
Noname manuscript No.
(will be inserted by the editor)

Evaluating scalability in heterogeneous systems

Jose L. Bosque · Oscar D. Robles ·

Pablo Toharia · Luis Pastor

Abstract This paper presents a new expression for an isoefficiency function
which can be applied both to homogeneous and heterogeneous systems. Using
this new function, called H-isoefficiency, it is now possible to analyze the scal-
ability of heterogeneous clusters. In order to show how this new metric can be
used, a theoretical a priori analysis of the scalability of a Gauss Elimination
algorithm is presented, together with a model evaluation which demonstrates
the correlation between the theoretical analysis and the experimental results.

Keywords Heterogeneous Computing · Scalability Analisys · Isoefficiency

1 Introduction and related work

A quick look to the top500 list now, in the age of exascale computing, reveals
6 machines with more than 100,000 processors and 3 of them with more than
200,000. The availability of multiple cores is behind this trend, and from this
perspective, aspects such as performance loose importance, while scalability
emerges as one of the key concepts in parallel computing.

The performance of parallel programs must be evaluated together with the
computer system on which they run. Otherwise, an algorithm that solves a
problem efficiently on a specific architecture and number of processors may
perform poorly if the architecture or the number of processors change [3].
For example, common speedup graphs teach us that this index does not grow
linearly with the number of processors, but tend to saturate. Nevertheless,
a higher speedup can be obtained as the problem size increases while the
algorithm runs over the same number of processors [4]. Joining both effects, a
system is considered to be scalable if its performance measures remain constant
whenever the number of processors is increased by selecting the appropriate

Jose L. Bosque
Universidad de Cantabria. Tel.: +34-942-20-15-62
E-mail: joseluis.bosque@unican.es

Oscar D. Robles · Pablo Toharia · Luis Pastor
Universidad Rey Juan Carlos
E-mail: {oscardavid.robles,pablo.toharia,luis.pastor}@urjc.es

2

problem size. The system’s degree of scalability is given then by the ratio
problem growth to system growth needed to keep those performance measures
constant. It can be said that scalability has been a desired capability that
means not just the ability to operate a system, but to operate it efficiently and
with an adequate quality of service over the available range of configurations
[6].

The study of scalability within homogeneous parallel systems does not
count with a unified and generally accepted metric that characterizes the sys-
tem’s behavior [5,8,11]. Among the most representative options, latency can
be mentioned [13]. Another relevant method is Sun and Rover’s isospeed [12],
extended by Chen and Wu [2] for heterogeneous systems. Its main drawback
is that, being the isospeed an a posteriori measure, the algorithm has to be
implemented first.

Among all of the proposed approaches, the isoefficiency concept [9,3] is
the most widely accepted. In this case, the degree of scalability is given by
the isoefficiency function, that expresses the relationship problem size/number
of processors needed to keep the efficiency constant. The smaller this ratio,
the more scalable a parallel system is. Pastor and Bosque [10] proposed an
extension to heterogeneous systems, although their approach lacks generality,
since the functions they defined for analyzing the overhead time were linear
with respect to the problem size for every case. Kalinov [7] has also extended
the isoefficiency model to heterogeneous systems. In his work, the computa-
tional power of the slowest processor; the computational power of the fastest
processor and the average computational power of the system have to remain
unchanged. These are indeed three tight restrictions, difficult to satisfy when
a system is upgraded with new nodes, conditioning therefore the range of
possible upgrades. In consequence, its definition lacks generality too.

This paper presents a new expression for the isoefficiency function, called
heterogeneous isoefficiency, which is a more general definition that improves
the aforementioned extensions. This new proposal has been applied to some
problems, in order to check its validity. The results achieved have always been
quite close to those predicted by the model.

The rest of the paper is organized as follows: Section 2 defines the isoeffi-
ciency function for heterogeneous systems. Section 3 presents the application of
this model to a practical problem. Section 4 shows some experimental results.
Finally, Section 5 shows the conclusions and future work.

