cálculo son:

| MOVIMIENTO                         | TECLADO                          |
|------------------------------------|----------------------------------|
| Celda Abajo / Celda Arriba         | FLECHA ABAJO / FLECHA ARRIBA     |
| Celda Derecha / Celda Izquierda    | FLECHADERECHA / FLECHA IZQUIERDA |
| Pantalla Abajo / Pantalla Arriba   | AVPAG / REPAG                    |
| Celda A1                           | CTRL+INICIO                      |
| Primera celda de la columna activa | FIN + FLECHA ARRIBA              |
| Última celda de la columna activa  | FIN + FLECHA ABAJO               |
| Primera celda de la fila activa    | FIN + FLECHA IZQUIERDA           |
| Última celda de la fila activa     | FIN + FLECHA DERECHA             |
| Última fila de la hoja             | CTRL + FLECHA ABAJO              |
| Última columna de la hoja          | CTRL + FLECHA DERECHA            |



- En un libro de trabajo existen varias hojas de cálculo. Por defecto aparece una hoja de cálculo aunque el número puede aumentarse.
- Para seleccionar una hoja activa se usa la barra de etiquetas.

| <br>Ejemplo1 | Ejm1_nombres | Formato | Fórmulas | Hoja y Gráfico | Gráfico1 | +        |
|--------------|--------------|---------|----------|----------------|----------|----------|
|              |              | 1       |          |                | 1 1      | <u> </u> |

• Opcionalmente con teclas

| ΜΟΥΙΜΙΕΝΤΟ     | TECLADO     |
|----------------|-------------|
| Hoja Siguiente | CTRL+ AVPAG |
| Hoja Anterior  | CTRL+ REPAG |



- Dato es cualquier información que se puede utilizar en una fórmula.
- Los pasos para introducir datos son los mismos que para introducir rótulos:
  - Seleccionar la celda.
  - Escribir el dato.
  - Pulsar Entrar o seleccionar otra celda haciendo clic sobre ella o pulsando las teclas del cursor.
- También se puede usar los iconos en la barra de fórmula para ingresar/modificar los datos.





- Son los más frecuentes en las hojas de cálculo. Se debe tener en cuenta que Excel:
  - Alinea a la derecha con formato general.
  - Dispone de gran variedad de formatos.
  - Utiliza la notación científica cuando no cabe en la celda.
  - Para fracciones se escribe la parte entera, se deja un espacio en blanco y a continuación la fracción.
  - Para introducir porcentajes se teclea el número seguido del símbolo %.
  - Cuando un número no cabe llena la celda con #######
- **Ejercicio**: Introducir 12345,6789 ; 7,25% y 2 3/5



- Para facilitar la comprensión de las hojas de cálculo, conviene poner nombres a las celdas.
- Para asignar un nombre a una celda o rango de celdas:
  - Seleccionar la celda o rango de celdas.
  - *Escribir* el texto (máximo 255 caracteres) de la etiqueta en el Cuadro de nombres y *Pulsar* Entrar (↓).
  - También se puede usar el Administrador de nombres que se encuentra en la pestaña Fórmulas.





- Si se está escribiendo los datos se puede usar la tecla de Retroceso, o se puede reescribir el dato. El nuevo dato reemplazará al antiguo, una vez que se pulsa Entrar.
- Se puede borrar una celda activa pulsando la tecla Supr o desde Inicio→Borrar → Todo/Contenido.
- Si se está escribiendo los datos o formulas también se puede emplear el icono **Cancelar** de la barra de edición de celda.





# Inserción de figuras, texto, imágenes y ecuaciones<sub>1</sub>

- Para introducir figuras, esquemas, texto artístico e imágenes se selecciona:
  - Formas: Insertar  $\rightarrow$  Ilustraciones  $\rightarrow$  Formas
  - Esquemas: Insertar  $\rightarrow$  Ilustraciones  $\rightarrow$  SmartArt
  - Imágenes prediseñadas: Insertar → Ilustraciones → Imágenes en línea
  - Imágenes desde archivo: Insertar  $\rightarrow$  Ilustraciones  $\rightarrow$  Imágenes
  - Texto artístico: Insertar  $\rightarrow$  Texto  $\rightarrow$  WordArt
  - Cuadros de Texto: Insertar  $\rightarrow$  Texto  $\rightarrow$  Cuadro de texto
  - Ecuaciones: Insertar  $\rightarrow$  Símbolos  $\rightarrow$  Ecuación

## Inserción de figuras, texto, imágenes y ecuaciones<sub>2</sub>





- El formato por defecto de las hojas de cálculo es A1, es decir, columna-fila.
- Hay otro formato para hacer referencia a celdas que es filacoluma y es llamado F1C1.
- Para ello se selecciona Archivo→Opciones → Fórmulas→ Estilo de referencia F1C1.
- Este estilo usa números para identificar las filas y columnas. Ejemplo: F(1)C(2) hace referencia absoluta a la fila 1, columna 2.



- El éxito de las hojas de cálculo se debe a que se pueden relacionar las celdas a través de fórmulas.
- Para introducir una fórmula:
  - Seleccionar la celda
  - Escribir el signo igual (=)
  - Escribir la fórmula: operandos y operadores
  - Pulsar Entrar
- Las fórmulas empiezan con el signo igual (=).
- Lo que muestra una celda es el valor del resultado de la fórmula.
- Los operandos de fórmulas pueden ser referencias a celdas que contienen los datos. Las celdas de referencia pueden estar en otras hojas o libros.



- Ejercicio: Calcular el equivalente en pesetas de 123,45 €.
- Como calculadora manual.



• Como hoja de cálculo.

| C4 | 1 ×          | : 🗙    | $\checkmark f_x$ = | =C3*C4 |
|----|--------------|--------|--------------------|--------|
|    | А            | В      | С                  | D      |
| 1  | 20540.3517   |        |                    |        |
| 2  |              |        |                    |        |
| 3  | Importe en e | uros   | 123.45             |        |
| 4  | Equivalencia |        | 166.386            |        |
| 5  | Importe en p | esetas | =C3*C4             |        |
| 6  |              |        |                    |        |



- Excel incluye operadores aritméticos, de texto, de comparación y de referencia.
- Operadores aritméticos

| Operador aritmético                        | Significado       | Ejemplo               |
|--------------------------------------------|-------------------|-----------------------|
| + (signo más)                              | Suma              | 3+3                   |
| – (signo menos)                            | Resta<br>Negación | 3–1<br>–1             |
| * (asterisco)                              | Multiplicación    | 3*3                   |
| / (barra oblicua)                          | División          | 3/3   =A1+B1-C2*A4/A2 |
| % (signo de porcentaje)                    | Porcentaje        | 20%                   |
| <ul> <li>^ (acento circunflejo)</li> </ul> | Exponenciación    | 3^2                   |



 Operadores de comparación: el resultado es un valor lógico, VERDADERO o FALSO

| Operador de comparación      | Significado       | Ejemplo  |
|------------------------------|-------------------|----------|
| = (signo igual)              | Igual a           | A1 = B1  |
| > (signo mayor que)          | Mayor que         | A1 > B1  |
| < (signo menor que)          | Menor que         | A1 < B1  |
| >= (signo mayor o igual que) | Mayor o igual que | A1 >= B1 |
| <= (signo menor o igual que) | Menor o igual que | A1 <= B1 |
| <> (signo distinto de)       | Distinto de       | A1 <> B1 |



 Operador de texto o concatenación (&): une o concatena una o varias cadenas de texto con el fin de generar un solo elemento de texto.

| Operador de texto | Significado                                                                   | Ejemplo            |
|-------------------|-------------------------------------------------------------------------------|--------------------|
| & ("y" comercial) | Conecta o concatena dos valores<br>para generar un valor de texto<br>continuo | ("Viento"&"norte") |



• Operadores de referencia: combina rangos de celdas para los cálculos con los siguientes operadores.

| Operador de referencia | Significado                                                                                             | Ejemplo             |
|------------------------|---------------------------------------------------------------------------------------------------------|---------------------|
| : (dos puntos)         | Operador de rango, que genera una referencia a todas las celdas entre dos referencias, éstas incluidas. | B5:B15              |
| ; (punto y coma)       | Operador de unión, que combina varias referencias en una sola                                           | SUMA(B5:B15;D5:D15) |
| (espacio)              | Operador de intersección, que genera una referencia a las celdas comunes a las dos referencias          | B7:D7 C6:C8         |



- Si una fórmula contiene operadores con la misma prioridad se evaluará de izquierda a derecha.
- Para cambiar el orden de evaluación usar paréntesis.

| Orden de prioridad | Operador       | Descripción               |
|--------------------|----------------|---------------------------|
| 1                  | _              | Negación                  |
| 2                  | %              | Porcentaje                |
| 3                  | ٨              | Exponente                 |
| 4                  | * /            | Multiplicación y división |
| 5                  | + -            | Suma y resta              |
| 6                  | &              | Concatenación             |
| 7                  | = < > <= >= <> | Comparación               |

## X Fórmulas con datos en más de una hoja

- Excel permite crear fórmulas que operan con datos almacenados en más de una hoja de un mismo libro.
- Ejemplo: Se desea calcular los totales de ingresos y gastos del primer trimestre.
  - Barra de hojas Hoja nueva  $\bigcirc$
  - Vista → Nueva Ventana | Organizar todo Mosaico
# X Fórmulas con datos en más de una hoja

| x∎     | 5-          | ⊘        |                  |             | formulas_hoja | as.xlsx:4 - Excel | x    |               | 5- (   | ∂                  |                  |       |           | formulas_hojas  | .xlsx:3 - Excel |           |              | ?    | <u>क</u> _ [ | = ×   |
|--------|-------------|----------|------------------|-------------|---------------|-------------------|------|---------------|--------|--------------------|------------------|-------|-----------|-----------------|-----------------|-----------|--------------|------|--------------|-------|
| ARCH   | INICIO      | INSERTAR | DISEÑO DE        | FÓRMULAS DA | TOS REVISAR   | VISTA DESARRO     | ARC  |               | INICIO | INSERTAR           | DISEÑO DE        | FÓRMU | JLAS DAT  | TOS REVISAR     | VISTA DESAR     | ROLL ACRO | BAT POWERPIV | TEAM |              |       |
|        |             |          | 0                |             |               |                   |      |               |        |                    |                  | ·     |           |                 |                 |           | 1            |      |              |       |
| A1     | *           | - = 🗙    | $\checkmark f_x$ | Ingresos    |               |                   | A    | 1             | *      | $: \times$         | $\checkmark f_x$ | Ingr  | esos      |                 |                 |           |              |      |              | ~     |
|        | А           | В        | С                | D           | E             | F                 |      | A             |        | В                  | С                |       | D         | E               | F               | G         | н            | I    | J            |       |
| 1      | ngresos     | 100.10   | €                |             |               |                   | 1    | Ingreso       | os     | 200.20             | E                |       |           |                 |                 |           |              |      |              |       |
| 2 (    | Gastos      | 50.50    | €                |             |               |                   | 2    | Gastos        |        | 100.10             | €                |       |           |                 |                 |           |              |      |              |       |
| 3 F    | Resultado   | 49.60    | €                |             |               |                   | 3    | Resulta       | ado    | 100.10             | E                |       |           |                 |                 |           |              |      |              |       |
| 4      |             |          |                  |             |               |                   | 4    |               |        |                    |                  |       |           |                 |                 |           |              |      |              |       |
| 5      |             |          |                  |             |               |                   | 5    |               |        |                    |                  |       |           |                 |                 |           |              |      |              |       |
| 6      |             |          |                  |             |               |                   | 6    |               |        |                    |                  |       |           |                 |                 |           |              |      |              |       |
| 7      |             | enero    | febrero m:       | arzo resum  | on trimostral |                   | -    | 4             |        | enero <b>f</b>     | ebrero           | marzo | resum     | nen trimestral  | <b></b>         | : 4       |              |      |              |       |
| 1167.0 |             | enero    |                  |             | en_unnesuar   |                   | 1103 | ro • <b>1</b> |        |                    | corcro           | marzo | Tesum     | ien_annesaan    |                 |           |              |      |              |       |
| LISIC  | ) 🔟         |          |                  |             |               |                   | us   | 10 👜          |        |                    |                  |       |           |                 |                 | ш.        |              |      |              | 100 % |
| X∎     | 5.          | ⊘* ∓     |                  |             | formulas_hoja | s.xlsx:2 - Excel  | X    |               | ي د رو | C <sup>2</sup> Y = |                  |       |           | formulas_hojas. | xlsx:1 - Excel  |           |              | ?    | A - 1        | = ×   |
| ARCH   | HIVO INICIO | INSERTAR | DISEÑO DE        | FÓRMULAS DA | TOS REVISAR   | VISTA DESARRO     | ARC  | CHIVO I       | NICIO  | INSERTAR [         | DISEÑO DE        | FÓRMU | JLAS DAT  | TOS REVISAR     | VISTA DESAR     | ROLL ACRO | BAT POWERPIV | TEAM |              |       |
|        |             |          |                  |             |               |                   | _    |               |        |                    |                  |       |           |                 |                 |           |              |      |              |       |
| A1     | *           | 1 🗄 📉    | $\checkmark f_x$ | Ingresos    |               |                   | B1   | L             | *      | $\approx$          | $\checkmark f_x$ | =en   | ero!B1+fe | ebrero!B1+ma    | rzo!B1          |           |              |      |              | ~     |
|        | А           | В        | С                | D           | Е             | F                 |      | A             |        | В                  | С                |       | D         | E               | F               | G         | Н            | I    | J            |       |
| 1      | ngresos     | 300.30   | €                |             |               |                   | 1    | Ingreso       | os     | 600.60 \$          | E                |       |           |                 |                 |           |              |      |              |       |
| 2 (    | Gastos      | 200.20   | €                |             |               |                   | 2    | Gastos        |        | 350.80 €           | E                |       |           |                 |                 |           |              |      |              |       |
| 3 F    | Resultado   | 100.10   | €                |             |               |                   | 3    | Resulta       | ado    | 249.80 €           | E                |       |           |                 |                 |           |              |      |              |       |
| 4      |             |          |                  |             |               |                   | 4    |               |        |                    |                  |       |           |                 |                 |           |              |      |              |       |
| 5      |             |          |                  |             |               |                   | 5    |               |        |                    |                  |       |           |                 |                 |           |              |      |              |       |
|        |             |          |                  |             |               |                   |      |               |        |                    |                  |       |           |                 |                 |           |              |      |              |       |
| 4      | Þ           | enero    | febrero <b>m</b> | arzo resum  | en_trimestral | (+) :             |      | <             |        | enero fe           | brero            | marzo | resum     | en_trimestral   | +               |           |              |      |              |       |



- Excel permite crear fórmulas que operan con datos almacenados en más de un libro.
- **Ejemplo**: El grupo G1 tiene dos empresas A y B. Cada una entrega un libro a G1 para consolidar.

