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Scalable shot boundary detection

Pablo Toharia · Oscar D. Robles · Jose
L. Bosque · Angel Rodŕıguez

Abstract In a Content-based Video Retrieval system the shot boundary de-
tection is an unavoidable stage. Such a high demanding task needs a deep
study from a computational point of view to allow finding suitable optimiza-
tion strategies. This paper presents different strategies implemented on both
a shared-memory symmetric multiprocessor and a Beowulf cluster, and the
evaluation of two different programing paradigms: shared-memory and mes-
sage passing. Several approaches for video segmentation as well as data access
are tested in the experiments, that also consider load balancing issues.
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1 Introduction

Content-based Multimedia Retrieval (CBMR) systems provide efficient access
in order to allow users querying multimedia databases so they can retrieve the
most similar items from the datasets [6,8].

In the case of video data, the unavoidable first stage is Shot Boundary
Detection (SBD), that deals with the extraction of the minimum units with
semantic meaning: shots. This way, this type of algorithms, besides isolating
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Table 1 Execution time and maximum speedup under Amdahl’s law (S∞) for different
Zernike polynomials (time values are expressed in seconds).

Video size Dec. Seg. Total Serial Parallel
Method (frames) time time time frac. (%) frac. (%) S∞

5000 62.80 293.20 356 17.64 82.36 5.67
zer3 10000 125.84 586.16 712 17.67 82.33 5.66

20000 252.34 1172.66 1425 17.71 82.29 5.65
5000 62.88 587.12 650 9.67 90.33 10.34

zer5 10000 125.70 1174.30 1300 9.67 90.33 10.34
20000 252.74 2350.26 2603 9.71 90.29 10.30
5000 63.00 2124.00 2187 2.88 97.12 34.71

zer10 10000 125.84 4249.16 4375 2.88 97.12 34.77
20000 254.11 8503.89 8758 2.90 97.10 34.47

shots try to make it easier to process video contents more efficiently. De-
pending on the video signal, these algorithms work on a compressed [1] or a
non-compressed [11] domain. This paper is focused on non-compressed video
segmentation because the primitives used are also part of the retrieval stage
in a Content-based Video Retrieval system [7].

Such a high demanding process, as SBD is, needs efficient and scalable im-
plementations that allow completing this stage achieving low response times,
taking into account that the size of the data to be processed keeps growing
day by day. Then, this paper firstly begins with a deep and exhaustive analy-
sis of a typical SBD algorithm, that includes experimental tests over suitable
architectures, adequate paradigms and efficient implementations. The results
allow to extract relevant conclusions about the set of parameters that achieve
the best results for the most suitable architecture from the point of view of
both performance and scalability. Thus, the performance of the SBD algo-
rithm is tested on two implementations based on two different programming
paradigms: shared-memory communication and distributed memory process-
ing using message passing paradigm. Considering these software solutions, a
shared-memory symmetric multiprocessor (SMP) and a distributed system
have been chosen to compare both implementations. It can be said that the
use of distributed solutions on clusters comes from their remarkable scalability,
flexibility and fault tolerance [3,2], that makes them providing an interesting
cost/performance ratio to solve this problem.

Shot boundary detection algorithms basically compute differences between
consecutive frames or groups of frames moving a symmetric mask window over
the whole set of frames. These differences can be computed based on different
visual features [5,11], although in this case, due to previous experience, Zernike
invariants [10], have been used. The algorithm follows the model of Zhang et
al. [12]; low-level details can be found in [7]. One key aspect is that video data,
coming from the TRECVid project [9], is coded using MPEG. This means the
whole process has to be broken down in two stages: a first one to decode
the video and a second one that accomplishes the video shot extraction on
noncompressed frames.

Table 1 shows decoding and segmentation times obtained for different
videos. Labels zer3, zer5 and zer10 stand for Zernike invariants up to 3rd,
5th and 10th order respectively. It can be seen that the higher the order is,
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the bigger the execution time of the segmentation stage is, reaching almost 2
hours and a half for videos of 20,000 frames in the case of zer10. It can be
also pointed out that the effort of looking for efficient and scalable implemen-
tations must be done on the SBD, since the great computational load is on
this stage rather than on the decoding one. Amdahl and Gustafson laws [4] say
that the bigger is the size of the problem to solve, the greater is the maximum
achievable speedup if the serial fraction of the program does not grow with
the problem size. Also, the serial fraction of the different parallel solutions
available overlap in some way with the parallel fraction of the problem, i.e.
the segmentation stage. As the number of nodes in the system grows, so does
this overlapping. This is the reason why the system size also influences the
maximum achievable speedup, which is also affected by the problem size.

