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Abstract This paper presents a new formulation of the isoefficiency function
which can be applied to parallel systems executing balanced or unbalanced
workloads. This new formulation allows analyzing the scalability of parallel
systems under either balanced or unbalanced workloads. Finally, the validity
of this new metric is evaluated using some synthetic benchmarks. The exper-
imental results allow assessing the importance of considering the unbalanced
workloads while analyzing the scalability of parallel systems.
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1 Introduction

Thanks to the multi-core architecture, the number of cores available in super-
computers has been dramatically increasing during the last years. This fact
has turned scalability into a factor of growing importance in the design and
implementation of parallel applications, being currently even more important
than performance.

All scalability metrics are based on selecting a performance metric (speedup,
efficiency, latency,...) and analyze its evolution as it increases the number of
processors in the system [3,1,5,4,6]. If this metric can be kept constant while
increasing both the number of processors and the workload, it can be said
that the system is scalable. On the other hand, it is widely known that the
imbalance in the workload assigned to the processors has a deep impact on
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performance of parallel systems and therefore in any of the aforementioned
metrics [2]. Therefore, if scalability is defined as a function of the problem
size, as well as a performance metric, a key aspect to take into account is the
effect of load imbalance on the system’s scalability.

Up to the present moment all scalability models consider, either implic-
itly or explicitly, a workload which is perfectly balanced among all of the
system nodes [3,1,5,4,6]. When talking about parallel applications, this is a
non-realistic hypothesis due to several reasons: firstly, because it means that
the workload can be considered continuous and infinitely divisible; but also
because parallel systems have multiple sources of imbalance, since they can be
non-dedicated systems or they can have a poor initial workload distribution,
for example.

In order to illustrate the problem, let us consider an embarrassing parallel
benchmark without communication overhead. Its isoefficiency function should
be constant; that is O(K), where K € R, and the system should be perfectly
scalable [3]. However, once the isoefficiency function has been experimentally
measured, the results do not agree with this prediction. Fig. 1 shows the theo-
retical and real isoefficiency functions of this benchmark, that is, the evolution
of the workload in front of the number of processors so as to keep the efficiency
constant. The figure shows an isoefficiency function which is linear with respect
to the number of processors. Which is the source of this difference between
theoretical predictions and real measured results? The answer is simple: the
application has a workload showing constant imbalance for all configurations
and system sizes evaluated.

Hence, it can be seen the importance of imbalance to obtain an accurate
scalability model, since not taking imbalance into account yields poor predic-
tions. This paper presents a new expression for the isoefficiency model that
includes a model for unbalanced workload, i. e. a more general isoefficiency
function that can be applied to parallel systems with or without load balanc-
ing, taking into account theoretical properties of the systems. To the author’s
knowledge, this is the first work that highlights this problem and suggests a
suitable solution. Although this result is eminently theoretical, it has a deep
impact in the design and implementation of parallel applications.

Using the new isoefficiency function, a number of theoretical examples are
considered, studying different aspects of the scalability of parallel systems
which include the communication overhead as well as the overhead originated
by workload imbalance. Finally, an experimental validation has been carried
out in order to verify the validity and correctness of the proposed model.

2 Scalability of unbalanced parallel systems
2.1 Imbalance workload model

Let us consider a parallel system as a set of m interconnected nodes, N =
ni,...,Nm. The workload to be executed can be characterized by a set of
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Fig. 1 Theoretical and real Isoefficiency function: unbalanced parallel application

basic operations which can be executed in parallel; it will be assumed that the
workload size is W and that it can be decomposed into a set of computational
units. The computational power of each node (p) can be defined as the number
of basic operations the system is capable of execute per time unit.

If the workload is continuous and divisible ad infinitum, the system can
achieve a perfect load balancing by assigning the same workload to every
node: w; = % Therefore, assuming that there are not any communication
overheads, the execution time of all of the nodes will remain the same, given
by the expression: Topy = %

However, in real applications the workload can not be divided continuously,
due to the intrinsic grain size of the problem. This forces to assign an integer
number of jobs to each node, leading to an unbalanced load distribution, where
the computation time is not equal for every node. In applications with coarse
grain size, these differences are significantly larger.

In consequence, in unbalanced systems there will be some nodes executing
less workload while others process more than the optimal one. Let’s define
Aw; as the difference between the optimal and the current workload of node 1.
Note that this value can be either positive or negative, if that node has more
or less workload than the optimal. Taking into account this fact, the previous
expression can be rewritten as follows:

m

Hence, the execution time of a single node, assuming no communication over-
head (i. e., only CPU time), is given by the following expression:
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(2)

Let Ty; represent the time needed by processor n; for computing the ad-
ditional workload (Tj,; = 2%4). Also, the maximum deviation between ideal
and real execution times because of the additional workload will be T, =
max??,{ 4%}, The processor achieving this maximum will be the last one to

finish its computation, assuming no communication overhead.




