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Abstract

Grid computing shares heterogeneous resources in
dynamic service-based environments. This kind of system
has the major advantage of enabling rapid composition of
distributed applications. However, equilibrating the amount
of work assigned to each of the nodes in a grid environ-
ment is a complex problem, even more so than for other
kinds of parallel systems. In this paper, we present a new
extension and reinterpretation of one of the most success-
ful models of awareness in Computer Supported Cooper-
ative Work (CSCW), called the Spatial Model of Interaction
(SMI), which manages awareness of interaction through a
set of key concepts, to manage task delivery in collaborative
distributed systems. This model, called AMBLE (Awareness
Model for Balancing the Load in Collaborative Grid Envi-
ronments), also applies some theoretical principles and
theories of multi-agent systems to create a collaborative and
cooperative environment that provides autonomous, effi-
cient and independent management of resources availa-
ble in a grid environment. WE-AMBLE, a Workflow Engine
to manage awareness in collaborative grid environments
through the AMBLE concepts, provides a workflow engine
to manage different levels of awareness, allowing different
virtual organizations to share computational resources based
on open protocols and interfaces.

Key words: workflow, collaborative environments, aware-
ness management, delivery task, grid environments

1 Introduction

Grid computing shares heterogeneous resources in
dynamic environments. The complexity of achieving this
goal is caused by several factors: the existence of different
virtual organizations, the dynamism of the underlying archi-
tecture, and the heterogeneity of the involved resources are
some of the most challenging aspects.

In order to provide better capabilities on a grid, it is
essential to manage the resources with a workflow engine
which will take the appropriate, and complex, decisions
about the allocation of processes to the resources of the
system. Resource management includes other tasks, such
as resources discovery, resources registration, and moni-
toring. The resource manager is expected to achieve load
balancing within the grid.

Equilibrating the amount of work assigned to each node
in a grid is a complex problem, even more so than for
other kinds of parallel systems. Even though load balanc-
ing has received a considerable amount of interest, it is
still not completely solved (Harchol-Balter and Downey
1997; Das, Harvey, and Biswas 2001; Zomaya and Teh
2001; Xiao, Chen, and Zhang 2002). Nevertheless, this
problem is central for minimizing the application’s
response time, optimizing the exploitation of resources
and avoiding overloading some processors while others
are idle. Grids present additional challenges, since they
can easily become heterogeneous, requiring load distribu-
tions that take into consideration each node’s computa-
tional features as well as the services that each node offers
to the grid – each node could offer different services. In
order to provide flexible and efficient load-balancing
mechanisms, new technologies could be applied.

This is the case for multi-agent systems, an already
mature technology, which offers promising features to
resource managers. The reactivity, proactivity and auton-
omy, as essential properties of agents, can help in the
complex task of managing resources in dynamic and chang-
ing environments. Additionally, the cooperation among
agents, which interchange information and resources sta-
tus, allows load balancing mechanisms to be performed
and efficiently deployed on a grid. In this sense, these
mechanisms have common goals with current collabora-
tive systems, and several synergies between both disci-
plines can arise.

In this paper, we present a new extension and reinter-
pretation of the Spatial Model of Interaction (SMI), an
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abstract awareness model designed to manage awareness
of interactions in cooperative applications through a set
of key concepts. The SMI is based on a set of key con-
cepts which are abstract and open enough as to be
reinterpreted in many other contexts with very different
meanings (Greenhalgh 1999). Thus, this paper presents a
new reinterpretation of this model, and its key concepts,
called AMBLE (Awareness Model for Balancing the
Load in Collaborative Grid Environments), in the context
of an asynchronous collaboration in a grid environment.
This reinterpretation merges research carried out in
CSCW, agents, and grid communities, to create a collab-
orative and cooperative agents-based grid environment.

WE-AMBLE, a Workflow Engine to manage aware-
ness in collaborative grid environments through the
AMBLE concepts, has been designed from the beginning
to be a parametrical, generic, open, model that could be
extended and adapted easily to new ideas and purposes.
This model allows management not just of resources and
information but also of interaction and awareness. WE-
AMBLE allows: i) control of the user interaction (through
the aura concept); ii) guiding the awareness toward spe-
cific users and resources (through both focus and nimbus
concepts); iii) scaling interaction through the awareness
concept. This model has also been designed to apply suc-
cessful agent-based theories, techniques and principles to
deal with resources sharing as well as resources assign-
ment inside the grid.