# Fórmulas con datos en más de un libro

x≣

| x                | 5-          | ¢                  |           | A.xlsx - Excel   | XII .     | 5-        | ⊘            | B.xlsx    | - Excel   | ?         | <b></b>  |       | ×        |
|------------------|-------------|--------------------|-----------|------------------|-----------|-----------|--------------|-----------|-----------|-----------|----------|-------|----------|
| ARC              | HIVO INICI  | INSE DISE FÓR      | DAT       | REVIS VIST C     | ARCHIV    | D INIC I  | INSE DISE FÓ | DAT REVI  | VIST DES  | ACR PO TE | A        |       | F        |
| A                | 1 ~         | : 🗙 🗸              | <i>fx</i> |                  | A4        | Ŧ         | : 🗙          | ✓ fx      |           |           |          |       | ¥        |
|                  | А           | В                  | С         | D                |           | А         | В            | С         | D         | Е         | F        |       |          |
| 1                | Ingresos    | 2,000.10€          |           |                  | 1 Ing     | resos     | 3,000.30€    |           |           |           |          |       |          |
| 2                | Gastos      | 1,000.10€          |           |                  | 2 Gas     | tos       | 2,000.20€    |           |           |           |          |       |          |
| 3                | Resultado   | 1,000.00€          |           |                  | 3 Res     | ultado    | 1,000.10€    |           |           |           |          |       |          |
| 4                |             |                    |           |                  | 4         |           |              |           |           |           |          |       |          |
| 5                |             |                    |           |                  | 5         |           |              |           |           |           |          |       |          |
| 6                |             |                    |           |                  | 6<br>7    |           |              |           |           |           |          |       | Ŧ        |
|                  | <           | A (+)              |           |                  |           | F         | B (+)        |           | :         | 4         |          | Þ     |          |
| LIST             | ro 🔚        |                    |           |                  | listo     | <b>a</b>  |              | E         |           | +         | +        | 100 % |          |
| x                | 🗄 🔊 -       | ⊘                  |           |                  |           | G1.xlsx - | Excel        |           |           | ?         | <u> </u> |       | ×        |
| ARC              | HIVO INICIO | INSERTAR DISEÑ     | O DE PÁ   | FÓRMULAS DA      | TOS R     | EVISAR V  | ISTA DESARRO | LLA ACROB | AT POWERP | IVOT TEAM |          |       |          |
|                  |             |                    | 0         |                  |           |           |              |           |           |           |          |       | _        |
| B1               | Ψ           |                    | Jx -      | =A.xlsx!\$B\$1+E | 3.xlsx!\$ | B\$1      |              |           |           |           |          |       | <b>Y</b> |
|                  | А           | В                  | С         | D                | E         |           | F            | G         | н         | Ι         | J        |       |          |
| 1                | Ingresos    | 5,000.40€          |           |                  |           |           |              |           |           |           |          |       |          |
|                  | Castas      | 3.000.30€          |           |                  |           |           |              |           |           |           |          |       |          |
| 2                | Gastos      | -,                 |           |                  |           |           |              |           |           |           |          | 1     |          |
| 2                | Resultado   | 2,000.10€          |           |                  |           |           |              |           |           |           |          |       |          |
| 2<br>3<br>4      | Resultado   | 2,000.10€          |           |                  |           |           |              |           |           |           |          |       |          |
| 2<br>3<br>4<br>5 | Resultado   | 2,000.10€          |           |                  |           |           |              |           |           |           |          |       | •        |
| 2<br>3<br>4<br>5 | Resultado   | 2,000.10 €<br>G1 + |           |                  |           |           |              |           |           |           |          |       | ¥        |



- Una fórmula puede hacer referencia a otra siempre que la segunda fórmula no haga referencia a la primera fórmula.
- Si las fórmulas se referencian entre ellas se tiene una referencia circular. En ese caso la evaluación de las fórmulas requiere el valor de la otra. Por ello se debe evitar las referencias circulares.
- Excel detecta las referencias circulares con el mensaje e indicación en la hoja.





- Excel presenta el valor de una celda según el formato asignado.
- El formato no afecta al contenido de la celda, sólo a su presentación.
- Si se cambia el formato de la celda, el mismo valor puede significar cosas diferentes.
- También se puede cambiar la apariencia de una celda: tipo de fuente, tamaño, alineación, color, etc.
- Ventana Formato de celdas: Inicio  $\rightarrow$  Celdas  $\rightarrow$  Formato  $\rightarrow$  Formato de celdas  $\,$ ó Celda  $\rightarrow$  Botón derecho



## Formato de celdas<sub>2</sub>

| Calibri - 11                                                                                                                                                                  | • A A                                  | = = **            |                     | General              | -              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|---------------------|----------------------|----------------|
| N K <u>s</u> -                                                                                                                                                                | <u>~</u> - <u>A</u> -                  | ≡≡≡€              |                     | <b>≅</b> - % ∞       | ←0 00<br>00 →0 |
| Fuente                                                                                                                                                                        | 5                                      | Alineación        | Fa                  | Número               | Gi             |
| Formato de celdas                                                                                                                                                             |                                        |                   |                     | 9                    | x              |
| Número Alineación<br>Categoría:<br>General<br>Número<br>Moneda<br>Contabilidad<br>Fecha<br>Hora<br>Porcentaje<br>Fracción<br>Científica<br>Texto<br>Especial<br>Personalizada | Fuente Bo<br>Muestra<br>Las celdas cor | rde Relleno Prote | ger<br>nen un forma | to específico de núr | nero.          |
|                                                                                                                                                                               |                                        |                   | C                   | Aceptar Ca           | ncelar         |



- Formato de números.
  - General: El contenido se presenta como se ha introducido.
  - Número: Adecuado para representar números. Se especifica el número de decimales, separador de miles y números negativos
  - Moneda: Se usa para cantidades monetarias. Se especifica el número de decimales, la moneda y formato de negativos.
  - **Contabilidad**: Igual que el formato moneda, la diferencia es que alinea los números por la coma decimal y el símbolo de moneda.



 Ejemplo: Introducir en la celda A2 el valor 12345,6789 y en las celdas D2:D5 las fórmulas adecuadas para que tengan igual valor que la celda A2. Asignar a cada celda del rango D2:D5 el formato que se indica.

|   | Α          | В | С            | D           |  |
|---|------------|---|--------------|-------------|--|
| 1 | DATO       |   | FORMATO C    | ELDA        |  |
| 2 | 12345.6789 |   | General      | 12345.6789  |  |
| 3 |            |   | Número       | 12,345.68   |  |
| 4 |            |   | Moneda       | 12,345.68€  |  |
| 5 |            |   | Contabilidad | 12,345.68 € |  |
| 6 |            |   |              |             |  |



## Formato de celdas<sub>5</sub>

- Fecha-Hora
  - Fecha: número (parte decimal cero) que indica los días transcurridos desde el 1/01/1900 hasta la fecha indicada.
  - Hora: fracción decimal (parte entera cero) que tiene como unidad el día (1 equivale a 24 horas).



 Ejemplo: Introduce los datos de tu nacimiento (fecha, hora y fecha-hora) en las celdas B8:B10. Las celdas C8:C10 tienen el mismo valor pero con formato número (3 decimales y separador de miles).

| C  | } •          | $\times \checkmark f_x$ | =B8        |
|----|--------------|-------------------------|------------|
|    | А            | В                       | С          |
| 1  | DATOS DE N   | ACIMIENTO               |            |
| 2  | Fecha        | 15-feb-80               |            |
| 3  | Hora         | 08:30:00                |            |
| 4  | Fecha y Hora | 15-2-80 8:30 AM         |            |
| 5  |              |                         |            |
| 6  |              |                         |            |
| 7  | DATOS DE NA  | CIMIENTO                |            |
| 8  | Fecha        | 20-feb1947              | 17,218.000 |
| 9  | Hora         | 8:30:00                 | 0.354      |
| 10 | Fecha y hora | 20-2-47 8:30 AM         | 17,218.354 |
| 11 |              |                         |            |



- Otros Formatos:
  - Porcentaje: Multiplica el valor de la celda por 100 y añade el símbolo porcentual (%).
  - Fracción: Muestra los números en forma de fracción.
  - Científica: Parte entera y decimal seguido de la letra E y de un entero que indica el exponente de 10.
  - Texto: Se presenta tal como se introduce el texto.
  - Especial: Se usa para números que representan determinados datos (código postal y teléfono).
  - Personalizada: Se escribe el formato que se ajusta a nuestra necesidades adaptando los códigos predefinidos. Códigos #, 0, ?



## Formato de celdas<sup>8</sup>

| C2 | 2                 | $\times \checkmark f_x$ | =B2         |              |        |         |         |         |       |       |
|----|-------------------|-------------------------|-------------|--------------|--------|---------|---------|---------|-------|-------|
|    | А                 | В                       | С           | D            | Е      | F       | G       | Н       | Ι     | J     |
| 1  | Form. Porcentaje  |                         |             |              |        |         |         |         |       |       |
| 2  | Entrar 16%        | 16%                     | 16.0%       |              |        |         |         |         |       |       |
| 3  | Entrar 0.16       | 0.16                    | 16.0%       |              |        |         |         |         |       |       |
| 4  |                   |                         |             |              |        |         |         |         |       |       |
| 5  | Form. Fracción    |                         |             |              |        |         |         |         |       |       |
| 6  |                   | Hasta                   | Hasta       | Hasta        | Como   | Como    | Como    | Como    |       |       |
| 7  | DATOS             | un dígito               | dos dígitos | tres dígitos | medios | cuartos | octavos | décimas |       |       |
| 8  | 0.25              | 1/4                     | 1/4         | 1/4          | 1/2    | 1/4     | 2/8     | 3/10    |       |       |
| 9  | 1.25              | 1 1/4                   | 1 1/4       | 1 1/4        | 1 1/2  | 1 1/4   | 1 2/8   | 1 3/10  |       |       |
| 10 | 7.25              | 7 1/4                   | 7 1/4       | 7 1/4        | 7 1/2  | 7 1/4   | 7 2/8   | 7 3/10  |       |       |
| 11 | 0.123             | 1/8                     | 8/65        | 23/187       | 0      | 0       | 1/8     | 1/10    |       |       |
| 12 | 1.234             | 1 1/4                   | 1 11/47     | 1 117/500    | 1      | 1 1/4   | 1 2/8   | 1 2/10  |       |       |
| 13 | 23.456            | 23 1/2                  | 23 31/68    | 23 57/125    | 23 1/2 | 23 2/4  | 23 4/8  | 23 5/10 |       |       |
| 14 |                   |                         |             |              |        |         |         |         |       |       |
| 15 | Form. Científico  |                         |             |              |        |         |         |         |       |       |
| 16 |                   |                         |             |              |        |         |         |         |       |       |
| 17 | DATOS             | Científico 4d           |             |              |        |         |         |         |       |       |
| 18 | 0.000123          | 1.2300E-04              |             |              |        |         |         |         |       |       |
| 19 | 0.123             | 1.2300E-01              |             |              |        |         |         |         |       |       |
| 20 | 1.234             | 1.2340E+00              |             |              |        |         |         |         |       |       |
| 21 | 23.4567           | 2.3457E+01              |             |              |        |         |         |         |       |       |
| 22 | 3456.789          | 3.4568E+03              |             |              |        |         |         |         |       |       |
| 23 |                   |                         |             |              |        |         |         |         |       |       |
| 24 | Form. Personaliza | ado                     |             |              |        |         |         |         |       |       |
| 25 | DATO              | 13.42                   |             |              |        |         |         |         |       |       |
| 26 | CÓDIGO            | #.#                     | #.##        | #.###        | 0.0    | 0.00    | 0.000   | ?.?     | ?.??  | ?.??? |
| 27 | PRESENTACIÓN      | 13.4                    | 13.42       | 13.42        | 13.4   | 13.42   | 13.420  | 13.4    | 13.42 | 13.42 |
| 28 |                   |                         |             |              |        |         |         |         |       |       |
| 29 | DATO              | 0.27                    |             |              |        |         |         |         |       |       |
| 30 | CÓDIGO            | #.#                     | #.##        | #.###        | 0.0    | 0.00    | 0.000   | ?.?     | ?.??  | ?.??? |
| 31 | PRESENTACIÓN      | .3                      | .27         | .27          | 0.3    | 0.27    | 13.420  | 13.4    | 13.42 | 13.42 |
| 32 |                   |                         |             |              |        |         |         |         |       |       |



- Otras opciones:
  - Alineación: permite modificar y establecer la Alineación del texto, Orientación, Control del texto y Dirección del texto.
  - Fuente: permite modificar la Fuente (tipo de letra), Estilo, Tamaño, Subrayado, Color y Efectos.
  - Bordes: permite aplicar distintos tipos de bordes a una celda.
  - Relleno: permite dar a las celdas distintos tipos de sombreado (color del fondo) y de trama.
  - Proteger: permite bloquear y ocultar celdas. Para que que este tipo de formato tenga efecto es necesario activar la opción Revisar → Proteger hoja (asignar contraseña).



- Copiar formato, permite copiar el formato de una celda a otras celdas. Se usa el botón < que está en Inicio.</li>
- Formato condicional, permite modificar el formato de la celda dependiendo de su valor.
- Dar formato como tabla, asigna un formato prediseñado que puede aplicarse rápidamente a un rango de celdas.
- Para ajustar el ancho de una columna (fila):
  - Método 1: colocar el cursor en el extremo derecho del encabezado de la columna (fila). El puntero cambia a una cruz. Después con el ratón se arrastra.
  - Método 2: usar comando Formato→Columna/Ancho.



- Muchas operaciones se realizan sobre un rango o conjunto de celdas.
- Selección de un bloque de celdas:
  - Ratón: clic sobre una celda esquina del bloque y arrastrar o mantener pulsada la tecla Shift hasta la esquina opuesta.
  - Si el bloque no es contiguo pulsar la tecla Ctrl.
  - Toda la hoja: Pulsar en el botón de la esquina superior izquierda.
- **Borrar** el contenido de un bloque de celdas:
  - Primero se selecciona el bloque de celdas y luego se pulsa la tecla Supr.

- Selección de filas (columnas) enteras:
  - Hacer clic sobre el número (letra) que identifica la fila (columna).
  - Para seleccionar filas (columnas) contiguas se selecciona la primera y se arrastra el ratón sobre los identificadores de fila (columna).
  - También se hace clic sobre el primer identificador y manteneniendo pulsada la tecla Shift se hace clic sobre el último identificador.
  - Si los bloques no son contiguos mantener pulsada la tecla Ctrl.



- Excel permite asignar nombres (propios) a celdas o bloques de celdas, así como constantes y fórmulas.
- Los nombres se pueden pueden usar en fórmulas.
- El nombre es válido en *todo* el libro, por tanto no se puede dar el mismo nombre a dos celdas, rangos, constantes o fómulas diferentes.
- La sintaxis de los nombres es similar a las variables de un lenguaje de programación (p.e. Fortran)



- Para asignar un nombre a una celda o bloque:
  - Seleccionar la celda o rango.
  - Clic en el interior del Cuadro de nombres.
  - Tecleamos el nombre.
  - Pulsamos la tecla Entrar (Intro). ← No olvidar!

| lla | ves | -  | $\times$ | $\checkmark$ | fx.    | 525 |   |
|-----|-----|----|----------|--------------|--------|-----|---|
|     | А   |    | В        |              | С      |     | D |
| 1   |     |    |          |              |        |     |   |
| 2   |     | Α  | RTICULO  | CA           | NTIDAD | )   |   |
| 3   |     | L  | aves     |              | 5      | 25  |   |
| 4   |     | Тс | ornillos |              | 2      | 10  |   |
| 5   |     | Т  | uercas   |              | 3      | 20  |   |
| 6   |     |    |          |              |        |     |   |
| 7   |     | T  | OTAL     |              | 10     | 55  |   |
| 2   |     |    |          |              |        |     |   |



## Nombres de constantes o fórmulas

• Para gestionar nombres en un libro:



# Copiar y pegar celdas

- Método I Copiar y Pegar
  - Seleccionar el bloque de celdas.
  - Seleccionar Copiar en el menú Portapapeles de Inicio.
  - Mover el puntero a la esquina superior izquierda de la nueva ubicación.
  - Pulsar Enter o seleccionar Pegar en el menú Portapapeles.
- Método II con el ratón
  - Seleccionar el bloque de celdas.
  - Mover el puntero a cualquier borde de las celdas seleccionadas.
  - Pulsar la tecla Ctrl y el botón izquierdo del ratón y arrastrar el bloque a la nueva ubicación.
  - Soltar el botón del ratón.





## Mover celdas

- Método I Copiar y Pegar
  - Seleccionar el bloque de celdas.
  - Seleccionar Cortar en el menú Portapapeles de Inicio.
  - Mover el puntero a la esquina superior izquierda de la nueva ubicación.
- ARCHIVO INICIO INSE
  - Pulsar Enter o seleccionar Pegar en el menú Portapapeles.
- Método II con el ratón
  - Seleccionar el bloque de celdas.
  - Mover el puntero a cualquier borde de las celdas seleccionadas.
  - Pulsar el botón izquierdo del ratón y arrastrar el bloque a la nueva ubicación.
  - Soltar el botón del ratón.



## Insertar celdas

- Celdas
  - Seleccionar la celda o bloque de celdas donde se desea insertar.
  - *Ejecutar* Inicio  $\rightarrow$  Celdas  $\rightarrow$  Insertar. Se abre la ventana Insertar celdas.
  - Seleccionar la opción que interesa. Pulsar Aceptar.
- Filas (columnas)
  - Seleccionar la fila(s) (columna(s)) donde se desea insertar.
  - *Ejecutar* Insertar  $\rightarrow$  Filas (Columnas).



| 1 | Insertar ? X                                                                                |
|---|---------------------------------------------------------------------------------------------|
|   | Insertar<br>© Desplazar las celdas hacia la derecha<br>© Desplazar las celdas hacia abaio   |
|   | <ul> <li>Insertar toda una <u>f</u>ila</li> <li>Insertar toda una <u>c</u>olumna</li> </ul> |
|   | Aceptar Cancelar                                                                            |



- Usar el comando Inicio  $\rightarrow$  Celdas  $\rightarrow$  Eliminar
  - *Seleccionar* la celda o bloque de celdas que se desea eliminar.
  - Ejecutar Edición  $\rightarrow$  Eliminar. Se abre la ventana Eliminar celdas.
  - Seleccionar la opción que interesa. Pulsar Aceptar.
  - En el caso de seleccionar filas (columnas) se elimina directamente la selección.
- Para deshacer los cambios
  - Seleccionar Deshacer en el menú Edición.
  - O el icono **Deshacer** en la barra estándar. 🥌 -



| Eliminar                                  | ? ×                     |  |  |
|-------------------------------------------|-------------------------|--|--|
| Eliminar                                  |                         |  |  |
| Desplazar las celdas hacia                | a la i <u>z</u> quierda |  |  |
| Desplazar las celdas hacia <u>a</u> rriba |                         |  |  |
| 🔘 Toda la <u>f</u> ila                    |                         |  |  |
| Toda la <u>c</u> olumna                   |                         |  |  |
| Aceptar                                   | Cancelar                |  |  |



- Escribir el mismo dato en varias celdas de una hoja:
  - Seleccionar las celdas.
  - Introducir el dato.
  - *Pulsar* simultáneamente las teclas Ctrl Entrar.
- Escribir el mismo dato en varias hojas de un libro:
  - Seleccionar las hojas del libro (clic sobre su etiqueta y mantener pulsada la tecla Ctrl sobre el resto de etiquetas).
  - Teclear los datos sobre una de ellas.



