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Abstract The use of high performance computing systems in order to help
to make the right investment decisions in financial markets is an open research
field where multiple efforts have being carried out during the last few years.
Specifically, the Heath-Jarrow-Morton (HJM) model has a number of features
that make it well suited for implementation on massively parallel architec-
tures. This paper presents a Multi-CPU and Multi-GPU implementation of
the HJM model that improves both the performance and energy efficiency.
The experimental results reveal that the proposed architectures achieve excel-
lent performance improvements, as well as optimize the energy efficiency and
the cost/performance ratio.
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1 Introduction

Simulation is getting increasingly important in financial markets as one of the
best techniques to improve the accuracy of investments. The duration of these
simulations is critical as a microsecond or nanosecond faster than the rest of
the players can lead to create market instead of just being on the market. That
is why most of the key players are as close as possible to the stock exchange
markets, thus reducing the communication time between orders and deals.

Financial simulations based on Monte Carlo methods have been used for
many years thanks to their intrinsic parallelism. A Monte Carlo method is
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an algorithm that solves a problem through the use of statistical sampling to
obtain numerical results [1]; typically it is necessary to run many simulations
in order to obtain the distribution of an unknown probabilistic entity.

Monte Carlo methods have a number of properties that make them es-
pecially suitable for implementation on massively parallel architectures [2,3].
These include the data independence, that enable domain-based paralleliza-
tion, with a high degree of parallelism. Hence these methods can generate a
large number of fine-grained tasks or a few coarse-grain tasks. This property
greatly favours the application scalability, while allowing an adequate distribu-
tion of the workload in both homogeneous and heterogeneous systems, which
has a large impact on the performance. Also the overhead due to synchroniza-
tion or communication between processes or threads is minimised.

This work addresses the optimization of financial applications that allow
a prediction of risk over time, for financial derivative products, particularly
in multi-value environments. The selected model is the Heath-Jarrow-Morton
(HJM) framework, which has a high computational cost [4,5]. This paper
presents a new and efficient implementation of the HJM Model that can run on
heterogeneous and massively parallel architectures. In particular optimization
and parallelization code techniques will be used, for homogeneous (multi-core
architectures) as well as heterogeneous environments (Multi-GPU). Further-
more, it shows that this implementation provides excellent results in perfor-
mance, scalability and energy efficiency. The last point is essential, as these
applications running on large data centres where improving the energy effi-
ciency is one of his greatest challenges today.

2 Related Work

Several works with the same objectives can be found in the bibliography. For
instance, Swaptions is an Intel implementation of the HJM model present in
the parsec benchmark suite [6]. This implementation is restricted to swaps,
while the work presented in this paper is a large application that is able to
work on many different derivatives, specified in input files as trees of large vec-
torial operations. The Swaptions Parsec benchmark has been ported to a GPU
architecture [7] with a very poor performance. The source of this problem is
the great amount of data copy needed and the thread divergence happening in
the GPU. With the use of newer CUDA versions, we can keep the data in the
GPU all the time and execute basic SIMD kernels in an asynchronous manner.
This allows fast execution without data transfers between each kernel execu-
tion and eliminates thread divergency. The original Swaptions version was a
large monolithic computational kernel performing many memory allocations
within, and confusing memory access patterns. The HJM implemented in this
work relies on the decomposition into smaller kernels.

Moreover, [8] presents an implementation of a Monte Carlo model to es-
timate the current value of an European option for future purchase in the
financial derivatives market, based on the Black-Scholes model. The imple-
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mentation was done in four very different computer systems: A shared memory
multi-core, a MPI cluster, a CUDA program over a GPU and a cluster of FP-
GAs where the most time consume computations were implemented in VHDL.
Similarly [9] presents the design and implementation of a parallel version of
a Monte Carlo method in a FPGA-based supercomputer, called Maxwell, of
Edinburgh University [10]. The FPGA-based implementation is compared to
other environments with various GPUs and conventional processors.

In addition, [11] also uses clusters of CPUs and GPUs to implement the
calculation of the price of European options. They compare different systems
and implementations in terms of performance and power consumption. Many
financial applications rely on solving systems of sparse linear equations. For
example, [12] proposes the design of a number of iterative methods for solv-
ing equations, based on the Krylov subspace, on GPU architectures. In this
work, the proposed approaches are validated by solving the partial differential
equations of the Black-Scholes model.