2 The Isoefficiency Function for Heterogeneous Systems

The isoefficiency function depends only on the number of processors, assuming
that all of them have the same computational power [9,3]. This is arguable,
since equal processors tend to behave differently, depending on issues such as
use of the memory hierarchy, etc. But it certainly does not hold in hetero-
geneous systems, where the overall response time depends on the number of
processors as much as on each processor’s particular features.

3

In order to study heterogeneous systems, it is necessary to define first the
notion of computational power for the whole system and for each node. In
this paper, the computational power of a heterogeneous system (pT) has been
defined as the sum of the computational power of all of its processors (pi) [10]:
pT =

∑p

i=1 pi. Also, assuming that W is a parameter that characterizes the
problem size, the computational power of each node has been computed using
the expression pi = W/Ti, where Ti is the response time for node i. It has
to be noted that this definition yields relative estimates which depend on the
nature of the problem to be considered.

The efficiency of a parallel (either homogeneous or heterogeneous) system,
denoted by ε, can be redefined as the ratio between the ideal and the real
response times achieved while processing a particular problem. While the real
one is the time actually spent by the parallel system, the ideal one is the time
needed by a single node that has the same computational power as the parallel
system for solving the same problem [10]. This is reflected in the following
equation:

ε =
Optimal achievable time

Actual response time
=

W

TR · pT
(1)

Based on this definition an isoefficiency function for heterogeneous systems,
or H-isoefficiency, can be defined now. In the heterogeneous case, the key
parameter will be the total systems computational power, rather than the
number of processors.

Given a heterogeneous parallel system S(p, pT ,W) with p processors, a
total computational power pT and a total amount of work represented by W,
and given also S′(p′, p′T ,W

′), a scaled system with p′T > pT , it can be said
that S is a scalable system if, whenever the system is upgraded from S to S’,
it is possible to select a problem size W’ such that the efficiencies of S and S′

are kept constant.
Now the H-isoefficiency function can be computed, starting from the het-

erogeneous efficiency definition for S. For that, the response time can be de-
composed on execution and overhead times: TR = Texe + To. Assuming that
the workload is evenly distributed among all of the nodes (proportionally to
each node’s computational power), Texe will be the same for every node, being
given by Texe = W

pT

. Then the response time will be given by the expression

TR = W
pT

+ To. Hence, the H-isoefficiency function can be defined as:

ε =
W

TR · pT
=

W

W + To · pT
=

1

1 + To·pT

W

For scalable heterogeneous parallel systems, the efficiency can be kept con-
stant if the ratio To·pT

W
is also kept constant by changing the problem size:

To · pT
W

=
1− ε

ε
⇒ W =

ε

1− ε
To · pT

Let K = ε
1−ε

. Then the H-isoefficiency function can be written as:

W = K · To(p) · pT (p) (2)

4

This is similar to the expression that gives the homogeneous isoefficiency,
although instead of using a single tc parameter, constant for the whole set of
nodes, it includes a new pT parameter which represents the total aggregated
computational power. This expression reflects also the fact that the scalability
of heterogeneous environments depends both on the number of nodes and the
total computational power of the scaled system.

When scaling a system, the computational power of the new nodes has to
be taken into account, in order to increase the problem size accordingly. For
example, if a system is scaled up just by upgrading the system nodes, the
total response time will decrease, and the total overhead (To) will be a larger
percentage of the response time, resulting in a smaller efficiency. The problem
size will have to be increased in order to keep the efficiency constant.

An important advantage of the proposed approach compared to Kalinov’s
is that the H-isoefficiency method can be applied whenever new nodes are
added (physical scalability), some nodes are upgraded (power scalability) or
both [14]. On the other hand, Kalinov’s method forces to maintain the average
computational power and therefore a power scalability study can not be done.
With the new approach, a priori studies can be carried out, for example, in
order to find out whether it is better to execute a particular algorithm on
a large number of less powerful processors or on a smaller number of more
powerful processors, as shown below.

3 Scalability of the Gauss Elimination Algorithm

Two different implementations of a Gaussian Elimination algorithm for solving
linear equation systems have been tested, in order to verify the validity of the
proposed approach. Both implementations differ in the way the communica-
tion is carried out: the first one uses point-to-point communication, while the
second one uses broadcasting. A theoretical analysis is presented here, while
the experimental results are shown in Section 4.