- Series de datos consecutivos mediante el controlador de relleno
  - Introducir el primer dato de la serie en una celda y situar el cursor sobre el controlador de relleno de la celda. Cuando adopte la forma + hacer clic con el botón izquierdo del ratón y arrastrar en la dirección vertical u horizontal que interesa.
  - Situar el puntero sobre el cuadro y hacer clic para desplegar el cuadro de opciones.
  - Hacer clic sobre la opción que interesa.

Copiar celdas

Serie de relleno

Relleno rápido

Rellenar formatos solo

Rellenar sin formato

 $\bigcirc$ 

0

0



- Con el controlador de relleno
  - *Introducir* los dos primeros datos de la serie en dos celdas contiguas de una fila (o columna).
  - Seleccionar dichas celdas.
  - Arrastrar el controlador de relleno horizontalmete (o verticalmente).



- Series de datos consecutivos mediante el controlador de relleno
  - Desde Inicio Modificar Rellenar Series



| Series             |                        | ? ×              |
|--------------------|------------------------|------------------|
| Series en          | Tipo                   | Unidad de tiempo |
| <u>F</u> ilas      | Lineal                 | Fecha            |
| © <u>C</u> olumnas | Geométrica             | 🔘 Día laborable  |
|                    | Cronológica            | Mes              |
|                    | Auto <u>r</u> rellenar | 🔘 Año            |
| Tendencia          |                        |                  |
| Incremento: 1      | Lími                   | t <u>e</u> :     |
|                    | Ace                    | ptar Cancelar    |



Listas personalizadas<sub>1</sub>

 Se puede configurar desde Inicio → Opciones → Avanzadas → General → Modificar listas personalizadas

| Opciones de Excel                      | 2 ×                                                                                                                                                   |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                                                                                                                                                       |
| General                                | Actualizar vínculos a otros documentos                                                                                                                |
| Fórmulas                               | Establecer Precisión de pantalla                                                                                                                      |
| Revisión                               | Usar sistema de fechas 1 <u>9</u> 04                                                                                                                  |
| Guardar                                | Guardar valores de vínculos externos                                                                                                                  |
| Idioma                                 | General                                                                                                                                               |
| Avanzadas                              | Informar mediante sonidos                                                                                                                             |
| Personalizar cinta de opciones         | Omitir <u>o</u> tras aplicaciones que usen Intercambio dinámico de datos (DDE)                                                                        |
| Barra de herramientas de acceso rápido | Consultar al actualizar vínculos automáticos                                                                                                          |
| Complementer                           | Mostrar errores de interfaz de usuario en el complemento                                                                                              |
| complementos                           | 📝 Ajustar el contenido al tama <u>ñ</u> o de papel A4 o 8,5 x 11 pda                                                                                  |
| Centro de confianza                    | Al inicio, abrir todos los ar <u>c</u> hivos en:                                                                                                      |
|                                        | Opciones web                                                                                                                                          |
|                                        | Habilitar el procesamiento multiproceso                                                                                                               |
|                                        | Cree listas para utilizar con criterios de ordenación y secuencias de relleno: Modificar listas personalizadas                                        |
|                                        | Datos                                                                                                                                                 |
|                                        | Z Deshabilitar la opción deshacer para las operaciones de actualización de tablas dinámicas de gran tamaño para<br>reducir el tiempo de actualización |
|                                        | Deshabilitar la opción deshacer para tablas dinámicas con al menos esta cantidad de filas de origen al 300 👘                                          |
|                                        | Preferencia por los datos de Excel y el modelo a la hora de crear tablas dinámicas, tablas de consulta y<br>conexiones de datos                       |
|                                        | Deshabilitar la opción deshacer para operaciones de modelo de datos de gran tamaño                                                                    |
|                                        | Deshabilitar la opción deshacer para operaciones de modelo de datos con este <u>t</u> amaño mínimo (en 8 👘 🗌                                          |
|                                        | Compatibilidad con Lotus                                                                                                                              |
| L L                                    | Aceptar                                                                                                                                               |
|                                        |                                                                                                                                                       |



Listas personalizadas<sub>2</sub>

 Se puede configurar desde Inicio → Opciones → Avanzadas → General → Modificar listas personalizadas

| Listas personalizadas                                                                                                                                                                                                                                                                                                                                       | 8 ×                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Listas personalizadas                                                                                                                                                                                                                                                                                                                                       |                             |
| Listas personalizadas:                                                                                                                                                                                                                                                                                                                                      | E <u>n</u> tradas de lista: |
| NUEVA LISTA<br>Mon, Tue, Wed, Thu, Fri, Sat, Sun                                                                                                                                                                                                                                                                                                            | ▲ <u>Agregar</u>            |
| Monday, Tuesday, Wednesday, Thursday, Friday<br>Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,<br>January, February, March, April, May, June, July,<br>Lun, Mar, Mié, Jue, Vie, Sáb, Dom<br>Lunes, Martes, Miércoles, Jueves, Viernes, Sábay<br>ene, feb, mar, abr, may, jun, jul, ago, sep, oct, n<br>enero, febrero, marzo, abril, mayo, junio, julio, | Eliminar                    |
| <b>T</b>                                                                                                                                                                                                                                                                                                                                                    | Ŧ                           |
| Presione Entrar para separar las entradas de lista.                                                                                                                                                                                                                                                                                                         |                             |
| Importar lista desde las celdas:                                                                                                                                                                                                                                                                                                                            | I <u>m</u> portar           |
|                                                                                                                                                                                                                                                                                                                                                             | Aceptar Cancelar            |



- Cuando se crea una fórmula se puede utilizar tres tipos de referencia a celdas y a rangos de celdas:
  - Referencias relativas, cuando al copiar la fórmula cambia la fila y la columna.
  - Referencias absolutas, cuando al copiar la fórmula no cambia la fila ni la columna.
  - Referencias mixtas, cuando al copiar la fórmula cambia la fila (columna) y permanece fija la columna (fila).



- Son las más frecuentes y son las que se usa por defecto.
- Cuando se copia una fórmula, Excel actualiza automáticamente la fila y la columna ajustándolas a las de la celda en la que se ha hecho la copia.
- Si en C1 hay una fórmula = A1+B1 y se copia en la celda C2, en la celda C2 la formula cambia automáticamente a: = A2+B2.



- Se requieren cuando se necesita que una referencia a celda o rango no cambie al copiar la fórmula.
- Para indicar referencia absoluta se antepone un signo dólar (\$) a la letra que indica la columna y otro signo dólar (\$) al número que indica la fila.
- Ejemplo: Si en C1 hay una fórmula = \$A\$1+\$B\$1 y se copia en la celda C2, en la celda C2 la fórmula no cambia.



- Se requieren cuando al copiar la fórmula no cambie la fila o columna.
- Tienen una parte de referencia absoluta, que no cambia al copiar, y otra parte de la referencia relativa, que sí cambia al copiar.
- Se antepone el signo dólar (\$) a la parte absoluta (fija).
- Se puede usar la tecla F4 para introducir las referencias absolutas.



- La protección de celdas es útil para impedir que el usuario modifique fórmulas, rótulos, etc.
- Para controlar la entrada de datos es útil la validación de datos. Así se restringe el tipo de datos, fija límites, establece valores de una lista, utiliza una fórmula, visualiza un mensaje al seleccionar una celda y un mensaje de error al introducir un dato erróneo.
- Para establecer un criterio de validación de datos:
  - Seleccionar una celda o rango.
  - Ejecutar comando Datos→Validación de datos



## Validación de datos<sub>2</sub>

| Configuración     | Mensaje de entrada | Mensaje de error |  |
|-------------------|--------------------|------------------|--|
| Criterio de valid | ación              |                  |  |
| <u>P</u> ermitir: |                    |                  |  |
| Cualquier val     | or 🚽 🗸 Omitir k    | plancos          |  |
| Datos:            |                    |                  |  |
| entre             | -                  |                  |  |
|                   |                    |                  |  |
|                   |                    |                  |  |
|                   |                    |                  |  |
|                   |                    |                  |  |
|                   |                    |                  |  |

• Ejemplo: Operadores\_formatos\_graficos\_etc.xlsx

- Guardar la hoja de cálculo
  - Hay varias formas. La más común es pulsar el icono Guardar en la barra de herramientas estándar.
  - El format (extension) por defecto es .xlsx. Otro formato es .xlsm para macros.
- Recuperar la hoja de cálculo
  - Seleccionar Abrir en el menú Abrir.
- Impresión de la hoja de cálculo
  - Para imprimir toda la hoja seleccionar Imprimir en el menú Abrir. Luego seleccionar la opción Hojas activas.
  - Para imprimir una parte se debe seleccionar el bloque de celdas previamente y escoger Imprimir selección.


- Mostrar fórmulas de las celdas
  - Seleccionar Archivo → Opciones → Avanzadas → Mostrar opciones para esta hoja (seleccionar hoja o libro) → Mostrar fórmulas en celdas en lugar de los resultados calculados.
- Creación y ejecución de Macros
  - Una macro es una serie de acciones consecutivas de teclas y/o ratón que se guarda con un nombre para una ejecución posterior de forma directa o mediante una combinación de teclas. Las macros se guardan en programas VBA.
  - Primero hay que habilitar la pestaña Desarrollador: Archivo → Opciones → Personalizar cinta de opciones → Desarrollador (seleccionar).
  - Para grabar una macro seleccionar Desarrollador→ Grabar macro (código) →Grabar nueva macro. Después Detener grabación.



# **Funciones**



- Las funciones son fórmulas predefinidas que ejecutan cálculos utilizando valores específicos (argumentos).
- Características de las funciones:
  - Estructura: Una función comienza por el nombre de la función, seguido de un paréntesis de apertura, los argumentos de la función separados por comas y un paréntesis de cierre. Ejm: SUMA(C1,C2,C3)
  - Argumentos: Los argumentos pueden ser obligatorios u opcionales. Pueden ser constantes, fórmulas u otras funciones Los tipos de dato pueden ser números, texto, valores lógicos, valores de error (p.e. #N/A), fechas o referencias de celda.



- *Directamente*, cuando se conoce la sintaxis de la función.
- Asistente para funciones, seleccionar Fórmulas → Insertar función (Biblioteca de funciones) en la cinta de opciones o en la barra de fórmulas.





### Funciones<sub>2</sub>

La opción Ayuda sobre esta función ofrece una • explicación, sintaxis, observaciones y ejemplos de cada función. ② Ayuda de Microsoft Excel ന് പെ മം

| Insertar función                                                                                                               | ▼ Mostrar tod                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buscar una función:                                                                                                            | Vea también                                                                                                                                                                                                                                                                                    |
|                                                                                                                                | Suma todos los números de un rango.                                                                                                                                                                                                                                                            |
| Escriba una breve descripcion de lo que desea hacer y, a                                                                       | Sintaxis                                                                                                                                                                                                                                                                                       |
|                                                                                                                                | SUMA(número1;número2;)                                                                                                                                                                                                                                                                         |
| O seleccionar una <u>c</u> ategoría: Usadas recientemente                                                                      | Número 1;número 2; son de 1 a 30 argumentos cuyo valor total o suma desea<br>obtener.                                                                                                                                                                                                          |
| Seleccionar una <u>f</u> unción:                                                                                               | Observaciones                                                                                                                                                                                                                                                                                  |
| SI<br>SUMA                                                                                                                     | <ul> <li>Se toman en cuenta números, valores lógicos y representaciones de números<br/>que escriba directamente en la lista de argumentos. Consulte los dos primeros<br/>ejemplos.</li> </ul>                                                                                                  |
| PROMEDIO<br>HIPERVINCULO<br>CONTAR                                                                                             | <ul> <li>Si un argumento es una matriz o referencia, sólo se considerarán los números<br/>en esa matriz o referencia. Se pasan por alto las celdas vacías, valores<br/>lógicos, texto o valores de error en la matriz o en la referencia. Vea el tercer<br/>ejemplo a continuación.</li> </ul> |
| SENO T                                                                                                                         | <ul> <li>Los argumentos que sean valores de error o texto que no se pueda traducir a<br/>números causarán errores.</li> </ul>                                                                                                                                                                  |
| SI(prueba_lógica,valor_si_verdadero,valor_si_falso)                                                                            | Ejemplo                                                                                                                                                                                                                                                                                        |
| Comprueba si se cumple una condición y devuelve una valor si se evalúa como<br>VERDADERO y otro valor si se evalúa como FALSO. | El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo<br>en blanco.                                                                                                                                                                                               |
| -                                                                                                                              | ▶ ¿Cómo?                                                                                                                                                                                                                                                                                       |
|                                                                                                                                | A                                                                                                                                                                                                                                                                                              |
|                                                                                                                                | 1 Datos                                                                                                                                                                                                                                                                                        |
| Ayuda sobre esta función: Aceptar Cancelar                                                                                     | 2 <u>-5</u><br>3 15                                                                                                                                                                                                                                                                            |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                |

▼ Mostrar todo



- Se puede introducir funciones anidadas con el asistente para funciones.
- Las funciones Suma, Promedio, Cuenta, Máx y Mín se usan con mucha frecuencia y por ello están disponibles en el botón Autosuma de la pestaña Fórmulas.





### Categorías de Funciones

- Funciones matemáticas y trigonométricas
- Funciones lógicas
- Funciones estadísticas
- Funciones financieras
- Funciones de búsqueda y referencia
- Funciones de información
- Funciones de texto
- Funciones de ingeniería
- Funciones de fecha y hora
- Funciones de base de datos
- Funciones de compatibilidad
- Funciones de cubo
- Funciones web
- Funciones definidas por el usuario instaladas con complementos



• SI comprueba si se cumple una condición y devuelve un valor si se evalúa como VERDADERO y otro valor si se evalúa como FALSO.

Permiten crear funciones lógicas tales como:

- Y
- 0
- NO
- XO



- Excel representa los días mediante números enteros secuenciales llamados números de serie de fecha.
- Para representar la hora usa la parte decimal del número de serie. Excel usa las fechas como números en fórmulas y funciones.
- HOY, AHORA
- DIA, MES, AÑO
- DIASEM, FECHA, DIAS360
- HORA, MINUTO, SEGUNDO
- NSHORA, FECHA.MES



- Las funciones de búsqueda permiten localizar un valor en una lista y extraer información de una tabla o matriz de datos.
- BUSCARV, BUSCARH, BUSCAR
- COINCIDIR, INDICE
- **TRANSPONER** (operación matricial)



- Excel incorpora funciones que permiten resolver la mayoría de problemas financieros de las empresas y de evaluación de proyectos.
- PAGO, PAGOINT, PAGOPRIN
- VA, VF, NPER, TASA
- VNA, TIR



- Excel ofrece un repertorio de funciones matemáticas y trigonométricas amplio.
- PI, SUMA, PRODUCTO, POTENCIA, RESIDUO, ABS, SIGNO, RAIZ, NUMERO.ROMANO, SUMAR.SI, SUMAPRODUCTO, REDONDEAR, TRUNCAR, ENTERO, COMBINAT, M.C.D., M.C.M.
- EXP, LN, LOG, LOG10, ALEATORIO
- ACOS, ASENO, ACOSH, ASENOH, ATAN, ATAN2, ATANH, COS, COSH, GRADOS, RADIANES, SENO, SENOH, TAN, TANH
- MDETERM, MINVERSA, MMULT



- Excel ofrece un repertorio de funciones estadísticas amplio.
- CONTAR, CONTAR.BLANCO, CONTARA, CONTAR.SI, FRECUENCIA, MIN, MAX, MEDIANA, MODA, PROMEDIO.
- PENDIENTE, INTERSECCION.EJE, ESTIMACION.LINEAL, COEF.DE.CORREL
- DESVEST, DISTR.BINOM, DISTR.NORMAL, PRUEBA.F, VAR



- Las funciones de información permiten comprobar el tipo de dato de un valor o de una referencia. Útiles para comprobar el tipo de resultado que se ha obtenido de un cálculo. Normalmente se usan combinadas con la función SI.
- Las funciones de texto permite realizar operaciones sobre el texto.
- ESBLANCO, ESERROR, ESNUMERO, ESTEXTO, TIPO.
- CONCATENAR, DECIMAL, MONEDA, TEXTO, MAYUS, MINUSC, NOMPROPIO, VALOR.