As far as we know this is the first paper where the HJM model is imple-
mented on a massively parallel architecture, like a Multi-GPU and Multi-CPU
system. Additionally, this paper proposes a study of the performance of this
kind of applications in heterogeneous environments, from two different points
of view: the improvement of performance (both response time and through-
put) and scalability, as both are important in financial applications. Finally, a
study on the power consumption and cost of these architectures is also shown.

3 Interest Rate Models

During the past three decades, derivatives have become increasingly important
in the world of finance. A derivative is defined as a financial instrument whose
value depends on the values of other, more basic underlying variables. Very
often the variables underlying derivatives are the prices of traded assets. Some
major developments have occurred in the theoretical understanding of how
derivative asset prices are determined and how these prices change over time.
This led to the use of advanced mathematical methods. Models based on the
original Black-Scholes assumptions [13] are straightforward. However, they
have simplistic approaches and assumptions when tackling exotic options.

Therefore, a number of alternative new models have since been introduced
in an attempt to solve this problematic. These models, such as the Hull White,
the Vasicek, the Cox Ingersoll and Ross model, incorporate a description of how
interest rates change through time. For this reason, they involve the building of
a term structure, typically based on the short term interest rate rt. The main
advantage of these methods lies in the possibility of specifying rt as a solution
to a Stochastic Differential Equation. This allows, through Markov theory, to
work with the associated Partial Differential Equation and to subsequently
derive a rather simple formula for bond prices. This makes them widely suited
for valuing instruments such as caps, European bond options and European
swap options.
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However, they have some limitations and all lead to the same drawback
when solving interest rate products: the fact that they only use one explanatory
variable (rt ) to construct a model for the entire market. It proves insufficient
to realistically model the market curve, which appears to be dependent on
all the rates and their different time intervals. Consequently, these models
cannot be used for valuing interest rate derivatives such as American-style
swap options and structures notes, as they introduce arbitrage possibilities.

3.1 Heath-Jarrow-Morton (HJM) framework

The most straightforward solution to the problem mentioned above should in-
clude the use of more explanatory variables: long and medium term rates. The
Heath-Jarrow-Morton framework (HJM) uses one representative short term
rate, a middle term rate, and finally a long term interest rate [4,5]. It chooses
to include the entire forward rate curve as a theoretically infinite dimensional
state variable. Unlike other models, this one can match the volatility structure
observed in the market today, as well as in the future.

The HJM is a general framework to model the evolution of interest rates.
It describes the behaviour of the future price (in time) of a zero coupon bond
paying one unit of currency at time T, and it provides a consistent framework
for the pricing of interest rate derivatives. The model is directly calibrated to
the currently observed yield curve, and is complete in the sense that it does
not involve the market price of interest rate risk.

The key aspect of HJM lies in the recognition that the drifts of the no-
arbitrage evolution of certain variables can be expressed as functions of their
volatilities and the correlations among themselves, so no drift estimation is
needed. HJM-type models capture the full dynamics of the entire forward rate
curve. In practice, we will not work with a complete, absolutely continuous
discount curve. Instead, we will construct our curve based on discrete market
quotes, and will then extrapolate the data to make it continuous. Given the
zero-coupon curve B(t, T ), there exists a forward rate F (t, u) such that:

dF (t, T ) = µ(t, T )dt+ σ(t, T )dWtPt (1)

The HJM model has the serious disadvantage that it cannot be represented
as recombining trees. In practice, this means that it must be implemented using
Monte Carlo simulations. Therefore, it is important to use high performance
architectures in order to minimize response times.