The overhead introduced by this fact, as it will be shown later on, can be
a constant value, but it can also depend both on the total workload W and on
the number of processors m, so it is redefined as T, (W, m). In the first case, the
imbalance introduced will depend on the total size of the problem to be solved,
i. e., increasing the size of the problem will lead to an increase or decrease of
the imbalance proportional to W. Let us also consider the communication
overhead T, (W, m). Then, the response time can be expressed as:

To = T (W,m) + T,(W.m) )
p-m
It is important to emphasize that while T, increases when the number of
processors does (or, at least, it remains constant), T, might decrease when m
increases. This is possible because of the way both grain size and number of
processors affect imbalance, and in consequence, Tj,.

2.2 Isoefficiency function

As explained above, the response time of a parallel system is: T = p_ﬂm +
Ty(W,m) + To(W, m). Thus, based on the same parameters, the sequential
time needed to solve the same problem with the same input size would be:
Ts = %, which is equivalent to solving the problem by executing the whole
workload in a single processor with computational power p. Therefore, this
concept can be applied to the efficiency expression:
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Hence, for scalable parallel systems, the efficiency can be kept at a desired
value if the ratio % in the expression above can be kept at a constant
value. In order to keep a specific efficiency figure, the following expression

states how large the workload W has to be:

m-p-(Ty+7T,) 1-F E
= = m-p- (T, +T,
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Let K =p- % be a constant depending on the efficiency. Then the isoeffi-

ciency function with load imbalance support can be written as:
W =K -m- (Tg(W,m) + To(W,m)) (4)

This means the effect of the workload imbalance can be modeled as an addi-
tional overhead of the system, in the same way as communication time can be
dealt with. In this case the factor T} is the additional time that the processor
that gets the largest workload chunk needs in order to process it in the CPU,
i. e. without taking into consideration communication times.



Moreover, another remarkable fact that can be pointed out from this ex-
pression is that in every parallel system, even those which present no commu-
nication overheads, the presence of an unbalanced workload means that the
system can not be perfectly scaled. Besides, it has an important specific be-
havior: as overheads always increase with the number of nodes, the imbalance
can change the other way around, since an unbalanced system might become
more balanced when it scales up.

3 Influence of the unbalanced workload in the scalability

Equation 4 means that the imbalance can vary when the system size m, the
problem size W or both of them change, since the overheads T, and 7T, will
be affected. Then, a system would be perfectly scalable if there is not any
imbalance nor communication overhead, that is T;, = T, = 0. This section
presents some interesting examples of the scalability of parallel systems around
the variation of 7. In all cases the starting point is a parallel system defined
by S(m,W) and a scaled system S’(m’, W'), with m’ > m, and assuming its
workload is always distributed proportionally to the number of processors, with
an imbalance T . Firstly, some cases in which there is not any communication
overhead (i. e. T, = 0) will be considered, in order to isolate the effect of
imbalance on the theoretical studies. Then, there will be under study some
cases where it is considered the combined effect of the two parameters, T, and
T,.

If each system’s workload is distributed among its processors being T, = c,
i. e. there is a constant imbalance in both S and S/, and it is independent of
m and W, then the system is scalable if and only if there is an increase of
workload proportional to the number of processors in the system, that is, W
is O(m). This situation can happen whenever the problem size is relatively
coarse, and the number of available work-packages is not a multiple of the
number of processors.

Let us define T; = ¢ € R, constant independent of m and W. In this case
the isoefficiency function is:

W=K-m-T,=W=K'-m, where K'=K-c (5)

Also, if the imbalance depends on the number of processors in a linear
way, that is T = ¢1 - m + ¢, with ¢1,c2 € R, and there is not any additional
overhead, the system will be scalable if and only if the problem size grows as
a function of O(m?). The proof is straightforward by replacing T}, in Equation
4 for the new expression.

If the imbalance is inversely proportional to the number of processors,
that is T, = 7, with ¢; € %, then the system will be perfectly scalable
since the isoefficiency function remains constant independently of the number
of processors, that is W is O(K). It can be noticed that, when W > m,
this situation brakes the lower bound established by Grama et al. [3] for the
isoefliciency function.



Given Ty = ¢1 - W, with ¢; € R, i. e. the imbalance is linearly dependent of
the size of the problem, then the system is non scalable, since an increase in
the workload size produces also an increase in the imbalance. In consequence,
the efficiency can not remain constant.