- Las funciones de ingeniería incluyen funciones propias de cálculos de ingeniería.
- BESSELI, BESSELJ, BESSELK, BESSELY
- BIN.A.DEC, BIN.A.HEX, DEC.A.BIN, DEC.A.HEX
- COMPLEJO, IM.ABS, IM.ANGULO, IM.CONJUGADA, IM.DIV, IM.EXP, IM.LN, IM.PRODUCT, IM.POT, IM.RAIZ2, IM.SUM, IM.SUSTR, IMAGINARIO



- Las funciones de bases de datos incluyen funciones para la gestión de datos organizados como base de datos.
- BDMIN, BDMAX, BDPROMEDIO



## Funciones matemáticas



- Problema: Se requiere realizar sumas de grandes cantidades de datos usando para ello las funciones que hacen esas sumas de forma fácil.
- Ejemplo: Funciones\_matematicas.xlsx

| J                 |                                                                                                       |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------|--|--|
| SUMA              | Suma sus argumentos.                                                                                  |  |  |
| SUMAR.SI          | Suma las celdas especificadas que cumplen unos criterios determinados.                                |  |  |
| SUMAR.SI.CONJUNTO | Suma las celdas de un rango que cumplen varios criterios.                                             |  |  |
| SUMAPRODUCTO      | Devuelve la suma de los productos de los correspondientes componentes de matriz.                      |  |  |
| SUMA.CUADRADOS    | Devuelve la suma de los cuadrados de los argumentos.                                                  |  |  |
| SUMAX2MENOSY2     | Devuelve la suma de la diferencia de los cuadrados de los valores correspondientes de dos matrices.   |  |  |
| SUMAX2MASY2       | Devuelve la suma de la suma de los cuadrados de los valores correspondientes de dos matrices.         |  |  |
| SUMAXMENOSY2      | Devuelve la suma de los cuadrados de las diferencias de los valores correspondientes de dos matrices. |  |  |
| SUMA.SERIES       | Devuelve la suma de una serie de potencias en función de la fórmula.                                  |  |  |



- Problema: Se requiere realizar otros tipos de de operaciones relacionadas con la división y multiplicación.
- Ejemplo: Funciones\_matematicas.xlsx

| RESIDUO  | Devuelve el resto de la división.         |
|----------|-------------------------------------------|
| COCIENTE | Devuelve la parte entera de una división. |
| M.C.D    | Devuelve el máximo común divisor.         |

| PRODUCTO     | Multiplica sus argumentos.                                                       |
|--------------|----------------------------------------------------------------------------------|
| M.C.M        | Devuelve el mínimo común múltiplo.                                               |
| SUMAPRODUCTO | Devuelve la suma de los productos de los correspondientes componentes de matriz. |



- Problema: Se requiere realizar otros tipos de de operaciones relacionadas con la división y multiplicación.
- Ejemplo: Funciones\_matematicas.xlsx

| RESIDUO  | Devuelve el resto de la división.         |
|----------|-------------------------------------------|
| COCIENTE | Devuelve la parte entera de una división. |
| M.C.D    | Devuelve el máximo común divisor.         |

| PRODUCTO     | Multiplica sus argumentos.                                                       |
|--------------|----------------------------------------------------------------------------------|
| M.C.M        | Devuelve el mínimo común múltiplo.                                               |
| SUMAPRODUCTO | Devuelve la suma de los productos de los correspondientes componentes de matriz. |



- Problema: Se requiere realizar otros tipos de de operaciones relacionadas con la división y multiplicación.
- Ejemplo: Funciones\_matematicas.xlsx

| RESIDUO  | Devuelve el resto de la división.         |
|----------|-------------------------------------------|
| COCIENTE | Devuelve la parte entera de una división. |
| M.C.D    | Devuelve el máximo común divisor.         |

| PRODUCTO     | Multiplica sus argumentos.                                                       |
|--------------|----------------------------------------------------------------------------------|
| M.C.M        | Devuelve el mínimo común múltiplo.                                               |
| SUMAPRODUCTO | Devuelve la suma de los productos de los correspondientes componentes de matriz. |



- Problema: Se requiere realizar cálculos con logaritmos.
- Ejemplo: Funciones\_matematicas.xlsx

| LN       | Devuelve el logaritmo natural (neperiano) de un número.      |
|----------|--------------------------------------------------------------|
| LOG      | Devuelve el logaritmo de un número en una base especificada. |
| LOG10    | Devuelve el logaritmo en base 10 de un número.               |
| EXP      | Devuelve e elevado a la potencia de un número dado.          |
| POTENCIA | Devuelve el resultado de elevar un número a una potencia.    |
| SINH     | Devuelve el seno hiperbólico de un número.                   |
| COSH     | Devuelve el coseno hiperbólico de un número.                 |
| TANH     | Devuelve la tangente hiperbólica de un número.               |
| ACOSH    | Devuelve el coseno hiperbólico inverso de un número.         |
| ACOTH    | Devuelve la cotangente hiperbólica inversa de un número.     |
| ASINH    | Devuelve el seno hiperbólico inverso de un número.           |
| ATANH    | Devuelve la tangente hiperbólica inversa de un número.       |



- Problema: Se requiere realizar cálculos con funciones trigonométricas en grados y radianes.
- Ejemplo: Funciones\_matematicas.xlsx

| SENO  | Devuelve el seno de un ángulo determinado.      | GRAD   | OS  | Convierte radianes en grados |
|-------|-------------------------------------------------|--------|-----|------------------------------|
| COS   | Devuelve el coseno de un número.                | RADIA  | NES | Convierte grados en radianes |
| TAN   | Devuelve la tangente de un número.              |        |     |                              |
| СОТ   | Devuelve la cotangente de un ángulo.            |        |     |                              |
| CSC   | Devuelve la cosecante de un ángulo.             |        |     |                              |
| SEC   | Devuelve la secante de un ángulo.               |        |     |                              |
| ACOS  | Devuelve el arco coseno de un número.           |        |     |                              |
| ACOT  | Devuelve la arco cotangente de un número.       |        |     |                              |
| ASENO | Devuelve el arcoseno de un número.              |        |     |                              |
| ATAN  | Devuelve la arcotangente de un número.          |        |     |                              |
| ATAN2 | Devuelve la arcotangente de las coordenadas "x" | e "y". |     |                              |

# X Funciones de redondeo y truncamiento

- Problema: Se requiere redondear o truncar los cálculos.
- Ejemplo: Funciones\_matematicas.xlsx

| MULTIPLO.SUPERIOR        | Redondea un número al entero más próximo o al múltiplo significativo más cercano.                       |
|--------------------------|---------------------------------------------------------------------------------------------------------|
| CEILING.MATH             | Redondea un número hacia arriba al entero más próximo o al múltiplo significativo más cercano.          |
|                          | Redondea un número hacia el entero o el múltiplo significativo más próximo. El número se redondea hacia |
| MULTIPLO.SUPERIOR.EAACTO | arriba, independientemente de su signo.                                                                 |
| REDONDEA.PAR             | Redondea un número hasta el entero par más próximo.                                                     |
| MULTIPLO.INFERIOR        | Redondea un número hacia abajo, en dirección hacia cero.                                                |
| MULTIPLO.INFERIOR.MAT    | Redondea un número hacia abajo al entero más próximo o al múltiplo significativo más cercano.           |
|                          | Redondea un número hacia abajo hasta el entero o el múltiplo significativo más cercano. El número se    |
|                          | redondea hacia abajo, independientemente de su signo.                                                   |
| ENTERO.                  | Redondea un número hacia abajo hasta el entero más próximo.                                             |
|                          | Devuelve un número que se redondea hacia arriba al número entero más próximo o al múltiplo              |
|                          | significativo más cercano.                                                                              |
| REDOND.MULT              | Devuelve un número redondeado al múltiplo deseado.                                                      |
| REDONDEA.IMPAR           | Redondea un número hacia arriba hasta el entero impar más próximo.                                      |
| REDOND                   | Redondea un número al número de dígitos especificado.                                                   |
| REDONDEAR.MENOS          | Redondea un número hacia abajo, en dirección hacia cero.                                                |
| REDONDEAR.MAS            | Redondea un número hacia arriba, en dirección contraria a cero.                                         |
| TRUNCAR                  | Trunca un número a un entero.                                                                           |



# Funciones de conversión de sistemas numéricos

- Problema: Se requiere convertir un número de una base a otra.
- Ejemplo: Funciones\_matematicas.xlsx

| DEC.A.BIN | Convierte un número decimal en binario.     |
|-----------|---------------------------------------------|
| DEC.A.HEX | Convierte un número decimal en hexadecimal. |
| DEC.A.OCT | Convierte un número decimal en octal.       |
| HEX.A.BIN | Convierte un número hexadecimal en binario. |
| HEX.A.DEC | Convierte un número hexadecimal en decimal. |
| HEX.A.OCT | Convierte un número hexadecimal en octal.   |



### Funciones de números complejos

- Problema: Se requiere realizar cálculos con números complejos.
- Ejemplo: Funciones\_matematicas.xlsx

| COMPLEJO     | Convierte coeficientes reales e imaginarios en un número complejo. |
|--------------|--------------------------------------------------------------------|
| IM.ABS       | Devuelve el valor absoluto (módulo) de un número complejo.         |
| IMAGINARIO   | Devuelve el coeficiente imaginario de un número complejo.          |
| IM.ANGULO    | Devuelve el argumento theta, un ángulo expresado en radianes.      |
| IM.CONJUGADA | Devuelve la conjugada compleja de un número complejo.              |
| IM.COS       | Devuelve el coseno de un número complejo.                          |
| IM.COSH      | Devuelve el coseno hiperbólico de un número complejo.              |
| ІМСОТ        | Devuelve la cotangente de un número complejo.                      |
| IM.CSC       | Devuelve la cosecante de un número complejo.                       |
| IM.CSCH      | Devuelve la cosecante hiperbólica de un número complejo.           |
| IM.DIV       | Devuelve el cociente de dos números complejos.                     |
| IM.EXP       | Devuelve el valor exponencial de un número complejo.               |
| IM.LN        | Devuelve el logaritmo natural (neperiano) de un número complejo.   |
| IM.LOG10     | Devuelve el logaritmo en base 10 de un número complejo.            |
| IM.LOG2      | Devuelve el logaritmo en base 2 de un número complejo.             |
| IM.POT       | Devuelve un número complejo elevado a una potencia entera.         |
| IM.PRODUCT   | Devuelve el producto de 2 a 255 números complejos.                 |
| IM.REAL      | Devuelve el coeficiente real de un número complejo.                |
| IM.SEC       | Devuelve la secante de un número complejo.                         |
| IM.SECH      | Devuelve la secante hiperbólica de un número complejo.             |
| IM.SENO      | Devuelve el seno de un número complejo.                            |
| IM.SENOH     | Devuelve el seno hiperbólico de un número complejo.                |
| IM.RAIZ2     | Devuelve la raíz cuadrada de un número complejo.                   |
| IM.SUSTR     | Devuelve la diferencia entre dos números complejos.                |
| IM.SUM       | Devuelve la suma de números complejos.                             |
| IM.TAN       | Devuelve la tangente de un número complejo.                        |



- Problema: Se requiere realizar operaciones de tipo matricial.
- Ejemplo: Funciones\_matematicas.xlsx

| MDETERM    | Devuelve el determinante matricial de una matriz. |
|------------|---------------------------------------------------|
| MINVERSA   | Devuelve la matriz inversa de una matriz.         |
| MMULT      | Devuelve el producto de matriz de dos matrices.   |
| M.UNIDAD   | Devuelve la matriz de la unidad o la dimensión    |
|            | especificada.                                     |
| TRANSPONER | Devuelve la transposición de una matriz.          |

 Para introducir estas funciones es necesario teclear simultáneamente las teclas Ctrl – Mayúsculas - Enter



### Gráficos



- La obtención de gráficos de datos es la tarea más común realizada con una hoja de cálculo.
- Excel dispone de un asistente para gráficos para crear con facilidad gráficos que muestran la información de modo claro y atractivo.
- Conceptos para crear gráficos:
  - Cada dato en la hoja se representa en el gráfico mediante un marcador de dato.
  - Cada conjunto de datos constituye una serie de datos.
  - Cada componente de una serie de datos constituye una categoría.



Gráficos de datos<sub>2</sub>

Datos + Selección del gráfico (Insertar → Gráficos)





### Elementos de los gráficos

- 1. El área del gráfico.
- 2. El área de trazado del gráfico.
- 3. Los puntos de datos de la serie de datos que se trazan en el gráfico.
- 4. Los ejes horizontal (categorías) y vertical (valores) en los que se trazan los datos del gráfico.
- 5. La leyenda del gráfico.
- 6. Un título de eje y de gráfico que puede agregar al gráfico.
- 7. Una etiqueta de datos que puede usar para identificar los detalles de un punto de datos de una serie de datos.





- Hoja de gráfico, es una hoja de cálculo que contiene únicamente un gráfico.
- Gráfico incrustado, se considera como un objeto gráfico situado en la hoja.





- Tipos estándar:
  - Columna y Barra, adecuados para comparar categorías.
  - Línea, apropiado para mostrar la tendencia de una serie de valores medidos a intervalos regulares de tiempo.
  - Circular, usados para representar las distintas partes que componen un total.
    - Anillos, equivalente al gráfico circular, pero adaptado para representar varias series de datos.
  - Área, iguales a los de líneas, pero rellenan los espacios comprendidos entre las líneas que representan los valores.
  - XY (dispersión), adecuado para representar pares de valores.
    - **Burbujas**, similar al de dispersión pero con un valor adicional para tamaño del marcador.



- Tipos estándar:
  - Cotizaciones, gráficos específicos para representra cotizaciones de valores bursátiles.
  - Superficie, crea superficies 3D o curvas de nivel en superficies.
  - Radial, radial con marcadores en cada valor de datos.
  - Cuadro combinado, permite combiner dos tipos diferentes de gráficos en uno solo.
- Para cada tipo estándar existen subtipos o variants del mismo.

- Gráficos de varios tipos (Operadores\_formatos\_graficos\_etc.xlsx).
- Gráfico X-Y (Ejemplograf.xlsx)

El voltaje en un condensador varía con el tiempo según la fórmula V= 10  $e^{-0.5t}$ 

donde: V representa el voltaje y

t el tiempo en segundos.

- Mostrar los datos con una precisión de tres decimales.
- Preparar un gráfico para el rango de 0 a 10 segundos.
- Etiquetar el gráfico para que sea legible.



### Ejemplos de gráficos de datos

- Gráfico Semilog X-Y (Ejemplograf.xlsx)
  - Hacer doble click sobre el eje o pulsar botón derecho del ratón y seleccionar Dar formato al eje.
  - En Opciones del eje seleccionar Escala logarítmica.




- Gráfico Log-Log X-Y (Ejemplograf.xlsx)
  - Construir una hoja para calcular el área (A= $4\pi r^2$ ) y volumen de una esfera (V= $4/3 \pi r^3$ ) para r = rango de 0.1-10 en incrementos de 1.
  - Graficar el área y volumen en gráficos tipo X-Y y log-log





- Problema: Graficar varias series de datos con diferentes ordenes de magnitud.
- Ejemplo: Ejes\_multiples.xlsx
- Una opción es usar un eje secundario. Para ello seleccionar la serie y con el botón derecho del ratón seleccionar Formato de serie de datos. En la pestaña Eje seleccionar Eje secundario.
- Otra opción puede ser pasar los datos a escala similar multiplicando (o dividiendo) por un factor de escala (múltiplo de 10).



- Como Excel sólo admite un eje secundario, una opción adicional es crear un eje falso.
- Para crear el eje falso se mantiene una de las coordenadas constante. Es necesario editar manualmente los valores de Y.
- Se puede añadir elementos gráficos (flechas) y texto a partir de la barra de dibujo en el gráfico.

