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Abstract This paper presents a load balancing algorithm specifically de-
signed for heterogeneous clusters, composed of nodes with different compu-
tational capabilities. The method is based on a new index which takes into
consideration two levels of processors heterogeneity: the number of cores per
node and the computational power of each core. The experimental results show
that this index allows achieving balanced workload distributions even on those
clusters where heterogeneity can not be neglected.

Keywords Heterogeneous computing, load balancing, load index.

1 Introduction

High performance computing (HPC) has significantly evolved during the last
decades, making it possible to integrate up to hundreds of thousands cores into
the currently available petaflop machines [2]. It seems clear that the roadmap
to the next generation of exascale computers passes through the integration
of large distributed and heterogeneous systems, in which their computational
nodes are in turn composed of multi-core processors with a large number of
cores and hardware accelerators.

The design and implementation of efficient parallel applications for hetero-
geneous systems is still a very important challenge. The heterogeneity of these
systems is a relevant distortion factor that prevents load balancing models and
algorithms designed for homogeneous systems to achieve accurate and consis-
tent results [3]. In particular, heterogeneity has a deep impact on workload
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distribution, where ignoring that different nodes might have different comput-
ing capabilities usually results in poorly balanced systems.

A key aspect for workload distribution is characterizing properly the com-
puting capabilities of each of the system nodes. For this, it is necessary to
consider both static factors, such as the number of cores per node and their
computational power, and dynamic factors such as the number of tasks being
executed on each node and their computational requirements.

This paper presents a new load balancing algorithm for heterogenous clus-
ters based on a load acceptance index that takes into consideration both static
and dynamic factors, and which can be used for determining the status of
nodes in terms of their availability for accepting additional workload at every
single instant. The proposed index considers the two levels of heterogeneity
that can be found in a multi-core system: the number of cores per node and
the computing power of each node; the first factor is discrete while the second
one is continuous. In order to test this new parameter, a distibuted, global,
emitter-initiated load balancing algorithm has been implemented; an interest-
ing feature of this algorithm is that it can also turn itself off whenever the
whole system gets overloaded.

There are other approaches for computing load indexes that can be found
in the bibliography. [6] presents EMAS, an Evolutionary Mobile Agent Sys-
tem. It proposes a load index, Server Utilization Status, based on 4 different
parameters that are merged, although these parameters have different nature,
being measured in different units. Also, [7] uses the Current real load of each
node. This index is based on parameters such as CPU occupancy rate, mem-
ory usage, system I/O usage and network bandwidth occupancy rate, whose
influence is altered depending on the different services offered by the clus-
ter. Another similar approach that merges parameters of different nature in a
single load index can be found in [9]. A very different approach is proposed
in [4]; this paper attempts to improve the accuracy of host load predictions
by applying a neural network predictor. Regarding load balancing, a couple
of specific algorithms for balancing the workload of iterative algorithms on
heterogeneous multiprocessors have also been proposed [5,8]. Their main goal
consists in designing a strategy that allows to dynamically analyze the compu-
tational power of the processors involved in the heterogeneous system and to
determine the computational burden that must be located at each processor.

2 Load Balancing Algorithm Design

This paper presents a dynamic, distributed, global and non-preemptive load
balancing approach. It is dynamic, because the assignment of a task to an
specific node is performed in run time; the task is then completely executed in
the assigned node, without any kind of task migration. Also, it is distributed,
since every node in the cluster makes its own decisions based on local stored
information: Once a node decides to perform a load balancing operation, it
selects a partner among all of the available nodes in the cluster.
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As suggested in [10], most workload balancing methods can be usually de-
composed in several stages. The algorithm presented here can be decomposed
in the following four stages:

– State measurement phase. Every node evaluates its current state in order
to find busy and idle resources. In this work, it is controlled by the Load
process.

– Information rule. During this phase, some state information is exchanged
among the cluster nodes. In this work this is done both by the Load and
Global processes.

– Initiation rule: This stage determines whenever a load balancing process
should be initiated. It is part of the Balance process.

– Load balancing operation: In this phase, the load balancing operation is
effectively carried out. It is also assumed by the Balance process. It
includes:
a. Localization rule, that aims at selecting a suitable node for performing

the load balancing operation.
b. Distribution rule, that decides how the load is shared among the in-

volved nodes.