Table 1 shows that the parallel fraction grows with the polynomial degree,
while the serial fraction remains constant. At the same time, the decoding
and segmentation times linearly grow with the video size. Since there are
dependencies among the different video frames, the decoding stage must be
solved sequentially. But the values in the table show the benefits of using a
parallel implementation, specially when using high order polynomials.

Upon observing the operations involved in the extraction stage, it can be
deduced that all processed frames have data dependencies, but only those
belonging to shot boundaries are critical to compute the exact points where
shots begin and end. It means that an approach based on data decomposition
could be achievable if the boundary and the frames before and after it are
sent to the same thread or process. Therefore, the SBD stage could be fully
parallelized.

2 Approaches and strategies implemented

As mentioned before, this paper deals with two different parallel architectures
(SMP and Cluster) and with two different parallel programming paradigms.
The first solution proposed is based on the shared-memory paradigm. It has
been implemented using LinuxThreads because Posix libraries are more effi-
cient than OpenMP. This solution is only feasible to be implemented on the
SMP architecture. The second solution has been programmed using MPI li-
braries as communication primitives between master and slave processes. The
main advantage of these implementations is that they can also be used on
SMP architectures, so they have been tested on both architectures.

Both distributed and centralized decoding approaches have been developed.
The differences between them lay on the decoding stage, as well as on the way
data are accessed. Considering the cluster architecture, since input data are
stored in one of the nodes, a farm based structure has been selected, in which
the master distributes the workload among the slave processes and collects
the partial results processed in each slave to obtain the video shots. In this
case two alternatives are also proposed: static and dynamic data distribution.
These strategies can be tested also in the SMP computer.
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Distributed decoding approach (DDA). Each thread has to access and decode
video data and to perform shot detection tasks, so there is not any master
thread. Prior to compute the shot detection algorithm, each thread has to find
its assigned starting location. The algorithm is based on the computation of
an adaptive threshold computed over a sliding window [7], so a few frames
before the assigned beginning location and after the ending location must be
considered. Due to this, there will be overlapping, but no dependencies, among
consecutive slices. The output of each thread will be an ordered list of detected
cuts including the exact first and last frame numbers of each shot.

Centralized decoding approach (CDA). In this approach a master thread1 de-
codes chunks of video data and passes them to the worker threads. Both decod-
ing and segmentation stages are processed independently, mainly because the
decoding time is much lower than the segmentation time. This solution avoids
the bottleneck that appears when multiple threads are performing simultane-
ous positioning over the same video data, as it can happens with DDA.

Static data distribution (SDD). The master process does an initial and homo-
geneous data distribution among the slave processes. The size of data packages
is obtained dividing the total number of frames in the video by the number of
available processors. In this approach, the master begins a decoding loop and
sends a complete data package to each slave. Slave processes send the results
back to the master after finishing the segmentation stage. The master gathers
these partial results and stores them.

Dynamic balanced data distribution (DDD). When the available nodes in the
system, because of a hardware heterogeneity or a non-dedicated use, a serious
workload imbalance can appear. To prevent it, this approach implements a
dynamic, global and centralized load balancing algorithm. The video is divided
into a certain number of equally sized work packages, greater than the number
of available nodes in the system. The master sends one work package to each
available node and waits for the answers. As soon as slaves finish their assigned
work they ask for new work packages, that the master will send while there
are pending ones. This approach allows the most powerful nodes to process a
higher number of work packages, obtaining a quite similar response time for all
nodes, regardless of their hardware and current workload. This advantage has
a more remarkable impact in very dynamic systems where the local workload
of the nodes can vary drastically along the execution of the application.

DDD implementation has greater communication overhead than SDD
approach, since more messages are exchanged. However, it is a quite reduced
increase due to the fact that because messages are quite big, the amount of
information they carry is always the same, and communication is limited by
the available bandwidth on top of other factors. For all these reasons, it would
be an optimum solution to choose during the execution between SDD and
DDD approaches based on both system’s dynamism and heterogeneity.

1 From now on there will be no difference on the use of the terms thread and process.
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Fig. 1 DDD response time with LinuxThreads on SMP: CDA vs. DDA.
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Fig. 2 Speedup obtained with LinuxThreads on SMP: SDD vs. DDD.