4 Optimization of the HJM Model

4.1 Analysis and Optimization of Sequential Code

The starting point is a sequential code that implements a multivalued pre-
diction risk values model based on HJM [14], using a Monte Carlo method.
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This code was implemented in C++ language with the Intel MKL library. On
this version a code profile using gprof and Valgrind has been done. The profile
has been performed both with and without MKL to verify the impact of this
library on performance. This profile shows that the 41.67% of the runtime
is spent in exponential function of MKL. The remaining time is consumed
mainly in other vector operations. Specifically the operators, a set of functions
that performs simple operations on all the elements of several vectors that are
calculated in a step of the simulation. The use of MKL library has a significant
effect on performance, provided that use Intel processors. The execution time
is reduced by 48%, reaching a speedup of 1.92 compared to the version without
MKL. This improvement comes from both the optimizations performed in the
own library and the fact that it uses multi-threading.

Valgrind revealed a large number of memory conflicts. These conflicts pro-
duce Cache Jamming, consisting of two variables constantly overwritten in
the cache, resulting in a large number of replacements and thereby causing a
strong performance degradation. By changing the memory allocation scheme
of the variables involved, this effect has been eliminated.

Finally, since the application uses several arrays with a large number of
double-precision data, the effect of the cache in the application performance
has been studied. Thus, the runtime has been measured on a processor with the
same features, but a size of second-level cache (L2), which is 3 times higher
per core. The results shows that the improvement in the response time for
commonly used sizes is around 6%.

4.2 Replacing MKL Library

The use of the MKL library has a strong impact on application performance.
However, it has two major problems: the economic cost is very high and only
takes advantage on Intel processors, so that limits code portability. For these
reasons, it is proposed to search for an open source solution, to replace the
functions of MKL used in this application. The solution proposed in this pa-
per is an approach based on SLEEF[15] Library and AVX instructions are
proposed. Two different approaches have been developed, the first based on
a single thread and using vector instructions, and the second using multi-
threading.

The application consists of several simple kernels that perform basic opera-
tions in large vectors. Hand-coded AVX instructions can be used in almost all
kernels. However, some kernels uses transcendental functions, such as the ex-
ponential, which are not implemented on the vectorial instruction set. SLEEF
,is an open-source library that implements transcendental functions using SSE
or AVX. Hence, it is the perfect replacement for the remaining kernels.

The version that uses only SLEEF and hand-coded AVX instructions, re-
duces time consumption with respect to the original version without MKL, but
nonetheless it consumes around 20% more time than MKL. This is because
SLEEF is single-threading, while MKL adjusts the number of threads to data
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size. If a version SLEEF and multi-threading in the same areas of MKL is used,
a very similar result is obtained (only 3% worse). MKL uses highly optimized
routines with details of the processor architecture that are not public, so to
get exactly the same performance is a non trivial task. This analysis leads to
an interesting conclusion: MKL can be replaced by an alternative open source
without losing performance, thus allowing to generate a more portable and
less economic cost code.

4.3 CUDA Implementation

A first aspect to analyse is the communication between CPU and GPU as it
is one of the main bottlenecks in the Host-Device programming model. The
application is iterative, that is, it performs a set of calls to CUDA kernels, one
for each step of the simulation. The kernels execute the most computational
cost operations, such as exponential and division of double-precision numbers,
on large vectors which are independent from each other.

A detailed analysis of the data dependencies between successive iterations
shows that the results of the partial vector operations, performed at each sim-
ulation step, are not needed until the end of the execution, and hence they
are always stored in the memory of the GPU. This has a double impact on
performance: synchronization points between CPU-GPU are avoided and the
transfer of information between the two devices is minimized. This is imple-
mented through the use of CUDA streams. Each call to a CUDA operation is
queued into a stream and the application can continue executing on the CPU
asynchronously. The stream manages the execution of CUDA kernels while
the CPU is computing the control structures and queues new CUDA kernels
operations. The CPU waits for the GPU only when reading the final results,
rather than once per transaction.

Figure 1(a) shows the execution flow of the synchronous case. When a
CUDA operation is running on the GPU, the processor remains idle waiting
until it ends. During this idle time the processor could submit new work to
the GPU or perform independent CPU tasks which would not require pending
results. On the other hand, Figure 1(b) shows how the CPU queues, a CUDA
task in a special buffer, the stream and continues running other part of the
code. The synchronization is only needed when a transfer of data is essential.