Following some of the main OGSA (Foster et al. 2002)
characteristics our proposal provides an open interface. In
this way, WE-AMBLE has the ability of being: i) extended
and adapted to new modifications in the model; ii) scala-
ble to different configurations; iii) re-used to manage dif-
ferent levels of awareness in different infrastructures and
virtual organizations; iv) free of bottlenecks because of
its distributed nature.

2 Related Work

Two topics are closely related to this work. Firstly, the
main achievements of the collaborative systems, and
more specifically the negotiation, have been investigated
and applied as load-balancing strategies. Most of these
approaches use multi-agent systems as essential compo-
nents for achieving load balancing in distributed systems.
Secondly, although grids could be considered as specific
distributed systems, there are important characteristics in
grids that influence in the relationship between agents
and grids.

Different load-balancing implementations are being
used in grid environments. For instance, the Satin sys-
tem, which is intended for divide-and-conquer grid appli-
cations, uses a load-balancing algorithm named Cluster-
aware Work Stealing (CRS; van Nieuwpoort et al. 2006).

CRS runs applications in grid environments almost as
efficiently as on local clusters. The AppLeS (Applica-
tion-level Scheduling) project (Berman et al. 1996) pro-
vides a scheduling framework for grid applications. This
project selects the best set of resources for a specific
application from a pool of grid resources. Unlike these
implementations, our system applies the awareness con-
cept with the aim of improving the load balance of a grid
environment.

However, we would like to highlight the relevant posi-
tion that grid workflows have in the grid community. A
huge number of works have appeared in the literature
about grid workflows, for example: Tannenbaum et al.
(2002), Deelman et al. (2004), Oinn et al. (2004), von
Laszewski et al. (2004), and Chen and Yang (2006a,
2006b). Condor DAGMan (Directed Acyclic Graph Man-
ager; Tannenbaum et al. 2002) is a meta-scheduler for
jobs running in Condor, a resource management system
intended for compute-intensive jobs, which has been
developed at the University of Wisconsin-Madison. DAG-
Man uses directed acyclic graphs in order to represent
dependencies among jobs. Pegasus (Deelman et al. 2004)
is a workflow management system used within the Gri-
PhyN project, whose aim is to give support to large vol-
umes of data in physics experiments. Pegasus maps
abstract workflows to a subset of available grid resources,
producing an executable workflow. Taverna (Oinn et al.
2004) is the workflow manager of the myGrid project.
This manager provides a workflow language SCUFL
(Simple Conceptual Unified Flow Language) and a graph-
ical interface to make easier the development and running
of bioinformatics workflows over distributed computer
resources. GridAnt (von Laszewski et al. 2004) is a user-
controllable workflow manager developed at the Argonne
National Laboratory. It uses the workflow engine of
Apache Ant, providing grid tasks to be used in the Ant
framework.

A complete taxonomy and the classification of differ-
ent workflow systems in this taxonomy are described by
Yu and Buyya (2005). This taxonomy is constructed
according to the main functions and architectures of the
grid workflow systems.

Moreover, some interesting results in this area have
already appeared, for example Chen and Yang (2006a,
2006b).

Another important related aspect is the negotiation.
The negotiation takes an important role in agent systems.
Four different negotiation models were studied by Shen
et al. (2002) for agent-based load balancing and grid com-
puting: contract net protocol, auction model, game theory
based model and discrete optimal control model.

Both grid and agent solutions have been developed for
distributed systems, although every discipline has its own
concerns and goals. Challenges associated with the inter-
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action between grids and agents have been clearly defined
by Foster et al. (2004). Among others, the most important
lines of research identified for the overlapping of both
fields are: autonomous services, dynamic and stateful
services (Greenhalgh and Benford 1995); negotiation and
Service Level Agreements (SLA); virtual organization
management (Cheung et al. 2004); and security.1

As an example of the successful combination of grid and
agents, a real grid system has been built by means of mobile
agent technology. SMAGrid (Strong-Mobile Agent-Based
Grid; Zhang and Luo 2003) is composed of multiple
agents used for assigning resources to tasks. SMAGrid is
based on Tagent (Letsch 2000), a mobile agent system
which follows the MASIF standard and provides strong
mobility. Other works that use agents in grid environ-
ments have been described previously in this section.

As was remarked in the introduction, what really makes
the difference with the above-mentioned systems is the
ability to manage not just resources and information but
also interaction and awareness. WE-AMBLE applies suc-
cessful agent-based theories, techniques and principles to
deal with resource sharing as well as resource assignment
inside the grid. Additionally, the WE-AMBLE implemen-
tation is scalable, allows management of different levels
of awareness and is free of bottlenecks because of its dis-
tributed nature.