3 Experimental results

The experiments have been performed on a shared-memory CC-NUMA based
symmetric multiprocessor (SMP), a SGI Prism 350 machine with 16 Intel
Itanium II processors and a main memory of 32GB DDRAM, and on a clus-
ter setup (Cluster) made up of eServer BladeCenter JS20 (2 IBM Power 970
2.2 GHZ processors and 4 GB of main memory) nodes, where due to admin-
istration issues up to 64 of them were available. Along the experiments, the
optimized video segmentation has been run for different videos, number of
threads and number of cluster nodes. It must be noticed that in CDA strat-
egy each slave process is assigned to one of the processors, plus one processor
dedicated to run the master code, with the exception of the setup with 16
nodes, which runs one master and one slave in one node, and 15 slave pro-
cesses in the other nodes. The main goals of the experiments are: (1) to validate
the viability of a parallel solution for the video segmentation application on
different architectures and parallel programming paradigms; (2) to compare
the performance of two alternative architectures, based on shared-memory and
on distributed memory; (3) to compare two parallel computation paradigms,
like shared-memory vs. message passing programming and different strategies
based on data access and data processing; (4) to test dynamic data distribution
strategy with load balancing mechanisms. CDA can only be compared against
DDA in the SMP, since DDA structure does not fit well in the Cluster.
SDD and DDD strategies have been compared in both architectures.
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Fig. 3 DDA Response time with LinuxThreads on SMP: SDD vs. DDD.

3.1 Comparison among different strategies

3.1.1 Comparison between CDA and DDA in the SMP

Figure 1 presents the evolution of response times and Fig. 2 the speedup2 for
both implementations when the number of processors is increased and several
data sizes are considered. To obtain these results, packages of 157 frames have
been used. With this size, the different processors involved have to exchange
different communication operations. In these cases, figures obtained improve
the ones presented as both video and package sizes are increased. All figures
show a great reduction of the response times, so it can be deduced that parallel
implementations are a good solution to cut down the application response time.

A detailed analysis of the results presented in Fig. 1 and Fig. 2 reveals that
the CDA response times are always at least twice better than DDA ones. It
can be noticed how speedup follows a nearly linear curve as a function of the
number of considered processors. Moreover it must be said that speedup is
almost independent of the input data size growth, so it can be concluded that
the communication overhead is negligible with regard to the processing time.

3.1.2 Comparison between SDD and DDD

The performance achieved by both solutions has been tested in both architec-
tures.

SMP: Figure 3 presents the evolution of the response time for both imple-
mentations in SMP. The package size for DDD is again fixed to 157 frames,
while in SDD the greatest package size is fixed by the test with the maximum
number of nodes (15 in DDD). All figures show a great reduction of response
times, with SDD version slightly outperforming DDD approach. It can be
said that the speedups are very close to the ideal one. The execution time de-
creases while the package size grows, except for the setup with 15 processors.
Anyway, the SDD version still beats DDD with its maximum package size.
The worse results in DDD with 15 processing nodes are due to the distri-
bution of the workload, that involves processing the last package in only one
node while the rest are idle, a fact that increases the total execution time.

2 The speedup for each implementation is calculated as the ratio between the time ob-
tained when using a single processor and the time with N processors.
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Table 2 Task load distribution when DDD introduces load balancing mechanisms.

Initial load Processor #
(# of tasks) [1-4] [5-8] [9-12] [13-16]

0 8 8 8 8
1 5 9 9 9
2 4 10 9 9
3 3 10 10 9
4 2 10 10 10
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Fig. 4 DDA response time and efficiency degradation of the LinuxThreads version on
SMP with load balancing: SDD vs. DDD.

Some of the processors have been overloaded in order to run load balancing
tests on SMP, although the results obtained can be extrapolated since this
study is architecture independent. The performance of the system dealing with
20,000 frames and 157 frames per package is presented. Table 2 shows the
number of packages processed by each node of the SMP architecture when 4
of these processors are executing a limited number of additional tasks, ranging
from 0 (no overload at all) to 4 (maximum overload). As it is shown in these
values, the workload is distributed among the unloaded processors (from node
5 to 16) depending on the number of packages to distribute from an initial
workload of 128 packages. Figure 4 shows the response time and efficiency
degradation achieved by SDD and DDD overloading four nodes in SMP
as described in Table 2. As it can be noticed in both figures, load balancing
improves the performance of the whole system offering good levels of efficiency,
although there are several nodes dedicated to attend other jobs. However,
in a homogeneous system without any external workload, SDD will achieve
better performance because of the absence of load balancing overhead. As
mentioned above, these experiments can be generalized to other architectures
like homogeneous clusters with imbalanced nodes or heterogeneous clusters.

Cluster: In these case and due to their interest, the speedups achieved by
both implementations in Cluster are shown in Fig. 5. In DDD, the increment
of the speedup as the video size grows can be considered spectacular with the
one obtained for SDD, reaching the minimum with 10,000 frames, surpass-
ing 50.6 with 20,000 frames (with an efficiency value of 0.8) and reaching a
maximum value of 57.5 with 80,000 frames (with an efficiency value of 0.9).