Another overhead is the CUDA initialization, in which the CUDA driver
creates the memory maps, initializes registers and contexts and finally loads
the code into the GPU. All these steps, with exception of the last one, may
be made prior to the execution of the application. To solve this problem a
Client-Server architecture has been designed, based on UNIX Domain Sockets.
The Server initializes the GPU and is listening to a socket which is mapped
in the file system, awaiting execution requests coming from the Clients. The
Clients connect to the Server using this socket passed as a parameter to the
application, and they send the name of the file containing the kernel to be
run. The Server runs the kernel on the GPU and returns the result to the
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Fig. 1 Synchronous vs. Asynchronous CPU-GPU execution with CUDA

Client. With this architecture, initialization is performed only once, at boot
time of the machine. Thus the individual processes prevent overload time.
The NVIDIA K20 has an initialization time of about 100 ms. The execution
times of kernels in this application is about 40 ms. Hence, it is clear that the
initialization overhead has an strong impact on the application response time.

Finally, it is important to highlight that the implementation is Multi-CPU
and Multi-GPU, i.e. it supports the execution of a single job on multiple
GPUs in parallel. An input parameter determines the maximum number of
GPUs that can be used in each run. In the case of using more than one GPU,
workload is distributed statically, at the beginning of the execution. Moreover,
the workload is evenly distributed among all the GPUs in the system.

5 Experimental Results

This section presents a set of experimental results. The main objectives of
these experiments are to perform an in depth study of the performance of
the proposed approaches, varying the number of paths executed, in terms of
response time and throughput. On the other hand a detailed analysis of the
energy efficiency for all the tests is reported.

The experiments have been developed on a Intel server with a dual Intel
Sandy Bridge E5-2620 2 GHz processor with 6 cores each one. The server
has 15 MB of L3 cache memory and 16 GB of DDR3 main memory. The
system runs a Ubuntu 10.04 Linux operating system, and has the CUDA 5
and Intel MKL Library. The server comprises two NVIDIA Kepler K20 GPUs
with 2496 cores and 5 GB of DDR5 memory. Each GPU has its own dedicated
PCI-express 3.0 bus between the GPU and the CPU, to avoid collisions in the
access to the bus.

To evaluate our approach three different environments and implementa-
tions have been developed:

– Multi-Thread application running on a multiprocessor with 12 cores. Its
TDP is 270 watts.

– Single-GPU, a heterogeneous Host+CUDA application running on a sin-
gle GPU, with a TDP of 495 watts.

– Multi-GPU, a heterogeneous Host+CUDA application, running on two
GPUs, with a TDP of 720 watts.
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Fig. 2 Response Times and Speedups of the proposed architectures

All results presented in this section refer to the implementation in double
precision. The metric used is the response time, in milliseconds, defined as
the total execution time since the application is launched until results are
obtained. Therefore, it includes both computing and communication between
CPU and GPU times. Then, the speedup is calculated as the ratio between
the response time of the Multi-Thread version with respect to the response
time of the different GPUs implementations. The results presented are always
the average obtained from 10 independent runs. The energy studies are based
on the Thermal Design Power (TDP). In the systems with GPUs the values of
TDP, take also into account the power consumed by the server. The metrics
used for analysing the energy efficiency are the Energy consumption and the
Energy-Delay-Product (EDP). Then, the improvements in EPD are obtained
as the ratio between the EDP of the Multi-Thread version and the EDP of
the different GPUs implementations.

The first result that is important to highlight is the large reduction in
response time that occurs when using the heterogeneous system, as can be seen
in Figure 2(a). On the other hand, Figure 2(b), presents the behaviour of the
speedups of the heterogeneous environments compared to the multiprocessor
as problem size increases. In that figure, it can be seen that below 50.000 paths
the speedup of the single GPU is significantly higher than Multi-GPU. This
behaviour is due to the fact that the workload is too small and therefore the
advantages of using two GPUs simultaneously can not improve the overhead
to manage them. However, as the workload grows, the benefits of using two
GPUs in parallel outperform this overhead, and this behaviour becomes more
noticeable as the problem size grows.