If the imbalance is inversely proportional to the size of the problem, that
is Ty = 1, with ¢; € R, it is straightforward to prove that the system will be
scalable if an only if the size of the problem grows as a function of O(y/m).
Once again, it brakes the lower bound established by [3] for perfectly balanced
systems, since the growth obtained here is under the linear one.

Next, it will be analyzed how the two different factors, communication
overhead (T,) and load imbalance (T}) affect the overall scalability of the
parallel system. For example, if both the imbalance and the overhead are
assumed to be constant and independent of m and W, ie., T, = ¢; and
T, = ca, being c1,co € R, the system is scalable if and only if the size of
the problem W grows proportionally to the number of processors, that is,
W is O(m). This can be easily demonstrated using the isoefficiency function
previously presented in Section 2.2:

W=K-m-(T,+T,)=W=K-m-(c1+c)=W=K-m

where

KI:K‘(01+C2)

Thus, if the system has a communication overhead and the imbalance re-
mains constant with size, then the imbalance has no effect on the system’s
scalability. It only has impact on the maximum scalability the system can
achieve but not on the evolution of the efficiency when increasing the system
size. Therefore, in this case W has to grow linearly with the number of nodes,
which is the lower bound posed by [3].

4 Model evaluation

A number of experiments was carried out in order to test empirically the valid-
ity of the proposed model. The main goals behind the tests were: (1) To verify
the hypothesis posed in this paper about the influence of an unbalanced work-
load in the scalability of parallel systems from an empirical point of view. (2)
To validate the scalability model proposed in Section 2 in situations in which
there is an unbalanced workload. (3) To verify the correctness of the model
stated in Section 3, by showing how a simple application with communication
overheads behaves when the proportion of workload imbalance changes.

Altamira, the cluster from the Universidad de Cantabria used in these tests,
is composed of 18 eServer BladeCenter, with 256 JS20 nodes (512 processors)
linked by a Myrinet network with 1 Gbps of bandwidth. A number of tests have
been performed changing the system and workload sizes. For every system’s
size a curve showing the evolution of the efficiency for different workloads has
been obtained.
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Fig. 2 Isoefficiency function for proportional_m and inverse_w benchmarks

The starting point is a basic benchmark in which each node works on
local data and obtains its own solution, which means that the communication
overhead is null and therefore its efficiency is constant, with independence
of the workload and the system’s size. Then, this benchmark should be fully
scalable since its isoefficiency function is O(K). This statement is true if the
workload is perfectly balanced, but the isoefficiency function changes when
different levels of imbalance are introduced in the system, as the experimental
results show. All the constants used on the experiments depend on the nodes’
computational power and on the problem’s nature. They have been measured
in the sequential implementation of the benchmarks. Four different workload
distributions are considered:

— Imbalance proportional to the number of processors, i. e. T; = c-m, where
¢ € R. It will be labeled proportional_m.

— Imbalance inversely proportional to the number of processors, i. e. T, = =,
where ¢ € R. It will be labeled inverse_m.

— Imbalance proportional to the workload, i. e. T, = c¢- W, where c € R. It
will be labeled proportional_w.

— Imbalance inversely proportional to the workload, i. e. T, =
c € R. It will be labeled inverse_w.

7, Where

Fig. 2 shows the isoefficiency obtained for the proportional_m and inverse_w
tests. As it can be seen, in figure 2(a) the isoefficiency function follows a
parabolic curve when in this case the problem size should grow quadratically
(W?); the lower curve shows the issoefficiency growing linearly with the num-
ber of nodes. On the other hand, figure 2(b) shows the isoefficiency function
with an imbalance that changes inversely to the workload. In this case (in-
verse_w benchmark) it can be seen that the isoefficiency function obtained is
O(y/m), under a linear growth. Both results match the prediction made by
the theoretical model in Section 3.

Additionally, figure 3 shows the variation of the efficiency in front of the
workload for different system’s sizes for the proportional_w and the inverse_m
benchmarks. In the proportional w case, in figure 3(a), it can be seen that
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given a certain system’s size, the efficiency remains almost constant when the
workload grows. On the other hand, it can be seen that when the system’s size
increases it is not possible to keep the efficiency constant, whatever the work-
load is. Therefore, the isoefficiency function says the system is not scalable.
On the contrary, in the inverse_m test the efficiency remains constant, around
0.50, with independence of the problem’s size and the number of nodes. There-
fore, the isoefficiency function in this situation is constant and the system is
fully scalable, as predicted by the model.