### Gráficos – Ejes múltiples

| Escala Falsa |      |  |  |  |  |  |  |  |
|--------------|------|--|--|--|--|--|--|--|
| Х            | Y    |  |  |  |  |  |  |  |
| -185         | 1000 |  |  |  |  |  |  |  |
| -185         | 1100 |  |  |  |  |  |  |  |
| -185         | 1200 |  |  |  |  |  |  |  |
| -185         | 1300 |  |  |  |  |  |  |  |
| -185         | 1400 |  |  |  |  |  |  |  |
| -185         | 1500 |  |  |  |  |  |  |  |





- Problema: A partir de un gráfico creado cambiarlo sin partir de cero.
- Ejemplo: Ejes\_multiples.xls
- Seleccionar el gráfico con el botón derecho del ratón y cambar el tipo de gráfico a Radial.
- El tipo Radial exige que los datos de X estén espaciados uniformemente. El espacio entre las líneas de división siempre es uniforme y habrá tantos como datos.
- Modificar el Formato de líneas de división para representar adecuadamente los valores.



Gráficos – tipo radial





- Problema: Crear un gráfico de superficie 3D para mostrar los resultados de un estudio de optimización multidimensional o mostrar datos topográficos.
- Ejemplo: Ejercicio\_graficos\_datos y resueltos.xlsx
- Se utilizará el tipo de gráfico Superficie.
- Se requiere que los datos X e Y estén espaciados uniformemente. Se puede agregar una leyenda con un rango de colores apropiado para el usuario.
- Se puede representar el gráfico como malla de alambres o colores. Excel permite cambiar el punto de vista 3D.



Gráficos – Superficies 3D





- Problema: Crear un gráfico tipo contorno (curvas de nivel) para un mapa con la elevación del terreno, un mapa de presiones u otra variable distribuída en una cuadrícula espaciada uniformemente.
- Ejemplo: Ejercicio\_graficos\_datos y resueltos.xlsx
- Se utilizará el tipo de gráfico Superficie, opción Contorno.
- Se recomienda mostrar la leyenda y usar una escala apropiada para mostrar los datos de interés.



Gráficos – Contorno

Contorno con dos escalas







- Problema: Mostrar distintas series de datos en el mismo gráfico con diferentes estilos.
- Ejemplo: Ejercicio\_graficos\_datos y resueltos.xlsx
- Se fija el estilo de gráfico de cada serie por separado.
   Para ello se selecciona la serie con el botón derecho del ratón y se selecciona el tipo de gráfico adecuado.



### Gráficos – Combinar tipos

Resumen Puntajes de 5 años





- Problema: Crear anotaciones y adornos en los gráficos para añadir información.
- Ejemplo: Ejercicio\_graficos\_datos y resueltos.xlsx
- Se utiliza las herramientas de dibujo disponibles en Ver→Barras de Herramientas → Dibujo colocando los elementos gráficos sobre el gráfico y se les da el formato adecuado. También se puede usar sobre la hoja de cálculo.



Gráficos – Anotaciones

Diagrama Par de Carga, Corte y Flexión





- Un minigráfico es un pequeño gráfico en una celda de hoja de cálculo que proporciona una representación visual de los datos.
- Se usan para mostrar las tendencias de una serie de valores o para resaltar los valores máximos y mínimos. Es útil, pero los patrones pueden ser difíciles de encontrar un vistazo.
- Ejemplo: minigraficos.xlsx



### Análisis estadístico de datos



- Excel dispone de un amplio conjunto de funciones estadísticas predeterminadas para ser usadas en las hojas de cálculo.
- El complemento Herramientas para Análisis también cuenta con varias herramientas estadísticas más, que permiten visualizar los datos y hacer que Excel sea adecuado para determinados análisis.
- En la ayuda de Excel hay descripciones y sintaxis para todas las funciones estadísticas.
- Este apartado muestra el uso de Excel para realizar cálculos estadísticos estándar, sin entrar en detalle sobre la teoría del análisis.



- Problema: Calcular un resumen de estadísticas (medidas de tendencia general y dispersión) de una serie de datos.
- Ejemplo: Analisis\_estadistico\_datos.xlsx
- Una opción es usar las funciones estadísticas de Excel, tales como: PROMEDIO, MEDIANA, MODA, MIN, MAX, VAR (Varianza), DESVEST (Desviación estándard)
- Otra opción es usar los complementos de Análisis de datos → Estadística descriptiva



- Ejemplo: Se tiene una serie de datos de muestra de un control de calidad, calcular la Mediana, Promedio, Moda, Mínimo, Máximo, Desviación Estándar y Varianza de la serie.
- Usar funciones estadísticas y la opción de Estadística descriptiva del Análisis de Datos.



### Estadística descriptiva

| 9, | Analisis_estadistico_datos |                                |    |              |             |    |  |  |  |  |
|----|----------------------------|--------------------------------|----|--------------|-------------|----|--|--|--|--|
|    | A                          | В                              | С  | D            | E           |    |  |  |  |  |
| 1  |                            | Datos de cilindros de máquinas |    |              |             |    |  |  |  |  |
| 2  |                            |                                |    |              |             |    |  |  |  |  |
| 3  | Muestra                    | Diámetro                       |    |              |             |    |  |  |  |  |
| 4  | 1                          | 3.502                          | cm |              |             |    |  |  |  |  |
| 5  | 2                          | 3.497                          |    |              |             |    |  |  |  |  |
| 6  | 3                          | 3.495                          |    | Promedio =   | 3.501       | cm |  |  |  |  |
| 7  | 4                          | 3.500                          |    |              |             |    |  |  |  |  |
| 8  | 5                          | 3.496                          |    | Mediana =    | 3.500       | cm |  |  |  |  |
| 9  | 6                          | 3.504                          |    |              |             |    |  |  |  |  |
| 10 | 7                          | 3.509                          |    | Moda =       | 3.497       | cm |  |  |  |  |
| 11 | 8                          | 3.497                          |    |              |             |    |  |  |  |  |
| 12 | 9                          | 3.502                          |    | Mínimo =     | 3.494       | cm |  |  |  |  |
| 13 | 10                         | 3.507                          |    |              |             |    |  |  |  |  |
| 14 | 11                         | 3.497                          |    | Máximo =     | 3.509       | cm |  |  |  |  |
| 15 | 12                         | 3.504                          |    |              |             |    |  |  |  |  |
| 16 | 13                         | 3.498                          |    | ∨arianza =   | 1.82526E-05 |    |  |  |  |  |
| 17 | 14                         | 3.499                          |    |              |             |    |  |  |  |  |
| 18 | 15                         | 3.501                          |    | Desv.Stand = | 0.00427231  | cm |  |  |  |  |
| 19 | 16                         | 3.500                          |    |              |             |    |  |  |  |  |
| 20 | 17                         | 3.503                          |    |              |             |    |  |  |  |  |
| 21 | 18                         | 3.494                          |    |              |             |    |  |  |  |  |
| 22 | 19                         | 3.499                          |    |              |             |    |  |  |  |  |
| 23 | 20                         | 3.508                          |    |              |             |    |  |  |  |  |
| 24 |                            |                                |    |              |             |    |  |  |  |  |



### Estadística descriptiva

| B) / | nalisis estad | istico datos   |                                                                                |                                       |               |                |         |                        |                   |                 |          |          |
|------|---------------|----------------|--------------------------------------------------------------------------------|---------------------------------------|---------------|----------------|---------|------------------------|-------------------|-----------------|----------|----------|
|      | B             | С              | D                                                                              | E                                     | F             | G              | Н       |                        | J                 | K               | L        | M        |
| 1    |               |                |                                                                                |                                       |               |                |         |                        |                   |                 |          |          |
|      | Velocidad     |                |                                                                                |                                       |               |                |         |                        |                   |                 |          |          |
|      | de la luz     |                |                                                                                |                                       |               |                |         |                        |                   |                 |          |          |
|      | (millones of  |                |                                                                                |                                       |               |                |         |                        |                   |                 |          |          |
| 2    | m/s)          | Ref.: http://w | ww.itl.nist.gov/div898/strd/univ                                               | //michelso.htm                        | 1             |                |         |                        |                   |                 |          |          |
| 3    | 299.85        |                | Refer to deter                                                                 |                                       |               |                |         | Estadiation de         |                   |                 |          |          |
| 4    | 299.74        | Ana            | lisis de datos                                                                 |                                       |               |                |         | rstatistica de         | scriptiva         |                 |          |          |
| 5    | 299.9         | Eur            | nciones para análisis                                                          |                                       |               | L A            | Aceptar | Entrada                |                   |                 |          | Aceptar  |
| 6    | 300.07        | An             | álisis de varianza de un factor                                                |                                       |               |                |         | Rango de <u>e</u> ntra | ida:              | \$B\$3:\$B\$102 | <u> </u> | Heopean  |
| 4    | 299.93        | An An          | iálisis de varianza de dos factores o<br>jálisis de varianza de dos factores o | on varias muestra<br>on una sola mues | as por grupo  |                | ancelar | Agrupado por:          |                   | Columnas        |          | Cancelar |
| 8    | 299.85        | Co             | eficiente de correlación                                                       | on ana sola mues                      | a a por grapo |                | aunda 📗 | 2P ,P                  |                   | C Filas         |          | Avuda    |
| 9    | 299.95        | Co             | warianza                                                                       |                                       |               |                | Ayuua   | Rótulos en l           | a primera fila    |                 |          | HYDOG    |
| 10   | 299.90        | ES             | tadistica descriptiva<br>avización exponencial                                 |                                       |               |                | H       | in the second second   | a printor a rita; |                 |          | -        |
| 12   | 299.90        | Pri            | ueba F para varianzas de dos mues                                              | tras                                  |               |                | H       | -Opciones de sali      | ida               |                 |          | -        |
| 13   | 200.00        | An             | iálisis de Fourier                                                             |                                       |               | -1             | H       | G Decentration         | ·                 | 4D417           |          | -        |
| 14   | 299.98        |                | scograma                                                                       |                                       |               |                |         | Rango de sa            | alida:            | 120217          |          | -        |
| 15   | 299.93        |                |                                                                                |                                       |               |                |         | 🗢 En una <u>h</u> oja  | nueva:            | ļ               |          | -        |
| 16   | 299.65        |                |                                                                                |                                       |               |                |         | 🔿 En un libro n        | luevo             |                 |          |          |
| 17   | 299.76        |                | Análisis de datos - Estadísti                                                  | ca Descriptiva                        |               | Fórmulas Excei | 1       | 🔽 Resumen de           | estadísticas      |                 |          |          |
| 18   | 299.81        |                |                                                                                |                                       |               |                |         | Nivel de con           | fianza nara la m  | edia: 95 %      |          | -        |
| 19   | 300           |                | Media                                                                          | 299.8524                              |               | 299.8524       |         |                        | inanza para la n  |                 |          |          |
| 20   | 300           |                | Error típico                                                                   | 0.00790105                            |               | 0.007901055    | ]       | K-esimo may            | /or:              |                 |          |          |
| 21   | 299.96        |                | Mediana                                                                        | 299.85                                |               | 299.85         |         | K-ésimo mer            | hor:              | 1               |          |          |
| 22   | 299.96        |                | Moda                                                                           | 299.88                                |               | 299.88         |         |                        |                   |                 |          |          |
| 23   | 299.96        |                | Desviación estándar                                                            | 0.07901055                            |               | 0.079010548    |         |                        | 1                 |                 | 1        |          |
| 24   | 299.94        |                | Varianza de la muestra                                                         | 0.00624267                            |               | 0.006242667    |         |                        |                   |                 |          |          |
| 25   | 299.96        |                | Curtosis                                                                       | 0.3396846                             |               | 0.339684598    |         |                        |                   |                 |          |          |
| 26   | 299.94        |                | Coeficiente de asimetría                                                       | -0.01853886                           |               | -0.018538864   |         |                        |                   |                 |          |          |
| 27   | 299.88        |                | Rango                                                                          | 0.45                                  |               | 0.45           |         |                        |                   |                 |          |          |
| 28   | 299.8         |                | Mínimo                                                                         | 299.62                                |               | 299.62         |         |                        |                   |                 |          |          |
| 29   | 299.85        |                | Máximo                                                                         | 300.07                                |               | 300.07         |         |                        |                   |                 |          |          |
| 30   | 299.88        |                | Suma                                                                           | 29985.24                              |               | 29985.24       |         |                        |                   |                 |          |          |
| 31   | 299.9         |                | Cuenta                                                                         | 100                                   |               | 100            |         |                        |                   |                 |          |          |
| 32   | 299.84        |                | Manar(1)                                                                       | 300.07                                |               | 300.07         |         |                        |                   |                 |          |          |
| 33   | 299.63        |                | Ivienur(1)<br>Nivel de confionze/05.0%)                                        | 299.62                                |               | 299.62         |         |                        |                   |                 |          |          |
| - 34 | 299.79        |                | iviver de contianza(95.0%)                                                     | 0.01567741                            |               | 0.015485773    |         |                        |                   |                 |          |          |

# X Image: Resumen de las funciones estadísticas de Estadística descriptiva

| Estadístico               | Función Excel                             |
|---------------------------|-------------------------------------------|
| Media                     | =PROMEDIO(Datos)                          |
| Error típico              | =Desviación estándar/RAIZ(Cuenta)         |
| Mediana                   | =MEDIANA(Datos)                           |
| Moda                      | =MODA(Datos)                              |
| Desviación estándar       | =DESVEST(Data)                            |
| Varianza de la muestra    | =VAR(Datos)                               |
| Curtosis                  | =CURTOSIS(Datos)                          |
| Coeficiente de asimetría  | =COEFICIENTE.ASIMETRIA(Datos)             |
| Rango                     | =Máximo - Mínimo                          |
| Mínimo                    | =MIN(Datos)                               |
| Máximo                    | =MAX(Datos)                               |
| Suma                      | =SUMA(Datos)                              |
| Cuenta                    | =CONTAR(Datos)                            |
| Mayor (1)                 | =K.ESIMO.MAYOR(Datos,1)                   |
| Menor(1)                  | =K.ESIMO.MENOR(Datos,1)                   |
| Nivel de confianza(95.0%) | =INTERVALO.CONFIANZA(0.05, Desv est.,100) |

## X Distribuciones de frecuencia - Histograma

- Problema: Crear un histograma (gráfico de frecuencia) de un conjunto de datos.
- Ejemplo: Analisis\_estadistico\_datos.xlsx
- Una opción es usar la función FRECUENCIA, para calcular la frecuencia de incidencia de cada punto de referencia y después graficarla.
- Otra opción es usar los complementos de Análisis de datos →Histograma.