Energy efficiency is one of the key problems in this type of applications,
since financial institutions have large data centres mainly devoted to the ex-
ecution of such models. Reducing the energy footprint is one of the greatest
challenges of data centres. In this regard, Figure 3(a) plots the relative energy
consumption of the Single-GPU and Multi-GPU systems, normalized to the
energy consumed by the Xeon server. As can be seen, for medium and large size
problems, the energy efficiency of heterogeneous configurations is very good,
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Fig. 3 Energy Efficiency for the heterogeneous architecture with respect to the Xeon Server

both yielding a energy consumption of around 7% of the Xeon Server. The
Single-GPU system soon reaches the minimum and stabilizes around it. The
Multi-GPU system is penalized in small problems by two factors: increased
overhead in managing the data (lower speedup in performance) and higher
energy consumption.

On the other hand, Figure 3(b) shows the energy efciency of each platform
by plotting the gain of the EDP calculated with respect to the Xeon Server.
The higher the value, the more energy efcient. It is necessary to highlight
that these gain values are very high, confirming the excellent behaviour of the
GPUs, in terms of energy efficiency. It can be observed that for small problem
sizes the EDP of the Single-GPU platform is better, because the improvement
in time achieved by introducing a second GPU does not outperform its energy
consumption. However, as the problem size grows, the overheads of managing
the second GPU are mitigated by the gain in time, and therefore also in EDP.

In the second experiment, the behaviour of the heterogeneous architectures
is evaluated in terms of throughput and EDP per task. The metric used is not
the response time of a single instance of the problem, but the throughput of
the system, i.e. the number of tasks that can be completed in a certain time
interval. Therefore multiple independent instances of the same problem are
running simultaneously, while time and energy have been measured. In the
case of Xeon multiprocessor these instances are not parallelized (i.e. each job
runs on a single core, so it can run 12 instances simultaneously).

Figure 4(a) shows the throughput results obtained in all these available
systems, as the number of paths increases. It can to be noticed that the en-
vironment with higher throughput is the Multi GPU, but using each GPU
independently on a single instance of the problem. Furthermore, it is interest-
ing to highlight that only one K20 GPU performs more operations per second
than 12 Xeon cores running independent simulations.

With respect to energy, Figure 4(b) presents the gains of the EDP per task
with respect to the Xeon Server. The higher the value, the more energy efcient.
Based on these results it can be concluded that the implementation that uses
the two GPUs independently is the most efficient from the energy point of
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Fig. 4 Throughput and EDP improvements of the platforms varying the number of paths

view. It is interesting to point out that in the second place is the Single-GPU
architecture whose values of EDP are much higher that the Parallel GPU
architecture.

Finally, the results achieved in the throughput with the GPUs, have a
significant economic impact on the cost of the system. By using a single server
with two E5-2620 processors and two GPU cards K20 performing simulations
in parallel, it is possible to replace 10 servers without GPU.

6 Conclusions and Future Work

The most important and general conclusion to highlight is that the finan-
cial models based on Monte Carlo methods, such as the HJM, have qualities
that make them especially suitable for implementation on massively parallel
architectures, especially in Multi-GPU platforms. Indeed, the massive data
parallelism along with data independence allows to squeeze the full potential
out of the GPUs. Furthermore, these model minimize communication between
CPU and GPU, that is one of the major bottle-necks in this architecture. Fi-
nally, this data independence also allows a balanced distribution of workload
and offers excellent properties regarding scalability.

This suitability is proven in the experimental results of performance and
energy efficiency presented in this paper. To summarize, it is noteworthy that
a heterogeneous architecture with an NVIDIA Kepler K20 GPU can achieve
a speedup of more than 35 over the best version on CPU. Furthermore it has
been shown that this architecture provides excellent scalability: the higher the
workload, the better the speedup is. Finally, it is worth mentioning the excel-
lent energy efficiency of these architectures, with great EDP improvements, as
well as its excellent cost/performance ratio.

In Multi-GPU environments, the workload is the key parameter when de-
ciding whether the application runs on a single GPU or uses several in parallel.
The experimental results for the HJM model show that the use of the two
GPUs in parallel is profitable from a workload paths 50,000. In more complex
models with a higher cost of computation, this value can vary substantially.
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Future work includes providing the Multi-GPU environment with a load
balancing mechanism that allows a heterogeneous distribution between GPUs
with different performance. Likewise, other accelerator architectures such as
Intel Xeon Phi will be explored.
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