3.1 Performance Analysis

The time spent in a single point-to-point communication over an uncontested
interconnection network can be well approximated in terms of the startup
latency (λ), bandwidth (β) and message size (m), as TM = λ+ m

β
. A broadcast

function to p processors requires ⌈log(p)⌉ message-passing steps. Hence the
time spent in broadcasting an m word message can be approximated by TB =
(λ+ m

β
) · log(p).

The sequential implementation of the Gauss Elimination method needs
three nested loops, having a complexity Θ(n3). In the parallel implementa-
tion, the workload is divided by assigning the rows in an interleaved way,
in order to archive a balanced workload distribution. If the average time to
perform a basic algorithm step within the whole parallel system is tc, then
the expected computational time of the parallel algorithm is proportional to

TCPU =
⌈

n3/p
⌉

tc. Additionally, n communication events are needed, with a

1 to p scheme each one, in order to send a modified row to each node.

5

Point-to-Point Communication. In this approach, a point-to point commu-
nication scheme is used. Each message contains a complete row, and (p − 1)
messages are needed for each iteration, with an upperbound total communica-
tion cost1 of T pp

o = n · (p− 1) · (λ+ n/β). The total response time in this case

can be modeled by the expression TR =
⌈

n3/p
⌉

tc+n ·(p−1) ·λ+(p−1) ·n2/β.

Let’s determine the isoefficiency function for homogeneous systems. The
sequential algorithm has time complexity Θ(n3). Each of the p processes exe-
cuting the parallel algorithm spends Θ(n2·p) time performing communications.
Then the total communication overhead across p processors is Θ(n2 · p2).

Therefore the isoefficiency relation is:

n3 ≥ K · n2 · p2 ⇒ n ≥ K · p2

where K is a constant. With this isoefficiency function, we can say that
the scalability of the point-to-point implementation is poor.

Broadcast Communication. In this case the point-to-point communication
primitives are substituted by collective broadcasts. Therefore, the communica-
tion time is reduced to (λ+ n

β
) ·⌈log(p)⌉ for each iteration. As it is necessary to

do n broadcast operations, the response time is: TR =
⌈

n3/p
⌉

tc +n · ⌈log(p)⌉ ·

(λ+ n/β).
Using the same analysis as before, the isoefficiency function for the broadcast-

based implementation can be obtained. Each of the p processes executing the
parallel algorithm spendsΘ(n2·log(p)) time performing communications. Then
the total communication overhead across p processors is Θ(n2p·log(p)). There-
fore the isoefficiency relation is:

n3 ≥ K(n2p · log(p)) ⇒ n ≥ K(p · log(p))

where K is a constant. In this case the scalability is much better.

3.2 H-isoefficiency of the Gauss Elimination Algorithm

Now let’s determine the H-isoefficiency function of the Gauss’ method. As
mentioned earlier, the workload is evenly distributed according to each node’s
computational power (wi =

W
pT

· pi). This way, all the nodes spend the same

amount of time performing computations (W
pT

). Also, the overhead times in
the homogeneous and the heterogeneous system are the same. Therefore it is
easy to obtain the H-isoefficiency function for both implementations:

Point-to-Point Communication. Using the H-isoefficiency function given in
the previous Section:

W = K · pT · To ⇒ n3 = K · pT · (n · (p− 1) · λ+ (p− 1) ·
n2

β
)

1 Actually, the communication cost depends on n, which is decremented on each iteration.
But this does not affect the expression given for the isoefficiency function.