- Se debe establecer un rango de valores =(max min)
- Se debe establecer un número de clases (bins).
   Criterios: cinco a quince clases o raíz cuadrada del número de datos.
- Para calcular las frecuencias de cada clase se selecciona el rango de salida y se aplica la función matricial (pulsar Control-Mayús-Intro después de introducir la función) FRECUENCIA poniendo el rango de los datos y el rango de clases.
- Ejm: ={FRECUENCIA(DATA,RANGE)}



### Histograma – Frecuencia

| B), | Analisis_estadi | stico_datos |      |            |             |       |                |                                         |                     |                     |                 |                   |                |
|-----|-----------------|-------------|------|------------|-------------|-------|----------------|-----------------------------------------|---------------------|---------------------|-----------------|-------------------|----------------|
|     | A               | В           | С    | D          | E           | F     | G              | Н                                       |                     | J                   | K               | L                 | M              |
|     | Respuesta       |             |      |            |             |       |                |                                         |                     |                     |                 |                   |                |
| 2   | Angular         |             | Bins | Frecuencia | Frec.Acum.  |       |                |                                         |                     |                     |                 |                   |                |
| 3   | 3.37599597      |             | -15  | 0          | 0           |       |                |                                         | Respue              | sta Angula          | r               |                   |                |
| 4   | 5.05575464      |             | -14  | 0          | 0           |       |                |                                         | •                   | Ũ                   |                 |                   |                |
| 5   | 5.78273533      |             | -13  | 0          | 0           |       | 45             |                                         |                     |                     |                 |                   |                |
| 6   | 5.1301583       |             | -12  | 2          | 0.001998002 |       | 15             |                                         |                     |                     |                 |                   |                |
| 7   | 2.77728513      |             | -11  | 1          | 0.002997003 |       | 1              |                                         | 1                   | 1                   |                 |                   |                |
| 8   | -0.15519642     |             | -10  | 4          | 0.006993007 |       |                |                                         |                     | h                   |                 |                   |                |
| 9   | -3.32913001     |             | -9   | 4          | 0.010989011 |       |                | .1111 11                                | ch. I. c            |                     | le califial.    |                   | . h            |
| 10  | -6.45610747     |             | -8   | 20         | 0.030969031 |       | 5 -            | h AN HAU A JULA                         | A. A. A. A. A.      | 1 6 1 1 1 1 1 1 1 1 | SK of AUDULE    | հ                 | raha a tal     |
| 11  | -8.30692258     |             | -7   | 29         | 0.05994006  | 0     |                | 100000000000000000000000000000000000000 | HALL HALL HALL ALLA | A , JAN LUDIAJ      | KI MATUTANI     | ta shikidi a lu   | A DUULLA A U.A |
| 12  | -8.40979406     |             | -6   | 36         | 0.095904096 | nß    |                | USDAHIINISINI K                         | AUMITAN U MAANA     | DA UNLAUTION        | II. AIMAA AARIN | NATI) IIM MATAK   | I ANNIN'NY IN' |
| 13  | -6.93658813     |             | -5   | 53         | 0.148851149 | Ŭ,    |                | HUBAUTY UND                             | WARDSHA'S TH        | UPA) KUNINUNIN      | UM IDDUUUUUU    | U V DAVITVI I U L | WINYWN I CO    |
| 14  | -3.54750212     |             | -4   | 74         | 0.222777223 | -     |                | V HULIYY Y YAYYI                        |                     | EK A DAALAANIA D    | II TUTARIDINIC  | נע ירעי דע י      |                |
| 15  | 1.08442167      |             | -3   | 57         | 0.27972028  |       | ייין אין אין א |                                         | 1                   | - 4 . MANA          | A TAURDARI      | •••• p            | լու լիլ        |
| 16  | 5.07893945      |             | -2   | 67         | 0.346653347 |       |                | a Provinci                              |                     | լի                  | 1 7 Y 11        |                   | 1.1            |
| 17  | 8.17312319      |             | -1   | 76         | 0.422577423 |       | -10 -          |                                         |                     |                     | J ľ             | - I               |                |
| 18  | 9.52588362      |             | 0    | 73         | 0.495504496 |       |                |                                         |                     |                     |                 |                   |                |
| 19  | 8.485886        |             | 1    | 74         | 0.569430569 |       | -15 J          |                                         |                     |                     |                 |                   |                |
| 20  | 5.08607377      |             | 2    | 89         | 0.658341658 |       | . –            |                                         |                     |                     |                 |                   |                |
| 21  | 1.21213101      |             | 3    | 78         | 0.736263736 |       |                |                                         |                     | Muestra             |                 |                   |                |
| 22  | -2.75591989     |             | 4    | 60         | 0.796203796 |       |                |                                         |                     |                     |                 |                   |                |
| 23  | -4.92624317     |             | 5    | 48         | 0.844155844 |       |                |                                         |                     |                     |                 |                   |                |
| 24  | -5.43733783     |             | 6    | 49         | 0.893106893 |       |                | Histog                                  | grama de la         | a Respuest          | a Angular       |                   |                |
| 25  | -4.20907215     |             | 7    | 40         | 0.933066933 |       |                |                                         |                     |                     |                 |                   |                |
| 26  | -1.66327326     |             | 8    | 19         | 0.952047952 |       | oo             |                                         |                     |                     |                 |                   | 100 00%        |
| 27  | 0.72676382      |             | 9    | 22         | 0.974025974 |       | 00             |                                         |                     | <u>A</u>            |                 |                   | 100.0070       |
| 28  | 2.48609895      |             | 10   | 12         | 0.986013986 |       | 80 +           |                                         |                     |                     |                 |                   |                |
| 29  | 2.62879702      |             | 11   | 7          | 0.993006993 |       | 70             |                                         |                     |                     |                 |                   | 80.00%         |
| 30  | 1.21341228      |             | 12   | 4          | 0.997002997 |       | 20             |                                         |                     |                     |                 |                   |                |
| 31  | -0.89988504     |             | 13   | 3          | 1           | cia – |                |                                         |                     |                     |                 |                   | 60.00%         |
| 32  | -3.50314329     |             | 14   | 0          | 1           | - ě   | 50             |                                         | <u>-7</u> HHHHF     | ┥┟┥┥┥┝              | 113             |                   | 00.0070        |
| 33  | -4.95065065     |             | 15   | 0          | 1           | n,    | 4N             |                                         | <u>АНННН</u>        | HHHHH               |                 |                   |                |



### Histograma – Frecuencia





- Otra opción para obtener el histograma de un conjunto de datos es utilizar Análisis de datos → Histograma
- En el rango de entrada se selecciona el rango de celdas que contienen el DataSet de entrada. En el campo Rango de Clases se introduce o selecciona el rango de celdas que contienen los valores de clases.
- En las opciones de salida, se selecciona la ubicación de salida de los resultados. Se puede seleccionar la opción de Porcentaje acumulado y Crear gráfico.



#### Análisis de datos – Histograma

| Clase   | Frecuencia | % acumulado |   |                                                             |
|---------|------------|-------------|---|-------------------------------------------------------------|
| -15     | 0          | 0.00%       |   | Histograma                                                  |
| -14     | 0          | 0.00%       |   |                                                             |
| -13     | 0          | 0.00%       |   | 100 000                                                     |
| -12     | 2          | 0.20%       |   | 100 T 120.00%                                               |
| -11     | 1          | 0.30%       |   | 90 +                                                        |
| -10     | 4          | 0.70%       |   | 80 - 100.00%                                                |
| -9      | 4          | 1.10%       |   |                                                             |
| -8      | 20         | 3.10%       |   |                                                             |
| -7      | 29         | 5.99%       |   | <b>5</b> 50 Frecuencia                                      |
| -6      | 36         | 9.59%       |   | <b>3</b> 50 <b>T 110 110 T 00.00% </b> % acumulado <b>1</b> |
| -5      | 53         | 14.89%      |   |                                                             |
| -4      | 74         | 22.28%      |   |                                                             |
| -3      | 57         | 27.97%      |   |                                                             |
| -2      | 67         | 34.67%      |   |                                                             |
| -1      | 76         | 42.26%      |   |                                                             |
| 0       | 73         | 49.55%      | _ |                                                             |
| 1       | 74         | 56.94%      | _ | × × × × × × × × × × × × × × × × × × ×                       |
| 2       | 89         | 65.83%      | _ | 0 lass                                                      |
| 3       | 78         | 73.63%      | _ | Clase                                                       |
| 4       | 60         | 79.62%      |   |                                                             |
| 5       | 48         | 84.42%      |   |                                                             |
| 6       | 49         | 89.31%      |   | Análisis de datos ? 🔀                                       |
| 7       | 40         | 93.31%      |   | Eunciones para análisis                                     |
| 8       | 19         | 95.20%      |   | Estadística descriptiva                                     |
| 9       | 22         | 97.40%      |   | Suavización exponencial                                     |
| 10      | 12         | 98.60%      |   | Prueba F para varianzas de dos muestras                     |
| 11      | 7          | 99.30%      |   | Analisis de Fourier Ayuda                                   |
| 12      | 4          | 99.70%      |   | Media móvil                                                 |
| 13      | 3          | 100.00%     |   | Generación de números aleatorios                            |
| 14      | 0          | 100.00%     |   | Jerarquia y percentil<br>Regresión                          |
| 15      | 0          | 100.00%     |   | Muestra                                                     |
| y mayor | 0          | 100.00%     |   |                                                             |



- Problema: Calcular intervalos de confianza para ciertas estimaciones.
- Ejemplo: Analisis\_estadistico\_datos.xlsx
- Excel dispone de las funciones INTERVALO.CONFIANZA.NORM y INTERVALO.CONFIANZA.T que permiten calcular el intervalo de confianza para una media de población con distribución normal y t-student respectivamente.



- También se dispone de las funciones
  - INV.NORM.ESTAND devuelve el inverso de la distribución normal estándar acumulativa
  - INV.T.2C devuelve el inverso de la distribución t de Student de dos colas.
- Ejemplo:
  - para un intervalo de confianza de 95%, la probabilidad a usar es 1 – 0.05/2 = 0.975. Para calcular el intervalo de confianza de la media se usa

Error estándar de la media\* INV.NORM.ESTAND(0.975)

 Si se usa la distribución t-Student la fórmula a usar es: Error estándar de la media\* INV.T.2C (0.05,GdL)



- Problema: Calcular los coeficientes de correlación entre variables de un problema multivariable.
- Ejemplo: Analisis\_estadistico\_datos.xlsx
- Excel dispone de las funciones
   COEF.DE.CORREL y PEARSON que devuelven el coeficiente de correlación entre dos rangos de celdas definidos por los argumentos.

También se tiene en Análisis de datos  $\rightarrow$  Coeficiente de Correlación

• Otros tipos de coeficientes de correlación



- Otros tipos de coeficientes de correlación, como Phi, rank biserial, point biserial, y Spearman rank hay que calcularlos.
- Por ejemplo para calcular la correlación de Spearman se usa la fórmula

$$\rho = 1 - \frac{6\sum d^2}{N(N^2 - 1)}$$

Donde d es la diferencia en ranking entre los valores x1 y x2 y N es el número de datos.

• Excel dispone de las funciones JERARQUIA y CONTAR para calcular la fórmula anterior



- Problema: Se requiere calcular ciertos percentiles de un conjunto de datos y la jerarquía de ciertos valores en el conjunto de datos.
- Ejemplo: Analisis\_estadistico\_datos.xlsx
- Excel dispone de las funciones PERCENTIL y JERARQUIA para calcular tales estadísticos.
- También se puede usar Análisis de datos → Jerarquía y percentil



- Problema: Se requiere realizar pruebas de hipótesis sobre conjunto de datos.
- Ejemplo: Analisis\_estadistico\_datos.xlsx
- Excel dispone de las funciones PRUEBA.Z.N, PRUEBA.T.N, PRUEBA.F.N y PRUEBA.CHICUAD para realizar pruebas estándar.
- También se tiene en Análisis de datos varios tests





- Problema: Realizar un análisis de varianza (ANOVA).
- Ejemplo: Analisis\_estadistico\_datos.xlsx
- En el complemento Análisis de datos se ofrecen tres clases de ANOVA:



 Para el ejemplo, se realiza un ANOVA para dos o más grupos por lo que se usa ANOVA de un factor para probar la hipótesis de que no hay diferencia entre las medias de esos grupos.



### ANOVA

- Se selecciona Análisis de datos → Análisis de varianza de un factor
- En el rango de entrada se selecciona el rango de los datos (dataset) que deben estar en columnas contiguas. Si se incluye los rótulos de la columna, marcar la opción Rótulos en la primera fila.
- Se deja el parámetro Alfa en 0.05, pero se puede modificar.
- Se selecciona la opción de salida y Aceptar.
- Para el ejemplo, como P < Alfa proporcionado y F > F crítico implica que se debería rechazar la hipótesis nula de que no hay diferencias significativas entre las medias de los grupos.


#### ANOVA de un factor

| Aná                    | lisis de datos                                                                                                               |                                             | ? 🛛      |  |  |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------|--|--|--|--|
| Eun<br>An<br>An        | Eunciones para análisis Análisis de varianza de un factor Análisis de varianza de dos factores con varias muestras por grupo |                                             |          |  |  |  |  |
| An<br>Co<br>Co<br>Est  | alisis de varianza de dos ractores con i<br>eficiente de correlación<br>varianza<br>:adística descriptiva                    | una sola muestra por grupo                  | Ayuda    |  |  |  |  |
| Su<br>Pru<br>An<br>His | avización exponencial<br>Jeba F para varianzas de dos muestras<br>álisis de Fourier<br>toorama                               | 5                                           | <b>-</b> |  |  |  |  |
| Ji lia                 |                                                                                                                              |                                             |          |  |  |  |  |
|                        | Análisis de varianza de                                                                                                      | un factor                                   | ? 🔀      |  |  |  |  |
|                        | Entrada                                                                                                                      |                                             | Aceptar  |  |  |  |  |
|                        | Rango de <u>e</u> ntrada                                                                                                     | \$B\$3:\$E\$10                              | Cancelar |  |  |  |  |
|                        | Agrupado por:                                                                                                                | <ul> <li>Columnas</li> <li>Filas</li> </ul> | Aunda    |  |  |  |  |
|                        | 🔽 <u>R</u> ótulos en la primera fila                                                                                         | Ellos                                       |          |  |  |  |  |
|                        | <u>A</u> lfa: 0.05                                                                                                           |                                             |          |  |  |  |  |
|                        | Opciones de salida                                                                                                           |                                             |          |  |  |  |  |
|                        | Rango de salida:                                                                                                             | \$B\$13                                     |          |  |  |  |  |
|                        | C En una <u>h</u> oja nueva:                                                                                                 |                                             |          |  |  |  |  |
|                        | 🔿 En un libro nuevo                                                                                                          |                                             |          |  |  |  |  |



#### ANOVA de un factor

|                           | Efectivi          | dad Droga          |                           | Į                |              |                                 |
|---------------------------|-------------------|--------------------|---------------------------|------------------|--------------|---------------------------------|
| Droga A                   | Droga B           | Droga C            | Control                   | /                |              |                                 |
| 108 112                   |                   | 106                | 129                       |                  |              |                                 |
| 110                       | 125               | 113                | 119                       |                  |              |                                 |
| 120                       | 120               | 108                | 123                       |                  |              |                                 |
| 112                       | 114               | 116                | 110                       |                  |              |                                 |
| 115                       | 108               | 101                | 125                       |                  |              |                                 |
| 109                       | 128               | 95                 | 120                       |                  |              |                                 |
| 117                       | 116               | 109                | 119                       |                  |              |                                 |
|                           |                   |                    |                           |                  |              |                                 |
| Análisis de varianza de u | n factor          |                    |                           |                  |              |                                 |
| RESUMEN                   |                   |                    |                           |                  |              |                                 |
| Grupos                    | Cuenta            | Suma               | Promedio                  | Varianza         |              |                                 |
| Droga A                   | 7                 | 791                | 113                       | 20               |              |                                 |
| Droga B                   | 7                 | 823                | 117.5714286               | 51.2857143       |              |                                 |
| Droga C                   | 7                 | 748                | 106.8571429               | 50.4761905       |              |                                 |
| Control                   | 7                 | 845                | 120.7142857               | 35.5714286       |              |                                 |
| ANÁLISIS DE VARIANZA      |                   |                    |                           |                  | >            |                                 |
| Origen de las variaciones | Suma de cuadrados | Grados de libertad | Promedio de los cuadrados | F                | Probabilidad | Valor <del>crítico para</del> F |
| Entre grupos              | 760.9642857       | 3                  | 253.6547619               | 6.44884988       | 0.00233676   | 3.008786109                     |
| Dentro de los grupos      | 944               | 24                 | 39.33333333               |                  |              |                                 |
|                           |                   |                    |                           | $< \alpha = 0.0$ | 5            |                                 |
| Total                     | 1704.964286       | 27                 |                           |                  |              |                                 |



- Problema: Calcular números aleatorios entre límites superiores e inferiores específicos.
- Ejemplo: Analisis\_estadistico\_datos.xlsx
- Usar la función ALEATORIO de Excel, que genera un número aleatorio entre 0 y 1.
- Se puede crear una serie de números aleatorios seleccionando las celdas, poniendo la función ALEATORIO y pulsando Ctrl-Mayús-Enter.
- Si se quiere un número aleatorio que no cambie cada vez que se calcula la hoja, pulsar F9 después de introducir la fórmula.