Finally, the algorithm does not present any overhead if the nodes are nat-
urally balanced, turning itself automatically off also whenever the system is
globally underloaded or overloaded.

Figure 1 shows how the load balancing algorithm has been implemented
with three different processes. Design and implementation details can be found
in the following sections.

2.1 Measuring the state of a node

Determining the node’s load is essential, because decisions such as starting
the local execution of a new task or launching a new load balancing operation
are taken based on the nodes’ workload. The first stage is devoted to this
purpose, gathering the local information needed for estimating each node’s
workload state. For this purpose, it is necessary to know the number of cores
of each node and their computational power, as well as the number of tasks
being executed in that node.

Regarding the state of a node, there are two different possibilities:

– The number of tasks is lower than the number of cores in the node. There-
fore, there are some free cores and this node can accept more tasks, so it
can be considered as a recipient node.

– The number of tasks is larger than the number of cores. In this case, the
load acceptance index (load index, from now onwards) can be computed
for that node using the following expression:

LoadIndex =
Pi

Pmax
· #Cores

#Tasks + 1
(1)
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Fig. 1 Structure of Processes and communication. Thick lines represent broadcast opera-
tions while thin lines show point to point communications.

where Pi is the computational power of the node i, defined as the amount of
work finished during a unit time span in that node, measured in basic oper-
ations per time unit. This value is normalized by using Pmax, the power of
the node with greatest value. #Cores and #Tasks take the corresponding
values for that specific node and time instant.

This load index measures how available a node is, with respect to the most
powerful node, for receiving a new task. In this way, while a node has free
cores will be able to receive new tasks, and the load index will depend only
on the relation between Pi and Pmax. It must be noticed that higher figures
indicate higher availability.

It can be seen that the load index is dynamic, and thus it has to be com-
puted periodically at predefined time instants by the Load process. This
interval should be long enough to minimize the overhead introduced in the
system by performing this operation, but it should also be short enough to
keep the load index value updated.

The proposed method uses a discrete set of node states that reflect how
loaded nodes are. These states involve a discretization of the load index which
is very useful in order to minimizing the exchange of global information, and
simplifying load balancing decisions. Three states determine the behaviour of
a node:

– Recipient State: A node is in recipient state when the number of its running
tasks is lower than the number of its cores, or when its load index value
is larger than the threshold to change from neutral to recipient, meaning
that it is available for sharing some of the other nodes’ workload. In this
case, the node can assume at least one more task, either local or remote.

– Neutral State: In this case all the cores in the node are executing at least
one task. In this state the node can assume new local tasks but it will reject
all remote requests. This state corresponds to intermediate values of the
load index.



A Load Index and Load Balancing Algorithm for Heterogeneous Clusters 5

– Emitter State: A node is in emitter state when its load index is below the
threshold for changing from neutral to emitter. This means that the node
has many more tasks than cores, and therefore it can not accept any more
tasks.

A node will change its state whenever a new measurement of the load index
crosses a status threshold. As mentioned before, the Load process checks
periodically each node’s workload and computes its load index. When the newly
computed value implies a change of state, it is propagated to the Global and
Balance processes, sending to the latter the maximum number of tasks the
node can accept, just in case of being involved in a balancing operation.

2.2 Global Information

The Global process keeps updated information from all of the nodes, to-
gether with a list of all of the possible candidates that could be involved in
balancing operations. This means that the Global process must be able to
receive messages indicating state changes from the local instance of the Load
process. These changes are then broadcasted by the local instance of the
Global process to every single node in the system (see Figure 1). It can
be seen that the method can be labeled as global, having all nodes keeping
updated information about the system’s global state.

Load balancing operations can only take place from an emitter to a recip-
ient node. Hence, only changes to or from the recipient state are significant
enough to be communicated. In consequence, the number of messages is sig-
nificantly reduced.

Each node maintains a recipient-queue with the information received from
the other nodes. When a node becomes recipient, it broadcasts a message to
all the nodes in the cluster so that each of them will place it at the end of its
queue. On the other hand, when a recipient node changes its state to neutral
or emitter, it broadcasts a message too and all the cluster nodes will discard
it from their recipient-queues.