3 The Spatial Model of Interaction (SMI)

The Spatial Model of Interaction (SMI), defined for appli-
cation to any Computer Supported Cooperative Work
(CSCW) system where a spatial metric can be identified,
has been driven by a number of objectives (Benford and
Fahlén 1993):

• Scalability: It is based on the concept of aura. Each
object has an aura for each medium in which it can
interact, because the aura defines the volume of space
within which this interaction is possible (Greenhalgh
1999).

• Interactions: The SMI assumes a space populated by
potentially communicating objects. The SMI provides
a framework for these objects to manage their interac-
tion, and communication between every pair of objects
(Greenhalgh and Benford 1995).

The model itself defines five linked concepts: medium,
focus, nimbus, aura and awareness. These are extended
by the additional concepts of adapters and boundaries.

Medium: A prerequisite for useful communication is
that two objects have a compatible medium in which
both objects can communicate.

Aura: Defined as the sub-space which effectively
bounds the presence of an object within a given medium

and which acts as an enabler of potential interaction
(Fahlén and Brown 1992). Once aura has been used to
determine the potential for object interactions the objects
themselves are subsequently responsible for controlling
these interactions.

In each particular medium, it is possible to delimit the
observing object’s interest. This idea was introduced by
S. Benford in 1993 as and was called focus. In the same
way, it is possible to represent the observed object’s pro-
jection in a particular medium. This area is called nimbus
(see Figure 1).

Awareness: Quantifies the degree, nature or quality of
interaction between two objects. One object’s awareness
of another object quantifies the subjective importance or
relevance of that object. Awareness between objects in a
given medium is manipulated via focus and nimbus,
requiring a negotiation process. Considering, for exam-
ple, A’s awareness of B, the negotiation process com-
bines the observer’s (A’s) focus and the observed’s (B’s)
nimbus. For a simple discrete model of focus and nim-
bus, there are three possible classifications of awareness
values when two objects are negotiating unidirectional
awareness (Greenhalgh 1999):

• Full awareness: The awareness that object A has of
object B in a medium M is “full” when object B is
inside A’s focus and object A is inside B’s nimbus.

• Peripheral awareness: The awareness that object A
has of object B in a medium M is “peripheral” when
object B is outside A’s focus but object A is inside B’s
nimbus, or object B is inside A’s focus but object A is
outside B’s nimbus.

• No awareness: An object A has no awareness of object
B in a medium M when object B is outside A’s focus
and object A is outside B’s nimbus.

Fig. 1 Key concepts in the spatial model of interac-
tion.
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4 AMBLE: Reinterpreting the Key 
Awareness Concepts

Let us consider a system containing a set of nodes {ni}
and a task T that requires a set of processes to be solved
in the system. Each of these processes necessitates some
specific requirements (such as disk space, speed of CPU,
programs, database connectivity and so on), being ri the
set of requirements associated to the process pi, and there-
fore each of the processes will be identified by the tuple
(pi, ri) and T could be described as T = .

The AMBLE model takes into account that one of the
major goals of grid computing is increasing the collabo-
ration capabilities of the system, starting with a simple,
abstract and preliminary interpretation of the SMI key
concepts in the context of an asynchronous collaboration.
Thus the AMBLE model proposes an awareness infra-
structure, based on these concepts, that is capable of
managing the load management of grid environments.
This model reinterprets the SMI key concepts as follows:

Focus: Is interpreted as the subset of the space on
which the user has focused his attention with the aim of
interacting with it. Regarding tasks, and given a node ni
in the system requiring the execution of a given task (T),
the focus of this node would contain at least the subset of
nodes that are composing the virtual organization (VO)
in which this node is involved.

The focus will be delimited by the aura of the node in
the system. The focus of a given node could be modified
and oriented towards other VOs if needed.

Nimbus: Is defined as a tuple (Nimbus = (NimbusState,
NimbusSpace))containing information about: (a) the load
of the system at a given time (NimbusState); (b) the sub-
set of the space in which a given node projects its pres-
ence (NimbusSpace).