- Para calcular un número (serie) aleatorio entre dos valores específicos utilizar la fórmula
  - {=ALEATORIO()\*(MaxVal-MinVal)+MinVal}
- Se puede redondear lo anterior con REDONDEAR.
- Se puede usar también la fórmula ALEATORIO.ENTRE
- También se puede usar Análisis de datos  $\rightarrow$  Generación de números aleatorios



#### Serie de números aleatorios

| <b>S</b> ) / | nalisis_estadisti | co_datos   |                    |             |    |     |   |                        |    |
|--------------|-------------------|------------|--------------------|-------------|----|-----|---|------------------------|----|
|              | A                 | В          | С                  | D           | E  | F   | G | Н                      | I  |
| 1            |                   |            |                    |             |    |     |   |                        |    |
| 2            | Número aleat      | 0.5313876  | Número aleat. Fijo | 0.003124717 |    |     |   |                        |    |
| 3            |                   |            |                    | Max         | 10 | Min | 5 |                        |    |
| 4            | Serie aleatoria   | 0.44380777 | Serie aleatorio    | 9.065064315 |    |     |   | Aleatorio entero entre | 7  |
| 5            |                   | 0.42961333 | entre valores      | 9.161287896 |    |     |   | ALEATORIO.ENTRE        | 10 |
| 6            |                   | 0.62287122 |                    | 9.463201777 |    |     |   |                        |    |
| 7            |                   | 0.29033821 |                    | 8.514754767 |    |     |   |                        |    |
| 8            |                   | 0.53997343 |                    | 6.632976084 |    |     |   |                        |    |
| 9            |                   | 0.99239677 |                    | 5.308581238 |    |     |   |                        |    |
| 10           |                   | 0.99071185 |                    | 5.789049175 |    |     |   |                        |    |
| 11           |                   | 0.91831579 |                    | 9.958734591 |    |     |   |                        |    |
| 12           |                   | 0.3156203  |                    | 8.871693524 |    |     |   |                        |    |
| 13           |                   | 0.03625947 |                    | 9.69787344  |    |     |   |                        |    |
| 14           |                   | 0.25973169 |                    | 6.697753919 |    |     |   |                        |    |
| 15           |                   | 0.36473357 |                    | 5.382409237 |    |     |   |                        |    |
| 16           |                   | 0.2078356  |                    | 8.610561631 |    |     |   |                        |    |
| 17           |                   | 0.78759765 |                    | 9.320594026 |    |     |   |                        |    |
| 18           |                   | 0.57220001 |                    | 8.545796147 |    |     |   |                        |    |
| 19           |                   | 0.72267191 |                    | 7.212349981 |    |     |   |                        |    |
| 20           |                   | 0.46762156 |                    | 9.925278049 |    |     |   |                        |    |
| 21           |                   | 0.27403078 |                    | 7.745022772 |    |     |   |                        |    |
| 22           |                   | 0.7732474  |                    | 8.804774299 |    |     |   |                        |    |
| 23           |                   | 0.59073026 |                    | 8.798263735 |    |     |   |                        |    |
| 24           |                   | 0.4206679  |                    | 5.734420286 |    |     |   |                        |    |
| 25           |                   | 0.6930261  |                    | 6.433629751 |    |     |   |                        |    |
| 26           |                   | 0.72176781 |                    | 6.527886875 |    |     |   |                        |    |
| 27           |                   | 0.91767747 |                    | 6.720850346 |    |     |   |                        |    |
| 28           |                   | 0.60398191 |                    | 7.610799737 |    |     |   |                        |    |
| 29           |                   | 0.70078329 |                    | 5.970527865 |    |     |   |                        |    |
| 30           |                   | 0.35479986 |                    | 9.237339771 |    |     |   |                        |    |



- Problema: Se require extraer datos de muestra de una población finita de valores discretos.
- Ejemplo: Analisis\_estadistico\_datos.xlsx
- Usar Análisis de datos → Muestra que permite seleccionar el método de muestreo entre Periódico o Aleatorio.

| Muestra                                                                                                          |                 | ? ×                 |
|------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|
| Entrada<br>Rango de <u>e</u> ntrada:<br><u>R</u> ótulos                                                          | \$C\$11:\$C\$22 | Aceptar<br>Cancelar |
| Método de muestreo<br>© <u>P</u> eriódico<br>Período:                                                            |                 | <u>Ayu</u> da       |
| Aleatorio<br>Número de muestras:<br>Opciones de salida                                                           | 3               |                     |
| <ul> <li>Rango de <u>s</u>alida:</li> <li>En una <u>h</u>oja nueva:</li> <li>En un <u>l</u>ibro nuevo</li> </ul> | SE\$11:SE\$13   |                     |



#### Distribuciones de probabilidad

| DISTR.BETA          | Devuelve la función de distribución beta acumulativa.                                            |
|---------------------|--------------------------------------------------------------------------------------------------|
| DISTR.BINOM.N       | Devuelve la probabilidad de una variable aleatoria discreta siguiendo una distribución binomial. |
| DISTR.BINOM.SERIE   | Devuelve la probabilidad de un resultado de prueba siguiendo una distribución binomial.          |
| DISTR.CHICUAD       | Devuelve la función de densidad de probabilidad beta acumulativa.                                |
| DISTR.CHICUAD.CD    | Devuelve la probabilidad de una cola de distribución chi cuadrado.                               |
| DISTR.EXP.N         | Devuelve la distribución exponencial.                                                            |
| DISTR.F.RT          | Devuelve la distribución de probabilidad F.                                                      |
| DISTR.F.CD          | Devuelve la distribución de probabilidad F.                                                      |
| DISTR.GAMMA         | Devuelve la distribución gamma.                                                                  |
| DISTR.HIPERGEOM.N   | Devuelve la distribución hipergeométrica.                                                        |
| DISTR.LOGNORM       | Devuelve la distribución logarítmico-normal acumulativa.                                         |
| DISTR.NORM.N        | Devuelve la distribución normal acumulativa.                                                     |
| DISTR.NORM.ESTAND.N | Devuelve la distribución normal estándar acumulativa.                                            |
| POISSON.DIST        | Devuelve la distribución de Poisson.                                                             |
| DISTR.T.CD          | Devuelve la distribución de t de Student.                                                        |
| DISTR.WEIBULL       | Devuelve la distribución de Weibull.                                                             |



- Problema: En un proceso de fabricación de tornillos se sabe que el 2% son defectuosos. Se empaquetan en cajas de 50 tornillos. Calcular la probabilidad de que en una caja no haya ningún tornillo defectuoso.
- Ejemplo: Distrib\_prob.xlsx
  - Número de éxitos de los ensayos: 0
  - Número de ensayos independientes: 50.
  - Probabilidad de éxito de cada ensayo: 0,2.
  - Como se pide una función de probabilidad o de cuantía, se define el valor Acumulado como FALSO.
  - La probabilidad obtenida es: 1,42725E-05



- Problema: El número medio de defectos en un rollo de tela es de 0,4. Se inspecciona una muestra de 10 rollos, ¿cuál es la probabilidad de que el número total de defectos en los 10 rollos sea por lo menos de 9?.
- Ejemplo: Distrib\_prob.xlsx
  - Se define X = Número de defectos por rollo, con una distribución de Ps (λ=0,4).
  - Se pide obtener la P(X ≥ 9), lo que equivale a estimar, 1- P(X≤8).
     P(X ≥ 9) = 1- P(X≤8)
  - Piden una función de probabilidad de distribución (probabilidad acumulada), se define el valor Acumulado como VERDADERO.
  - $P(X \ge 9) = 1 P(X \le 8) = 1 1 = 0$



- Problema: Calcular la probabilidad de que un estudiante tenga una altura superior a 175, sabiendo que responde a N(170, 20)
- Ejemplo: Distrib\_prob.xlsx

| Argumentos de función                 |                                          |                                        |                  |                                                    | 8 X      |
|---------------------------------------|------------------------------------------|----------------------------------------|------------------|----------------------------------------------------|----------|
| DISTR.NORM.N                          |                                          |                                        |                  |                                                    |          |
| x                                     | 175                                      | <b>1</b>                               | =                | 175                                                |          |
| Media                                 | 170                                      |                                        | =                | 170                                                |          |
| Desv_estándar                         | 20                                       |                                        | =                | 20                                                 |          |
| Acumulado                             | VERDADERO                                |                                        | =                | VERDADERO                                          |          |
| Devuelve la distribución nor          | malpara la media y la c<br>Xesel valor r | lesviación estáno<br>para el que desea | =<br>dar<br>a la | 0.598706326<br>r especificadas.<br>a distribución. |          |
| Parultado de la fórmula = 0.508706226 |                                          |                                        |                  |                                                    |          |
|                                       |                                          |                                        |                  |                                                    |          |
| Ayuda sobre esta función              |                                          |                                        |                  | Aceptar                                            | Cancelar |

 Resultado: probabilidad de que un estudiante tenga una altura superior a 175, es del 59,87%.



# Distribuciones continuas – Normal estándar N(0,1)

- La función DISTR.NORMAL.ESTANDAR permite calcular la probabilidad que, en una distribución normal de media cero y desviación típica uno, se encuentra por debajo del valor "a", (P(Z ≤ a) =?)
- Proporciona las mismas probabilidades que la tabla estándar de áreas de curvas normales.
- Problema: Calcular la probabilidad de que una variable N(0,1)tome un valor superior a 2.
- Ejemplo: Distrib\_prob.xlsx



- Problema: Calcular la probabilidad de que un estudiante tenga una altura superior a 175, sabiendo que responde a N(170, 20)
- Ejemplo: Distrib\_prob.xlsx
  - Resultado 0.25 que indica:

 $P(N(170,20) > 175) = P(N(0,1) > \frac{175 - 170}{20}) = P(N(0,1) > 0,25)$ 



### Aproximación



- Es muy común en ingeniería intentar hallar la ecuación (curva) que mejor aproxime un conjunto de datos.
- Datos: pares de puntos P<sub>1</sub>=(x<sub>1</sub>,y<sub>1</sub>)... P<sub>n</sub>=(x<sub>n</sub>,y<sub>n</sub>) o tuplas de variables independientes y dependientes.
- Se trata de pasar una curva a través del conjunto de datos. Cuando los resultados se usan para hacer nuevas predicciones de variables dependientes, se conoce como regresión.
- Se usa el método de mínimos cuadrados: se fundamenta en la minimización del error e<sub>i</sub> = y<sub>i</sub> – f(x<sub>i</sub>) obtenido para cada punto.
- Ejemplos: Ajuste\_curvas.xlsx



•

 Si la función de ajuste es una línea recta y = mx + b entonces el MMC permite deducir los coeficientes a y b a partir de la resolución de las siguientes ecuaciones:

$$m\sum_{i=1}^{n} x_{i} + bn = \sum_{i=1}^{n} y_{i} \qquad m\sum_{i=1}^{n} x_{i}^{2} + b\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} x_{i}y_{i}$$
  
Bondad de ajuste (coef. Correlación):

$$r^{2} = 1 - \frac{SSE}{SST}$$
 positiva 1 o negativa -  

$$SSE = \sum_{i=1}^{n} [y_{i} - f(x_{i})]^{2}$$
 
$$SST = \sum_{i=1}^{n} [y_{i} - \overline{y}]^{2}$$

## X

#### Ajuste lineal por MMC a datos<sub>1</sub>





- Otro método rápido de obtener un ajuste lineal (y de otro tipo) a un conjunto tabulado en columnas de datos x (variable independiente) e y (variable dependiente) es:
- Graficar los datos como tipo de gráfico X-Y (dispersión) como puntos.
- Pulsar en uno de los puntos dato para seleccionar como objeto activo el conjunto de datos y pulsar el botón derecho del ratón para obtener el menú Gráfico.
- Seleccionar Añadir Línea de Tendencia en el menú Gráfico. Especificar el tipo de curva (Lineal) y llenar las opciones correspondientes. Conviene seleccionar en Opciones Presentar ecuación en el gráfico y el valor R (coeficiente de correlación). Es posible realizar extrapolación.



#### Ajuste lineal por MMC a datos<sub>2</sub>

| Formato de serie de datos         Tipo de gráfico         Datos de origen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Agregar línea de tendencia                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Agregar línea de tendencia Borrar Agregar línea de tendencia ? X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tipo       Opciones         Nombre de la línea de tendencia       •         • Automática:       Lineal (Serie1)         • Personalizada:       •                                             |
| Tipo       Opciones         Tipo de tendencia o regresión       Image: Construction of the second seco | Extrapolar<br>Hacia delante: 0 1 Unidades<br>Hacia atrás: 0 1 Unidades<br>Señalar intersección = 0<br>Presentar ecuación en el gráfico<br>Presentar el valor <u>R</u> cuadrado en el gráfico |
| A partir de las series:  Serie1  Aceptar Cancelar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aceptar Cancelar                                                                                                                                                                             |

#### Ajuste lineal por MMC a datos<sub>2</sub>



#### Ajuste lineal por MMC a datos<sub>2</sub>





- Otro método rápido de obtener un ajuste lineal es utilizar la función ESTIMACION.LINEAL a un conjunto tabulado en columnas de datos x (variable independiente) e y (variables dependientes).
- La sintaxis de la función corresponde a una fórmula matriz (hay que pulsar Ctrl-Mayus-Entrar) cuando se introduce la fórmula. Ejemplo:

{=ESTIMACION.LINEAL(C5:C13, A5:A13, VERDADERO, VERDADERO)}





#### Ajuste lineal de datos<sub>3</sub>

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tiempo de Reacci                      | ón C  | oncentración | Log(Ct)      |                     |              |              |              | Valores:                          |                 |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------|--------------|--------------|---------------------|--------------|--------------|--------------|-----------------------------------|-----------------|-------------------|
| 30       0.191       -0.719       1.46702E-16       2.09532E-16       s-pendiente       sintresección         90       0.111       -0.954       7.00616E+30       7       F-estadístico       Grados de libertad         120       0.095       -1.071       0.824690331       8.13513E-31       suma de cuadrados de la regresión       suma de cuadrados de la regresión       suma de cuadrados de la regresión         160       0.046       -1.061       0.824690331       8.13513E-31       suma de cuadrados de la regresión       suma de cuadrados de la regresión         160       0.049       -1.036       -1.68       -1.68       -1.68       -1.68         210       0.038       -1.42       -1.44       -1.66       -1.42       -1.44         -0.2       -0.4       -0.250       300       y = -0.0039x - 0.6021       -1.44         -0.6       -0.7       -0.7       -0.039x - 0.6021       -1.44       -1.66       -1.44         -1.6       -1.44       -1.64       -1.64       -1.66       -1.44       -1.64       -1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 0     | 0.250        | -0.602       |                     | -0.003907946 | -0.602059991 |              | pendiente                         | intersección    |                   |
| 60       0.141       -0.954       7.09618-30       7       F-setadistic       Grados de la regresión       suma de cuadrados de la regresión       suma de cuadrados de la regresión         120       0.065       -1.071       0.824690331       8.13613E-31       suma de cuadrados de la regresión                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 30    | 0.191        | -0.719       |                     | 1.46702E-18  | 2.09532E-16  |              | s-pendiente                       | s-intersección  |                   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | 60    | 0.146        | -0.837       |                     | 1            | 3.40905E-16  |              | R-Cuadrado                        | s-estimado      |                   |
| 120       0.065       -1.071       0.824690331       8.13513E.31       suma de cuadrados de la regresión       suma de cuadrados de la regresión         180       0.049       -1.306       -       -       -       -       -         210       0.036       -1.423       -       -       -       -       -       -         210       0.036       -1.423       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 90    | 0.111        | -0.954       |                     | 7.09618E+30  | 7            |              | F-estadístico                     | Grados de liber | tad               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | 120   | 0.085        | -1.071       |                     | 0.824690331  | 8.13513E-31  |              | suma de cuadrados de la regresión | suma de cuadr   | ados del residual |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | 150   | 0.065        | -1.188       |                     |              |              |              |                                   |                 |                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · · | 180   | 0.049        | -1.305       |                     |              |              |              |                                   |                 |                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | 210   | 0.038        | -1.423       |                     |              |              |              |                                   |                 |                   |
| Concentración ciclopropano vs. Tiempo de reacción $0.0$ $50$ $100$ $150$ $200$ $250$ $300$ $y = -0.0039x - 0.6021$ $0.4$ $0.6$ $0.8$ $0.6$ $0.8$ $0.6$ $0.8$ $1.00$ $1.00$ $150$ $200$ $250$ $300$ $y = -0.0039x - 0.6021$ $0.4$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $1.00$ $1.00$ $150$ $200$ $250$ $300$ $y = -0.0039x - 0.6021$ $R^2 = 1$ $0.4$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ <td></td> <td>240</td> <td>0.029</td> <td>-1.540</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | 240   | 0.029        | -1.540       |                     |              |              |              |                                   |                 |                   |
| Concentración ciclopropano vs. Tiempo de reacción $0.0$ $50$ $100$ $150$ $200$ $250$ $300$ $y = -0.0039x - 0.6021$ $0.4$ $0.6$ $R^2 = 1$ $R^2 = 1$ $R^2 = 1$ $0.4$ $0.6$ $-0.6$ $R^2 = 1$ $R^2 = 1$ $1.0$ $-1.2$ $-1.2$ $-1.4$ $-1.6$ $1.8$ $-1.8$ $-1.8$ $-1.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |       |              |              |                     |              |              |              |                                   |                 |                   |
| Concentración ciclopropano vs. Tiempo de reacción $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |       |              |              |                     |              |              |              |                                   |                 |                   |
| Concentracion ciclopropano vs. Tiempo de reacción<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |       |              | , . <b>.</b> |                     | <b>_</b>     | • /          |              |                                   |                 |                   |
| 0.0       50       100       150       200       250       300       y = -0.0039x - 0.6021         -0.2       -0.4       -0.6       -0.6       -0.6       -0.6         -0.8       -0.6       -0.6       -0.6       -0.6         -1.0       -1.2       -0.14       -0.6       -0.6         -1.2       -1.4       -1.6       -0.6       -0.6         -1.4       -1.6       -0.6       -0.6       -0.6         -1.8       -0.6       -0.6       -0.6       -0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | (     | Concentració | on ciclopre  | opano vs.           | liempo de r  | eaccion      |              |                                   |                 |                   |
| 0.0       50       100       150       200       250       300       y = -0.0039x - 0.6021         -0.2       -0.4       -0.6       -0.6       -0.6       -0.6         -0.8       -0.8       -0.10       -0.10       -0.10       -0.10         -1.0       -1.10       -1.10       -1.10       -1.10       -1.10         -1.14       -1.16       -1.18       -1.18       -1.18       -1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |       |              |              |                     |              |              |              |                                   |                 |                   |
| -0.2       -0.2       -0.4       -0.4         -0.6       -0.6       -0.6         -1.0       -1.2       -1.4         -1.4       -1.6       -1.6         -1.8       -1.8       -1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                   |       |              | 1            |                     |              |              |              |                                   |                 |                   |
| $R^{2} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 50    | 100          | 150          | 200                 | 250 30       | n y = -0.0   | 039x - 0.602 | 21                                |                 |                   |
| -0.4<br>-0.6<br>-0.8<br>-1.0<br>-1.2<br>-1.4<br>-1.4<br>-1.6<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8 | -0.2                                  |       |              |              |                     |              | -            | $R^2 = 1$    |                                   |                 |                   |
| -0.4<br>-0.6<br>-0.8<br>-1.0<br>-1.2<br>-1.4<br>-1.4<br>-1.4<br>-1.8<br>-1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |       |              |              |                     |              |              |              |                                   |                 |                   |
| -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6     -0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -04-                                  |       |              |              |                     |              |              |              |                                   |                 |                   |
| -0.6       -0.6         -0.8       -1.0         -1.0       -1.2         -1.4       -1.6         -1.8       -1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |       |              |              |                     |              |              |              |                                   |                 |                   |
| -0.8<br>-0.8<br>-1.0<br>-1.2<br>-1.4<br>-1.4<br>-1.6<br>-1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |       |              |              |                     |              |              |              |                                   |                 |                   |
| -0.8         -1.0         -1.2         -1.4         -1.6         -1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.0                                  |       |              |              |                     |              |              |              |                                   |                 |                   |
| -0.8       - Log(Ct)         -1.0       - Lineal (Log(Ct))         -1.2       -         -1.4       -         -1.6       -         -1.8       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | □ <b>`</b>                            | <hr/> |              |              |                     |              |              |              |                                   |                 |                   |
| -1.0 -<br>-1.2 -<br>-1.4 -<br>-1.6 -<br>-1.8 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.0 ]                                |       |              |              |                     |              | 🔰 🔶 Log      | g(Ct)        |                                   |                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |       |              |              |                     |              | in           | eal (Log(Ct) | n                                 |                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.0 -                                |       |              |              |                     |              |              | (3(          |                                   |                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |       |              |              |                     |              |              |              |                                   |                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.2 1                                |       |              | · · ·        |                     |              |              |              |                                   |                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |       |              | *            | ·                   |              |              |              |                                   |                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.4 -                                |       |              |              | <ul><li>▲</li></ul> |              |              |              |                                   |                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |       |              |              |                     | •            |              |              |                                   |                 |                   |
| -1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.6 -                                |       |              |              |                     |              |              |              |                                   |                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |       |              |              |                     |              |              |              |                                   |                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.8 J                                |       |              |              |                     |              |              |              |                                   |                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                              |       |              |              |                     |              |              |              |                                   |                 |                   |