Some important conclusions can be extracted from these cases. First, it is
clear the great impact that an unbalanced workload has on the scalability of a
parallel system. The results obtained allow concluding that the same parallel
system can have quite different scalability behaviors, based on the workload
distribution, being able to even turn into a non-scalable system, even if it does
not have any communication overhead. Additionally, the four cases presented
here allow to asses the correctness of the model posed in this paper. They have
been analyzed from a theoretical point of view in Section 3, and the results
obtained match perfectly the theoretical predictions.

Finally, this section presents some experimental results obtained from a
benchmark that introduces both imbalance and communication overheads.
The communication overhead is proportional to the number of processors. In
this case, the classic isoefficiency function would be O(m), not taking into ac-
count the workload imbalance. In this paper two different imbalance scenarios
are presented as examples: constant imbalance, i.e, T, = ¢; and imbalance

inversely proportional to the number of processors, i.e., T, = <.

m
In both cases, the communication overhead is proportional to the number
of processors, being T, = ¢ - m. Therefore, taking into account both overhead
sources, the scalability model presented in this paper predicts an isoefficiency
function O(m?). Fig. 4 shows the collected experimental results showing the
isoefliciency function achieved for both cases.
Fig. 4(a) shows two results achieved for the isoefficiency function regarding

the existing relationship between the values of T, and T}. These results show
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the influence of both ¢; and ¢y constants in the scalability properties. If these
values are similar (in the same order of magnitude) both communication and
imbalance overheads have similar weight in the isoefficiency function. There-
fore, it can be seen that the isoefficiency function grows quadratically with
the number of processors, i.e., it is O(m?) as the presented model has pre-
dicted. Nevertheless, if ¢; > ¢ the influence of the communication overhead
is almost negligible and has no impact on the isoefficiency function. In this
case the isoefficiency function is linear, although the slope is slightly over 1,
that would be the ideal scalability. This behavior is due to the relationship
between both overheads when T, > T,, which makes the linear growth of T,
negligible compared to Ty, being the value of T;, the one that actually controls
the efficiency behavior, and thus the isoefficiency. A similar effect can be ob-
served in Fig. 4(b) for the case where T; = ¢, Again if ¢; > ¢, the obtained
isoefficiency remains constant. If both ¢; and ¢y are similar the isoefficiency
function is quadratic, as predicted by the theoretical model presented here.

These results point out the importance of taking into account the workload
imbalance when estimating the scalability of a parallel system. Additionally,
it remarks the importance of the constant parameters. In general, when com-
plexity studies are carried out, these parameters are assumed to have a small
influence. Nevertheless, in these cases two different effects have to be added
up and it is important not to forget the weight of each of them in the final
efficiency value. This weight is determined by the complexity of the expression
but also by the constant values. Not taking into account this values might lead
to an unexpected system behavior.

5 Conclusions and Future Work

Since long ago there is evidence that unbalanced workloads are one of the
aspects that have the biggest impact on the performance of parallel applica-
tions. This paper gives the proof for the very first time, as far as the authors
know, that this statement can also be applied to scalability. Thus, the main
contribution of this paper is that the evaluation of the scalability of a parallel
system without considering the workload imbalance leads to potentially erro-
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neous predictions. Although many authors have proposed scalability models
before, none of them considers load imbalance.

This paper proposes a simple mathematical model for node imbalance in
parallel systems. The model allows considering unbalanced workloads as an-
other overhead in the system, similar to the communication overhead. This
way, it is quite simple to introduce this factor in the isoefficiency function, in
order to successfully predict the scalability of unbalanced parallel systems.

The new isoefficiency function proposed here makes it possible to perform
a deep analysis of the influence of imbalance on the scalability of parallel
systems, as well as its relationship with the communication overhead. This
way, a number of theoretical analysis have been presented with one remarkable
result: if the variation of imbalance is inversely proportional to the workload
or to the number of processors, the system’s scalability can be under linear.
This result brakes the lower bound established by Grama et al. [3].

Both the model and its application to scalability studies have been experi-
mentally validated using some synthetic benchmarks. In all of the experiments
carried out the correlation between theoretical predictions and empirical re-
sults is excellent, and therefore, it can be stated that the model is quite accu-
rate. Another important conclusion from the experiments is the importance of
the relative value of both communication and imbalance overheads. Thus, since
the isoefficiency function is a complexity analysis, it only collects the function’s
tendency as the number of processors grows. This is valid if all sources of im-
balance are homogeneous and therefore they all present similar constants. But
the results achieved show that if one of the overheads is much bigger than the
others then the first one can clearly control the systems’ behavior.

Finally, the next step is the use of this model with real applications in order
to obtain a methodology that allow modeling unbalanced workloads. Also, an
extension of this model to heterogeneous computing systems in which the
nodes have different capabilities has to be done.
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