2.3 Load Balancing Operations

The Balance process determines when a new load balancing operation has
to begin, and also performs the operations needed for carrying it out. Since
the approach used here does not interrupt any task execution, the decision
about in which node a task will be executed can only be taken in the actual
moment of beginning the task, (the method follows an emitter-initiated rule to
make this decision). Therefore, the decision about initiating a load balancing
operation is completely local to the emitter. Also, it has to be noticed that
messages are exchanged only whenever a load balancing operation is started;
no load balancing operations means no messages, which helps keeping the
communication overhead low.

Figure 1 shows the algorithm architecture, with the different processes and
communication protocols. All of them help keeping the global information
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updated for performing load balancing operations. Also, it can be seen how
the arrival of requests increases the waiting process queue until there is a
change of state; please notice how point to point and broadcast messages are
represented.

The initiation rule must be evaluated every time a new task has to be
launched. At this moment, the state of the node is checked, in order to find
out if it can accept the local execution of the new task or if the search of a
better candidate for the execution of the task should be initiated.

A node can only accept the local execution of a new task if it is in recipient
or neutral state. Therefore, only if the node is an emitter, a load balancing
operation is initiated. Once the decision of starting a load balancing operation
is made, the following two steps must be performed:

Partner localization. This is a completely local operation, since each
emitter node looks for partners just in its own recipients queue. The selection
of a specific partner is performed as follows: first a few nodes are randomly
selected, their current load index is requested (see Remote request messages
in Figure 1) and a sorted list based on their load index is created. Then, the
less loaded node is selected first. If the request is rejected, the next node in
the list will be requested and so on. This strategy reduces the communications
overhead since the load indexes do not have to be constantly updated. It
is actually a trade-off between the goals of keeping message traffic low and
selecting the least loaded nodes at each specific time instant. This method
also minimizes the possibility of a node being selected by several nodes at the
same moment because of being in a prominent position in the queue.

Load Distribution. The last step of a load balancing operation is to
decide how much workload should be sent to the recipient node. A good dis-
tribution rule will try to give each node an amount of workload proportional to
its current computational power. After a load balancing operation, the more
similar the load indexes are, the better the load distribution is. As explained,
the emitter node sends to the first node in the sorted list as much workload
as needed to force a change in its load index from recipient to neutral state.
The operation is repeated with the second recipient from the list. This pro-
cess finishes when there is no more workload to send or there are no more
recipients.

3 Experimental Results

A number of experiments have been run on a heterogeneous cluster composed
of 10 nodes. As elsewhere [11], the NASA Parallel Benchmark [1] has been
adopted to measure the computational power Pi of each node. From this 10
nodes included in the system used in the experiments, 4 nodes have 8 cores; 4
of them have 4 cores, and two of them have 2 cores. Table 1 summarizes their
most relevant features, whereas Figure 2(a) shows their load index values.

In this last figure, it can be seen that there are three different groups of
machines, according to their nodes’ features. With respect to the load index
figures, they are not difficult to explain. For example, for node C0-1, the load
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(a) Theoretical values of the load index
for all the nodes available in the system
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Fig. 2 Theoretical values and results without any load balancing algorithm

index goes down from 0.555 to 0.368 whenever it gets an additional task, which
means that 0.368 is the load index value that the node offers to a third task
when it is already running two tasks, corresponding to a load index of 0.555.

Table 1 Nodes selected for the experiments.

Node #Cores MFlops Pi/Pmax

C0-0 2 669.02 0.555
C0-1 2 664.64 0.551
C0-9 4 628.57 0.521

C0-10 4 666.86 0.553
C0-11 4 669.08 0.555
C0-14 4 772.84 0.641
C2-32 8 1201.67 0.997
C2-33 8 1198.34 0.994
C2-34 8 1203.87 0.998
C2-35 8 1205.68 1.000

During the experiments, the system is always loaded with 100 tasks that
perform different NAS benchmarks, each one with different requirements and
computing times. Additionally, depending on the specific test, the tasks were
loaded in just one node, several on all of the nodes.

In the first experiment the tasks are evenly distributed among all the nodes
in the cluster without any load balancing algorithm. The results of this ex-
periment will be the baseline to compare the results obtained with the others,
using the load balancing algorithm.

Figure 2(b) shows the evolution of the load indexes at each node along time.
The larger the value of the index, the more unloaded a node is, and therefore,
the more ready it is for accepting new tasks. Figure 2(b) also confirms there
are three kinds of nodes: the most powerful ones, with load indexes above 0.75,
the medium ones, with indexes around 0.2, and the least powerful ones, with
indexes around 0.1. It took the system 1090 seconds to complete all the tasks.

