Capítulo 5

Espacios vectoriales: Parte 3

5.1 Otro método de obtención de la forma implícita del subespacio H de \mathbb{R}^n a partir de una base

Consideremos en ${\rm I\!R}^2$ un subespacio H de dimensión 1. Tendríamos una única ecuación en la forma implícita.

$$a_1x_1 + a_2x_2 = 0$$

Nótese que de la misma forma que conocida la matriz de coeficientes $[a_1 \ a_2]$ podemos resolver para encontrar (x_1, x_2) , conocida la solución podríamos usar la matriz $[x_1 \ x_2]$ y resolver para determinar los coeficientes (a_1, a_2) .

En efecto $\begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \;\; \text{y} \;\; \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = 0 \;\; \text{son la misma ecuación.}$

Tomemos ahora un subespacio H de dimensión 2 en \mathbb{R}^3 . Tendríamos una única ecuación implícita, $a_1x_1 + a_2x_2 + a_2x_3 = 0$, y dos soluciones independientes.

Partiendo de $A=[\ a_1\ a_2\ a_3\]$ podemos resolver para encontrar (v_1^1,v_2^1,v_3^1) y (v_1^2,v_2^2,v_3^2) , que cumplen:

$$\begin{cases} a_1 v_1^1 + a_2 v_2^1 + a_3 v_3^1 = 0 \\ a_1 v_1^2 + a_2 v_2^2 + a_3 v_3^2 = 0 \end{cases}$$

Obviamente resolviendo desde la matriz $\begin{bmatrix} v_1^1 & v_2^1 & v_3^1 \\ v_1^2 & v_2^2 & v_3^2 \end{bmatrix}$ obtendríamos la solución (a_1,a_2,a_3)

En efecto, los siguientes sistemas son iguales:

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \begin{bmatrix} v_1^1 & v_1^2 \\ v_2^1 & v_2^2 \\ v_3^1 & v_3^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} , \begin{bmatrix} v_1^1 & v_2^1 & v_3^1 \\ v_1^2 & v_2^2 & v_3^2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Veamos ahora el caso de un subespacio H de dimensión 1 en \mathbb{R}^3 . Tendríamos entonces dos ecuaciones implícitas $\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = 0 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = 0 \end{cases}$ y una única solución independiente.

Tomando la matriz de coeficientes $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$ resolveríamos encontrando dicha solución (v_1^1, v_2^1, v_3^1) , que cumple:

$$\begin{cases} a_{11}v_1^1 + a_{12}v_2^1 + a_{13}v_3^1 = 0 \\ a_{21}v_1^1 + a_{22}v_2^1 + a_{23}v_3^1 = 0 \end{cases}$$

Con lo que resolviendo desde la matriz $\begin{bmatrix} v_1^1 & v_2^1 & v_3^1 \end{bmatrix}$ obtendríamos las dos soluciones independientes: (a_{11}, a_{12}, a_{13}) y (a_{21}, a_{22}, a_{23}) , recuperando las filas de la matriz de coeficientes original.

Esquema para un subespacio H de \mathbb{R}^n de dimensión d siendo A la matriz de coeficientes de su forma implícita y $B = \{\vec{b}_1, \dots, \vec{b}_d\}$ el conjunto de soluciones independientes o base de H:

Resolviendo $A\vec{x} = \vec{0}$ obtenemos el conjunto de vectores que forma la base B.

Definiendo $P_B = [\vec{b}_1 \dots \vec{b}_d]$, resolviendo $P_B^t \vec{x} = \vec{0}$ (con la traspuesta colocamos los vectores base en las filas) obtenemos el conjunto de vectores $(n \times 1)$ tales que sus traspuestos $(1 \times n)$ forman las filas de la matriz de coeficientes A. El número de vectores, que es el número de filas de A, es decir, el número de ecuaciones, es n - d.

Si en vez de partir de una base B de H partimos de un sistema generador S de H (con d vectores l.i. y desde d+1 hasta d+k combinación lineal de los anteriores), una vez hecha la eliminación gaussiana el sistema de ecuaciones quedaría igual al sistema anterior $P_B\vec{x}=\vec{0}$, porque las k ecuaciones adicionales desaparecen por ser los coeficientes de cada fila c.l. de las filas anteriores.

5.2 Ejercicios

Ejercicio 5.1. Manualmente y con MATLAB.

Obtén la forma implícita de $H = \langle (1,1,0,0), (1,2,-1,1) \rangle$ utilizando los dos métodos que conoces.