This study measures communication times on both implementations. Fig-
ure 6 shows the percentage of total execution time devoted to communication
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Fig. 5 CDA Speedup of the MPI versions on Cluster comparing SDD and DDD.
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Fig. 6 CDA Response time percentage dedicated to communication operations of the MPI
versions on Cluster comparing SDD and DDD.

data. The communication time only depends on the video size, remaining al-
most constant for all the setups tested in each size. On the other hand, it can
be seen that the behavior is very similar for all sizes tested. Finally, it must
be noticed that the increment of the communication time does not cause the
percentage increase shown in Figure 6. This increase is due to a reduction on
the processor workload when more processors are involved in the setup.

3.2 Comparison of shared-memory vs. message passing

This section presents the results comparing both programming paradigms,
shared-memory and message passing. Figure 7 presents the evolution of the
speedup for both programming paradigms in SMP. All figures show quite
outstanding speedup curves. When the video size is greater than 20,000 frames,
LinuxThreads version improves the results provided by MPI. Figure 7(b)
clearly shows the degradation that appears when the processor dedicated to
run the master process in the MPI version is shared by an additional 16th

slave process, overloading the corresponding SMP processor. This means that
the load associated to the master task is not negligible with MPI, while
sharing one processor by the main thread of the LinuxThreads and one of
the launched threads does not diminish speedup figures, as Figure 7(a) shows.
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Fig. 7 CDA-DDD Speedup on SMP comparing implementations of shared-memory
(LinuxThreads) and message-passing (MPI) paradigms.
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Fig. 8 Speedup on both architectures using the same programming paradigm (MPI) and
the same strategy for distributing the load among the available processors (CDA).

3.3 Comparison between parallel architectures: SMP vs. cluster

Finally, this section presents a comparison between both architectures using
the same programming paradigm and the same implemented approach. Better
response times in Cluster can be achieved since the number of available pro-
cessors is greater than in SMP, but both architectures can be compared using
speedup figures, which are presented in Fig. 8. Again, all figures show a great
reduction of response times and quite outstanding speedup curves. When the
number of slaves in the cluster is increased, the slope increment of the curve
is clearly sharper in Cluster than in SMP, proving a better scalability in the
Cluster than in SMP. The degradation that appears in Fig. 8(a) is the same
one shown in Fig. 7(b) for previously commented reasons. It must be noticed
that to maintain the speedup and then the scalability, one processor cannot
share both master and slave processes, so it is necessary to leave exclusively
one processor for the master, as seen in Figures 7(b) and 8(a) when using 15
slaves.

4 Conclusions and future work

This paper presents a quite exhaustive study among different parallel archi-
tectures and parallel programming paradigms of a video shot segmentation al-
gorithm used in a Content-based Multimedia Retrieval System. Programmed
implementations attempt to cover all possible parallel programming aspects,
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just as the different studied paradigms: two LinuxThreads implementations
and two MPI versions, tested on a shared-memory symmetric multiprocessor
and on a cluster. Important conclusions can be extracted from these experi-
ments. Considering the strategy for accessing and segmenting video data, it
can be stated that DDA has a much simpler implementation, although CDA
is clearly better from the point of view of performance and shows a slightly
better scalability. Simultaneous access of the threads to the same video data
for decoding purposes means a bottleneck in the I/O subsystem that surpass
the penalty introduced when only a single thread is devoted to do the task.

The comparison of both distribution strategies, SDD vs. DDD, when there
are no problems with memory accesses, turns out that differences are almost
negligible and the simplest one should be chosen (SDD). But when video size
grows or when dealing with heterogeneous clusters, DDD approach is better
to introduce load balancing solutions as it has been experimentally shown.

The performance obtained by both programming paradigms is very similar
in SMP with both implementations. Programming LinuxThreads is simpler
than MPI, but message passing enjoys portability as an unquestionable advan-
tage over threads, since the same code can be executed in both architectures.

From the experiments it can be deduced that all implementations and
architectures tested achieve excellent performance, with strong reductions of
execution times. Speedup values are almost linear and quite close to the theo-
retical maxima in all experiments. Shared memory architectures obtain better
results with a small number of processors because each one is more powerful
than the nodes available in the cluster, but are less scalable than clusters.

Beowulf clusters with quite powerful networks achieve excellent scalability
results. Communication times remain almost constant when the number of
nodes grows, then the speedup achieved by the parallel system keeps stable
when the problem size grows and the number of nodes also increases.

Future work will include the integration of these systems in a grid infras-
tructure. Another issue to be considered will be the implementation of the
scalable SBD system in other available many-core architectures, such GPUs.
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