The same experiment was also performed on the same system, but using
the load balancing algorithm. In this case, all the tasks were launched on just
one node (c0-0), so that it had to dispatch them to the remainder nodes as
a result of the load balancing algorithm. Table 2 shows the values selected
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for the different parameters of the load balancing algorithm. Figure 3(a)

Table 2 Parameters used in the second experiment

Parameter Value

Time interval to measure state 1 second
Location of Recipients Sorted list of 3 candidates
Workload 100 tasks, variable length

Thresholds for changing state
Recipient to Neutral at 0.7
Neutral to Emitter at 0.4
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Fig. 3 Results obtained using the load balancing algorithm.

shows the evolution of the system nodes’ load indexes during the experiment,
showing that all of the indexes take more grouped values after a short initial
balancing stage, which takes less than a minute and a half. This means that
the workload has been distributed proportionally to the nodes’ computational
power, cutting the global execution time to 458 seconds, that is, achieving a
speedup of 2.38.

Figure 3(b) shows the number of tasks executed on each node during these
two experiments. Instead of having each node assigned the same number of
tasks, the most powerful nodes get now larger workload shares.

A third experiment was carried out in order to check the effects of adjusting
the thresholds on the overall system response. The initial idea came from the
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fact that Figure 3 shows several nodes with large load indexes values, meaning
that they could probably accept additional tasks, but that could not change
to the Recipient state because of the parameter settings. For that purpose, a
new experiment was done using the following thresholds: Recipient to Neutral
at 0.65 and Neutral to Emitter at 0.45. Figure 4 shows the results obtained
in this case; it can be seen that he load index of the node that distributes the
tasks (c0-0) keeps a similar value, due to the ratio between the refresh interval
of the load index and the arrival rate of new tasks. Also, the index of the node
c0-10 increases, while the indexes of the most powerful nodes decrease. It can
be noticed also that the load indexes are more grouped than in the previous
experiments, meaning they could effectively accept more load, and the total
execution time is reduced to 427 seconds, achieving a speedup of 2.55.
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Fig. 5 Additional experiments: evolution of the nodes’ load index along time.

Finally, Figure 5 shows two additional experiments run to test the system
behavior. In the first one all the tasks are launched on just one node, but
this time it was selected the most powerful node (c2-35) instead of the least
one (c0-0). It can be seen in Figure 5(a) that the nodes’ load indexes are more
grouped than in the previous experiments, since the most powerful node is now
the one that has to change to emitter state but accepts more local tasks. It
means there are less load balancing operations and therefore the performance
is improved. The second experiment tests the system with concurrent users.
For this purpose, the 100 tasks were launched in 2 different nodes (50 tasks
each); Figure 5(b) shows that apart from the node c2-33, the rest of the nodes’
load indexes are more similar, since the more even initial distribution helps
the load balancing algorithm.

4 Conclusions and Future Work

This paper presents a workload balancing algorithm that takes into account the
possible existence of node heterogeneity in present HPC machines. The method
proposed here considers two levels of heterogeneity: the number of cores per
node and the individual computing power of each core, being able to model
accurately the behavior of present day machines. This method is a dynamic,
distributed, global, emitter-initiated and non-preemptive algorithm, which is
able to turn itself down when all the nodes are overloaded or underloaded, and
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in consequence, performing load balancing operations would not provide any
gain, introducing only additional overheads.

Nowadays, heterogeneity in HPC systems is originated mainly by differ-
ences regarding the nodes computing capabilities. For achieving equilibrated
load distributions, it is essential that load balancing algorithms are able to eval-
uate dynamically those capabilities as accurately as possible; the load index
proposed here can be used for this purpose. The experiments carried here show
clearly how the load index presented in this paper can be used for achieving
balanced load distributions, where the workload is divided among the nodes
proportionally to their computing power. When this is correctly done, the
method results in large improvements, with execution times divided by two.
Finer parameter tuning can yield even better results.

Future work includes providing the algorithm with self-learning mecha-
nisms to take into consideration the system’s global workload, giving the algo-
rithm the possibility to adapt itself by modifying its parameters dynamically.
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