• Para hacer un ajuste lineal múltiple del tipo

$$y = m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots + m_n x_n + b$$

también se puede utilizar la función ESTIMACION.LINEAL a un conjunto tabulado en columnas de datos x (variables independientes) e y (variables dependientes).

- Es necesario seleccionar una cuadrícula de celdas de tamaño n+1 columnas, donde n es el número de variables independientes (x) y 5 filas.
- La sintaxis de la función es de tipo matriz (hay que pulsar Ctrl-Mayus-Entrar) cuando se introduce la fórmula. Ejemplo: {=ESTIMACION.LINEAL(B12:B27,C12:H27,VERDADERO,VERDADERO)}



#### Ajuste multilineal de datos<sub>4</sub>





- Un método adicional para obtener un análisis completo (lista de residuos) de regresión es usando la opción de Regresión en Análisis de datos. Se procede de manera similar que para la obtención de histogramas.
- Ejemplo

| Regresión                                                              |                                                                          | ? ×            |
|------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------|
| Entrada                                                                |                                                                          | Acoptar        |
| Rango <u>Y</u> de entrada:                                             | \$B\$4:\$B\$8 🗾                                                          | Aceptar        |
| Rango <u>X</u> de entrada:                                             | \$A\$4:\$A\$8 🗾                                                          | Cancelar       |
| 🗖 <u>R</u> ótulos                                                      | Constante igual a cero                                                   | Ay <u>u</u> da |
| 🔲 <u>N</u> ivel de confianza                                           | 95 %                                                                     |                |
| Opciones de salida<br>Rango de <u>s</u> alida:<br>C En una hoia nueva: | \$D\$3                                                                   |                |
| O En un libro nuevo                                                    |                                                                          |                |
| Residuales                                                             | ☐ <u>G</u> ráfico de residuales<br>✔ Cur <u>v</u> a de regresión ajustac | la             |
| Probabilidad normal                                                    | i normal                                                                 |                |





| Fuerza ejercida por un reso         | orte               |                   |                                         |              |                    |                  |
|-------------------------------------|--------------------|-------------------|-----------------------------------------|--------------|--------------------|------------------|
| Distancia (cm)                      | Fuerza (N)         |                   |                                         |              |                    |                  |
| 2.0                                 | 2.0                |                   |                                         |              |                    |                  |
| 4.0                                 | 3.5                |                   |                                         |              |                    |                  |
| 7.0                                 | 4.5                |                   |                                         |              |                    |                  |
| 110                                 | 8.0                |                   |                                         |              |                    |                  |
| 17.0                                | 9.5                |                   |                                         |              |                    |                  |
|                                     |                    | Va                | riable X 1 Curva de                     | e regresio   | ón ajustada        | -                |
| Resumen                             |                    | 15.0 -            |                                         |              |                    | -                |
| Estadísticas de la reg              | resión             | 10.0 -            |                                         | <b>.</b>     | • Y                |                  |
| Coeficiente de correlación múltiple | 0.978643887        |                   | _ <b>*</b> .                            |              | Pronó              | stico para V     |
| Coeficiente de determinación R^2    | 0.957743857        |                   | - • • • • • • • • • • • • • • • • • • • |              |                    |                  |
| R^2 ajustado                        | 0.943658476        | 0.0               |                                         | 1            |                    |                  |
| Error típico                        | 0.745903847        | 0.0               | 5.0 10.0                                | 15.0         | 20.0               | -                |
| Observaciones                       | 5                  |                   | Variable X 1                            |              |                    |                  |
| ANÁLISIS DE VARIANZA                |                    |                   |                                         |              |                    |                  |
|                                     | Grados de libertad | Suma de cuadrados | Promedio de los cuadrados               | F            | Valor crítico de F |                  |
| Regresión                           | 1                  | 37.83088235       | 37.83088235                             | 67.9955947   | 0.003734402        |                  |
| Residuos                            | 3                  | 1.669117647       | 0.556372549                             |              |                    |                  |
| Total                               | 4                  | 39.5              |                                         |              |                    |                  |
|                                     | Coeficientes       | Error típico      | Estadístico t                           | Probabilidad | Inferior 95%       | Superior 95%Infe |
| Intercepción                        | 1.279411765        | 0.610944132       | 2.094155091                             | 0.1272718    | -0.664886955       | 3.22371048 -0    |
| Variable X 1                        | 0.514705882        | 0.062419278       | 8.245944137                             | 0.0037344    | 0.316059694        | 0.71335207 0     |



#### Otros tipos de ajuste

- Exponencial
- Potencial
- Polinómico: es necesario dar el orden del polinomio

| – Ejemplos | Agregar línea de tendencia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Tipo       Opciones         Tipo de tendencia o regresión       Image: Construction of the tendencia o regresión         Image: Lineal       Image: Construction of the tendencia o regresión         Image: Lineal       Image: Construction of tendencia o regresión         Image: Construction of tendencia o regresión       Image: Construction of tendencia o regresión         Image: Construction of tendencia o regresión       Image: Construction of tendencia o regresión         Image: Construction of tendencia o regresión       Image: Construction of tendencia o regresión         Image: Construction of tendencia o regresión       Image: Construction of tendencia o regresión         Image: Construction of tendencia o regresión       Image: Construction of tendencia o regresión         Image: Construction of tendencia o regresión       Image: Construction o regresión         Image: Construction of tendencia o regresión       Image: Construction o regresión         Image: Construction o regresión       Image: Construction o regresión         Image: Construction o regresión       Image: Construction o regresión         Image: Construction o regresión       Image: Constructio regresión         < |
|            | Aceptar Cancelar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



# Selección de la mejor curva de ajuste a un conjunto de datos

- Método de prueba y error. Primero se grafican los datos como una línea recta.
- Si no se obtiene un buen ajuste, intentar diferentes tipos de curvas, usando evaluación visual ayudado por los resultados de la suma de cuadrados de los errores y el coeficiente de correlación (r<sup>2</sup>).
- Si no se obtienen resultados satisfactorios, intentar graficar los datos de otra manera (y – 1/x, 1/y-x, etc.)
- En algunos casos se consiguen mejores ajustes escalando los datos (datos de x e y del mismo orden de magnitud).
- Cambio de escala (se obtiene una recta) para el paso 2:
  - Exponencial  $y = a e^{bx}$  log y vs. x (semi-log)
  - Logarítmico  $y = a \ln x + b$  y vs. log x (semi-log)
  - Potencial  $y = a x^b$  log y vs. log x (log log)



#### Ajuste exponencial de datos





#### Ajuste logarítmico de datos





#### Ajuste potencial de datos





#### Ajuste polinomial de datos





### Análisis de series de tiempo



- El análisis de series de tiempo es un campo de estudio amplio con aplicaciones en ingeniería, economía, ciencias sociales, etc.
- Excel dispone de funciones y herramientas para realizar tales análisis, así como facilidades de visualización de resultados y realizar predicciones.
- Ejemplos: Ajuste\_curvas.xlsx



#### Análisis de series de tiempo -Visualización

- Problema: Graficar un grupo de datos de series de tiempo para análisis posteriores.
- Se utiliza el asistente para gráficos.



#### Análisis de series de tiempo -Visualización




- Problema: Agregar una línea de tendencia a una serie de tiempo.
- Se puede utilizar la opción de Agregar línea de tendencia cuando se crea un gráfico.











# Análisis de series de tiempo – medias móviles

- Problema: Suavizar una serie de tiempo mediante medias móviles.
- Se puede calcular medias móviles de varias formas:
  - usando la función de gráficos Media móvil de la línea de tendencia
  - usando la función Media móvil de las Datos→Análisis de datos.



# Análisis de series de tiempo – medias móviles línea de tendencia

- Para la Línea de tendencia, se selecciona la serie de datos y haciendo clic con el botón derecho del ratón se selecciona Agregar línea de tendencia.
- Se selecciona Media móvil y el período deseado (3). En opciones se puede escribir un nombre para esta nueva línea de tendencia.
- Es sencillo pero no genera datos numéricos.



### Análisis de series de tiempo – medias móviles





# Análisis de series de tiempo – medias móviles Análisis de datos

- En Herramientas→Análisis de datos hay una opción que es Media móvil.
- La ventaja es que genera datos numéricos para la serie de media móvil.
- En la ventana de diálogo se selecciona el rango de las celdas que contiene la serie de datos.
- Se introduce el intervalo (3) sobre el que se desea calcular las medias.
- Introducir la celda donde se desea colocar los resultados.



### Análisis de series de tiempo – medias móviles Análisis de datos





# Análisis de series de tiempo – índices estacionales

- Problema: calcular los índices estacionales de una serie de tiempo que muestra variaciones estacionales.
- Hay varios métodos para calcular el índice estacional de una serie. Aquí se muestra el método promedioporcentaje.
- Primero se calcula el promedio de la variable cada año.
- Despúes se calcula el porcentaje de cada mes respecto al promedio anual.
- Finalmente se calcula el promedio de los porcentajes de cada mes para todos los años. Para comprobar el promedio de los índices debe ser 1.



### Análisis de series de tiempo – índices estacionales

|          | 1996 | 1997 | 1998 | 1999 |
|----------|------|------|------|------|
| Ene      | 49.1 | 49.2 | 53.5 | 54.0 |
| Feb      | 53.0 | 53.9 | 53.6 | 57.9 |
| Mar      | 54.7 | 63.8 | 58.1 | 58.6 |
| Abr      | 64.5 | 62.2 | 64.7 | 70.9 |
| Мау      | 76.7 | 72.4 | 77.0 | 73.7 |
| Jun      | 79.1 | 78.7 | 83.5 | 79.9 |
| Jul      | 82.2 | 83.1 | 85.5 | 82.2 |
| Ago      | 80.2 | 81.3 | 83.8 | 85.0 |
| Sep      | 75.8 | 78.4 | 80.5 | 75.8 |
| Oct      | 66.9 | 67.1 | 70.0 | 66.7 |
| Nov      | 58.9 | 55.1 | 61.5 | 59.7 |
| Dic      | 54.2 | 49.2 | 53.5 | 51.0 |
| Average: | 66.3 | 66.2 | 68.8 | 68.0 |

**Indices Estacionales** 

1999

0.79

0.85

0.86

| Indice Estacional |      |      |      |  |  |  |  |
|-------------------|------|------|------|--|--|--|--|
|                   | 1996 | 1997 | 1998 |  |  |  |  |
| Ene               | 0.74 | 0.74 | 0.78 |  |  |  |  |
| Feb               | 0.80 | 0.81 | 0.78 |  |  |  |  |
| Mar               | 0.83 | 0.96 | 0.84 |  |  |  |  |
| Abr               | 0.97 | 0.94 | 0.94 |  |  |  |  |
| Мау               | 1.16 | 1.09 | 1.12 |  |  |  |  |

| ).97 | 0.94 | 0.94 | 1.04     | 0.97  |
|------|------|------|----------|-------|
| 1.16 | 1.09 | 1.12 | 1.08     | 1.11  |
| 1.19 | 1.19 | 1.21 | 1.18     | 1.19  |
| .24  | 1.26 | 1.24 | 1.21     | 1.24  |
| .21  | 1.23 | 1.22 | 1.25     | 1.23  |
| 1.14 | 1.18 | 1.17 | 1.12     | 1.15  |
| 1.01 | 1.01 | 1.02 | 0.98     | 1.01  |
| ).89 | 0.83 | 0.89 | 0.88     | 0.87  |
| ).82 | 0.74 | 0.78 | 0.75     | 0.77  |
|      |      |      | Sum:     | 12.00 |
|      |      |      | Average: | 1.00  |

Jun Jul Ago Sep Oct Nov Dic Indice

0.76

0.81

0.87



# Análisis de series de tiempo – Transformada discreta de Fourier

- Problema: usar la transformada discreta de Fourier para analizar un conjunto de datos.
- En Herramientas→Análisis de datos hay una opción que es Análisis de Fourier que permite realizar transformaciones discretas de Fourier (DFT) y transformaciones inversas.
- El tamaño de la serie debe ser potencia de 2 con un tamaño máximo de 2<sup>12</sup> = 4096.
- Cálculo de la frecuencia  $f_i = i/(ns)$  en Hz donde *i* es el número de la muestra, *n* el número de muestras y *s* el intervalo de muestra.



# Análisis de series de tiempo – Transformada discreta de Fourier

- Cálculo de la frecuencia f<sub>i</sub> = i/n en ciclos por muestra donde i es el número de la muestra, n el número de muestras y s el intervalo de muestra.
- La DFT se obtiene seleccionando el rango de las celdas que contienen la serie.
- Los resultados de la DFT son números complejos que se escriben como texto. Para manipularlos Excel dispone de funciones para ellos.
- Cálculo de la potencia en cada banda de frecuencia hasta la frecuencia de Nyquist (0.5 ciclos/muestra). IM.ABS(DFT)^2/n^2



# Análisis de series de tiempo – Transformada discreta de Fourier

- Se puede filtrar los datos en el campo de la frecuencia para aislar un determinado componente.
- Se construye un filtro adecuado.
  EXP(-((ABS(frec cs) fo)/sig)^2))
- Se aplica el filtro a la DFT multiplicándolo (usar funciones de números complejos).
- Se calcula DFT inversa y se obtiene la serie numérica utilizando funciones de números complejos. IM.REAL(InversaDFT)



