4.4 Ejercicios

4.1. Dada la aplicación lineal con matriz estándar
$$A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 5 & 7 \\ 3 & 6 & 9 \end{bmatrix}$$

- a) Obtén una base de ${\rm Im} f$.
- b) Obtén una base de Kerf.
- c) Razona si la aplicación lineal es o no sobreyectiva²
- c) Razona si la aplicación lineal es o no inyectiva³.
- e) Obtén la imagen de (2, 7, 0).
 f) Determina el/los antecedentes de (6, 9, a) en función de a.
- **4.2**. Dada la aplicación lineal $f: \mathbb{R}^3 \longmapsto \mathbb{R}^3$, definida por:

$$(1,0,0)\longmapsto (1,1,1) \qquad \qquad (0,1,0)\longmapsto (2,0,-3) \qquad \qquad (0,0,1)\longmapsto (0,0,4)$$

- a) Halla la matriz estándar asociada a f.
- b) Halla la imagen de $\vec{a} = (2, -3, 5)$
- c) Halla el vector cuya imagen es $\vec{b}=(2,\,-5,\,4)$
- **4.3**. Sea f un endomorfismo en \mathbb{R}^3 tal que $f(\vec{e}_1)=(1,0,0)$, $f(\vec{e}_2)=(1,1,3)$ y $f(\vec{e}_3)=(0,c+3,2)$. Determina una base de Kerf en función del parámetro c.

4.4 Dada la aplicación lineal
$$f$$
 con matriz asociada $A = \begin{bmatrix} 1 & 0 & 3 & -1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 1 \end{bmatrix}$, determina

- a) Una base y la dimensión de Imf. Es decir, base y dimensión de ColA
- b) Una base y la dimensión de Kerf. Es decir, base y dimensión de NulA
- c) Calcula una base del subespacio f(V), siendo $V = \{(x_1, x_2, x_3, x_4)/x1 = x4, x3 = 0\}$. Concepto de imagen de subespacio.

²Recuerda que sobreyectiva significa que Imf y el espacio final son el mismo

 $^{^3}$ Recuerda que inyectiva significa que cada elemento de ${\rm Im}f$ tiene un único antecedente

4.5 Obtén la matriz estándar de las siguientes transformaciones lineales en \mathbb{R}^2 :

* simetría respecto de la recta
$$y = \frac{1}{3} x$$

Considerada la figura con los vértices P, Q, R y T dados en la tabla, obtén sus imágenes para las transformaciones anteriores y rellena la tabla con los resultados.

(x, y)	simetrico (x', y')			proyectado (x', y')		
P = (6, 6)	P' = (,)	P' = (,)
Q = (7, 7)						
R = (8, 6)						
T = (7, 5)						

- 4.6 Considera el espacio vectorial \mathbb{R}^3 y la transformación lineal f correspondiente a la proyección ortogonal sobre el plano x+y+z=0.
- a) Determina una base B respecto de la cual la matriz asociada a f sea lo más sencilla posible. Escribe también dicha matriz.
- b) Obtén la matriz asociada respecto de la base canónica.
- **4.7** Resuelve el ejercicio anterior tomando f correspondiente a la simetría ortogonal respecto del plano x + y + z = 0.
- 4.8 La matriz $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ produce un **estiramiento** en la dirección x. Representa la circunferencia $x^2 + y^2 = 1$ y esboza a su alrededor los puntos (x,y) que resultan de multiplicar por A. ¿Cual es la forma de la figura?.
- G. Strang. Linear Algebra and its Applications. Edición 4. Wellesley Cambridge Press. 2009. Pg. 149. Ejercicio 3.

^{*} proyección ortogonal sobre la recta $y = \frac{1}{3} x$

4.9 Dada la aplicación lineal
$$f$$
 en \mathbb{R}^3 con matriz estándar asociada $A = \begin{bmatrix} 2 & 2 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix}$, obtén la matriz asociada a f respecto de la base $B = \{(1, -1, 0), (-2, 1, 1), (1, 1, 1)\}$.

- S.J. Leon. Linear Algebra with Applications. Edición 9. Pearson 2015. Pg. 212. Ejemplo 2.
- 4.10 a) En \mathbb{R}^3 , obtén la matriz estándar A correspondiente al giro de 90 grados en sentido positivo respecto del eje dirigido según el vector (0,0,1). b) Obtén la matriz estándar de la siguiente composición de transformaciones: en primer lugar el giro anterior, y a continuación dilatación de factor 4 según el eje Z.
- **4.11** a) En \mathbb{R}^2 , interpreta geométricamente, cualitativa y cuantitativamente, la transformación lineal con la matriz estándar $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.
- **4.12** a) Demuestra que tanto la matriz estándar A de la simetría en \mathbb{R}^3 respecto de un plano como la de la simetría en \mathbb{R}^2 respecto de una recta son matrices **involutivas**, es decir AA = I. b) Demuestra que en el caso de la proyección, en \mathbb{R}^3 sobre un plano y en \mathbb{R}^2 sobre una recta, las matrices estándar son **idempotentes**, es decir AA = A.