6

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 500 1000 1500 2000 2500

D
im

en
si

on
 o

f t
he

 M
at

rix
 (

N
)

p * LOG(p)

Homogeneous Cluster
Heterogeneous Cluster A
Heterogeneous Cluster B
Heterogeneous Cluster C

(a) Classic Isoefficiency

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 2e+11 4e+11 6e+11 8e+11 1e+12 1.2e+12

D
im

en
si

on
 o

f t
he

 M
at

rix
 (

N
)

LOG(p) * Total Computational Power

Homogeneous Cluster
Heterogeneous Cluster A
Heterogeneous Cluster B
Heterogeneous Cluster C

(b) H-isoefficiency

Fig. 1 Comparison of classic and H-isoefficiency figures in broadcast implementation

Analyzing each term of this expression separately, it can be seen that for
large values of n, the scalability depends mostly on the term n2. Therefore,
the H-isoefficiency function is given by:

n3 ≥ K · n2 · pT · p ⇒ n ≥ K · pT · p ⇒ Θ(pT p). (3)

Broadcast Communication. Following the same analysis:

W = K · pT · To ⇒ n3 = K · pT · (n · ⌈log(p)⌉ · (λ+
n

β
))

Therefore, in this case the H-isoefficiency function is:

n3 ≥ K(n2 · pT · log(p)) ⇒ n ≥ K · pT · log(p) ⇒ Θ(pT · log(p)). (4)

Again, the isoefficiency function is better for the broadcast-based approach.

4 Model Evaluation

A number of experiments was carried out in a heterogeneous cluster with up to
512 processors, interconnected with Myrinet. The cluster includes two different
kinds of processors, with different computational power, labeled as Fast (NF)
with pNF = 527000000 and Slow (NS), with pNS = 207300000. The rest of the
cluster parameters are: ¡¡¡¡¡¡¡ .mine λ = 5µs and β = 1.5 Gbps. =======
λ = 5µs and β = 1.5 Gbps. ¿¿¿¿¿¿¿ .r3737

These experiments, together with others presented in [1], show the useful-
ness of the H-isoefficiency method for studying the scalability of heterogeneous
parallel systems. The results presented in this section aim specifically at vali-
dating the H-isoefficiency functions presented in Section 3.

Figure 1 shows how much the problem size W has to grow in order to keep
the efficiency constant when the parallel system is upgraded. W is in this case
characterized by the matrix dimension n, and the system’s size by pT · log(p).
Figures 1(a) and 1(b) show the results achieved using the traditional isoeffi-
ciency and the new H-isoefficiency approaches respectively, for four different
cluster configurations: an homogeneous and three heterogeneous clusters, using
different combinations of fast and slow processors and two efficiency values.

7

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 1e+10 2e+10 3e+10 4e+10 5e+10 6e+10 7e+10 8e+10 9e+10 1e+11

D
im

en
si

on
 o

f t
he

 M
at

rix
 (

N
)

Total Computational Power

Broadcast Communication
Point-to-Point Communication

Fig. 2 H-isoefficiency:point-to-point and broadcast implementations.Heterogeneous cluster

Starting with Figure 1(b), this graphic presents some tests performed with
different heterogeneous cluster configurations, for two different values of ε
(which affects K and the lines slope). It can be seen that the problem size W
(given by n) must grow linearly with pT · log(p) independently of the cluster
configuration and the desired ε. This result agrees with the predictions yielded
by the theoretical model, proving the validity of the H-isoefficiency model for
predicting a priori the scalability of an application both in homogeneous and
heterogeneous clusters. This result agrees also with previous results [1].

The conclusions obtained after inspecting Figure 1(a), using the traditional
isoefficiency, are quite different. This figure shows that n has to be increased
linearly with the product p · log(p), as predicted by the isoefficiency function,
but only for the homogeneous cluster. The results for heterogeneous clusters
are erratic, not showing the linear trend they should. Clearly, the classical
isoefficiency can not be applied to heterogeneous clusters.

Finally, Figure 2 shows the experimental results obtained regarding the H-
isoefficiency function for both Point-to-Point and Broadcast implementations.
It can be seen that the Point-to-Point communication approach is much less
scalable than the Broadcast one, since the problem size has to grow quite faster
with respect to the number of processors. It therefore confirms the theoretical
analysis obtained in Section 3, supporting the claim that H-isoefficiency is an
appropriate model for predicting a priori the scalability of different algorithms
and implementations, saving efforts at the implementation stage.

5 Conclusions

This paper presents a new expression of the isoefficieny function, called H-
isoefficiency, which can be applied to homogeneous and heterogeneous systems
and which can be used for predicting algorithm scalability without needing the
actual implementation in the selected architecture. Comparing this model with
others, it presents several advantages, just like the isoefficiency model proposed
by Kumar and Rao [9] does. Its most remarkable advantage is that, being an
a priori method, it does not require the implementation of the algorithm in

8

the selected architecture. Additionally, it deals with both power and physical
scalability without imposing any restriction on the system’s setup.

The experiments performed here and in [1] show that the proposed method
yields results quite close to the values theoretically predicted. This shows that
the H-isoefficiency function is an accurate model that allows performing scal-
ability analysis both for homogeneous and heterogeneous systems. The results
have also verified the strong impact that different configurations have on the
scalability of a heterogeneous environment.

Future work will focus on the ability to deal with cases where balanced
workload distributions among the different nodes can not be made.

Acknowledgements

This work has been partially funded by the the Spanish Ministry of Education
and Science (grants TIN2010******, TIN2010-21291-C02-02 and Consolider
CSD2007-00050), as well as by the HiPEAC European Network of Excellence.

References

1. Jose L. Bosque, Oscar D. Robles, Pablo Toharia, and Luis Pastor. H-isoefficiency: Scal-
ability metric for heterogeneous systems. In 10th International Conference on Compu-

tational and Mathematical Methods in Science and Engineering, CMMSE 2010, pages
240–250, Almeria, Spain, June 2010. CMMSE - J. Vigo-Aguiar.

2. Yong Chen, Xian-He Sun, and Ming Wu. Algorithm-system scalability of heterogeneous
computing. Journal of Parallel and Distributed Computing, 68(11):1403–1412, 2008.

3. Ananth Y. Grama, Anshul Gupta, and Vipin Kumar. Isoefficiency: measuring the scala-
bility of parallel algorithms and architectures. IEEE parallel and distributed technology:

systems and applications, 1(3):12–21, August 1993.
4. John L. Gustafson. Reevaluating amdahl’s law. Communications of the ACM,

31(5):532–533, May 1988. Sandia NL.
5. John L. Gustafson, Gary R. Montry, and Robert E. Benner. Development of Parallel

Methods for a 1024-Processor Hypercube. SIAM Journal on Scientific and Statistical

Computing, 9(4):609–638, 1988.
6. P. Jogalekar and M. Woodside. Evaluating the scalability of distributed systems. IEEE

Transactions on Parallel and Distributed Systems, 11(6):589–603, June 2000.
7. A. Ya. Kalinov. Scalability of heterogeneous parallel systems. Programming and Com-

puter Software, 32(1):1–7, 2006.
8. Alan H. Karp and Horace P. Platt. Measuring parallel processor performance. Com-

munications of the ACM, 22(5):539–543, May 1990.
9. V. Kumar and V. N. Rao. Parallel depth-first search on multiprocessors: Part II: Anal-

ysis. International Journal of Parallel Programming, 16(6):501–519, December 1987.
10. Luis Pastor and Jose L. Bosque. Efficiency and scalability models for heterogeneous

clusters. In Third IEEE International Conference on Cluster Computing,, pages 427–
434, Los Angeles, California, Octubre 2001. IEEE Computer Society Press.

11. Xian-He Sun and John L. Gustafson. Sizeup: a new parallel performance metric. In
Proceedings of the 1991 International Conference on Parallel Processing, volume II,
Software, pages II–298–II–299. CRC Press, August 1991.

12. Xian-He Sun and D. T. Rover. Scalability of parallel algorithm-machine combinations.
IEEE Transactions on Parallel and Distributed Systems, 5(6):599–613, June 1994.

13. Y. Yan, X. Zhang, and Q. Ma. Software support for multiprocessor latency measurement
and evaluation. IEEE transactions on Software Engineering, 23(1):4–16, 1997.

14. X. Zhang and Y. Yan. Modelling and characterizing parallel computing performance
on heterogeneous networks of workstations. Proc. 7th IEEE Symp. on Parallel and

Distributed Processing, pages 25–35, 1995.