The NimbusState concept will depend on the processor
characteristics as well as on the load of the system at a
given time. In this way, the NimbusState could have three
possible values: Null, Medium or Maximum. If the load
of a given node is not high, and this node could receive
some processes (pi) or even the whole task T, its Nim-
busState will get the Maximum value. If there are no
receptors nodes in the system and a given node ni can
accept, at least, a process, then the NimbusState of this
node ni would be Medium. Finally, if the node ni is over-
loaded, its nimbus would be Null. The NimbusSpace will
determine those machines that could be included in the
task assignment process. The NimbusSpace will be delim-

ited by the aura (bounding the effective and potential
area of interaction) of the node in the system.

Awareness of Interaction (AwareInt): This concept
will quantify the degree, nature or quality of asynchro-
nous interaction between distributed resources. Following
the awareness classification introduced by Greenhalgh
(1999), this awareness could be Full, Peripheral or Null.

 The awareness of interaction will be peripheral if

or

 The AMBLE model is more than a reinterpretation of
the SMI, it extends the SMI to introduce some new con-
cepts such us:

Interactive Pool: This function returns the set of nodes
{nj} interacting with the ni node at a given moment.
Given a system and a task T to be executed in the node ni

InteractivePool: System → System

{ni} → {nj}

 then 

Task Resolution: This function determines if there is a
service in the node ni, being NimbusState(ni)/=Null, that
could be useful for executing the task T (or at least one of
its processes).

{ni} × T → {pi, s}

where s is the “score” to execute pi in ni node, being its
value within the range [0, ∞): 0 if the node ni fulfills all the
minimum requirements to execute the process pi; once
the node ni fulfills the all the minimum requirements to
execute the process pi, the higher the surplus over these
requirements, the higher will be the value of this score.

This concept would also complement the nimbus con-
cept, because the NimbusSpace will determine those

pi ri,( ){ }
i∑

Focus: Node System→
ni nj{ }→

AwareInt ni nj,( ) Full=

nj Focus ni{ }( ) ni Nimbus nj( )∈∧∈

AwareInt ni nj,( ) Peripheral=

nj Focus ni{ }( ) ni Nimbus nj( )∉∧∈

nj Focus ni{ }( ) ni Nimbus nj( )∈∧∉

AwareInt ni nj,( ) Full= nj InteractivePool ni( )∈

ni si{ }TaskResolution: Node Task Task→×
i∑=
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machines that could be included in the task assignment
process because they are not overloaded. This only means
that they could receive more workload, but the task T or
at least one of its processes pi will be executed in ni if, an
only if, there is a service si in the node ni that could be
useful to execute any of these pi processes.

Collaborative Organization: This function will take
into account the set of nodes determined by the Interac-
tive Pool function and will return those nodes of the sys-
tem which are most suitable for executing the task T (or
at least one of its processes pi). This selection will be
made by means of the TaskResolution function.

CollaborativeOrganization: System × Task → System

{ni} × T → {nj}

5 Load Balancing Algorithm in AMBLE

In this section we will describe the load balancing algorithm
introduced in the AMBLE awareness model, and how it
will be applied to our distributed and collaborative multi-
agent architecture in grid environments. The main charac-
teristics of this algorithm are that it is dynamic, distributed,
global, and takes into account the system heterogeneity.

Even though currently there is a strong polemic about
user and non-user interruption algorithms (Russ et al.
1998; Harchol-Balter 2001), in this paper we deal with a
non-interruption algorithm and therefore when the task’s
execution is started in a node, this execution has to finish
in the same node.

Generally a dynamic load balancing algorithm consists
of four policies: a state/load measurement rule, an infor-
mation exchange rule, an initiation rule and a load bal-
ancing operation (Xu and Lau 1997).

5.1 State Measurement Rule

This rule will obtain information about the computational
capabilities of the node in the system. This information,
quantified by a load index, provides awareness of the
NimbusState of the node. This dynamic index should be
frequently measured, and therefore it should provide a
good estimation of a node computing capabilities. The
choice of a load index has a huge impact on load balanc-
ing efficiency (Kunz 1991).

5.1.1 Load index The load index calculation is per-
formed by the benchmark agent. In this paper the load
index is evaluated based on two parameters (one static
and one dynamic):

• Node computational power (P), which depends on the
node computational architecture and takes into account

CPU, memory and I/O features. It will function as a static
parameter.

• The CPU assignment which is defined as the percent-
age of CPU time that would be available to a newly
created task, on a specific node. It will function as a
dynamic parameter.

The benchmark agent will implement the load measure-
ment rule, measuring periodically the required parame-
ters and evaluating the load-index of every node “ni”,
belonging to the grid, based on the following formula:

load-indexi = pi / (pmax * npi)

where

* pi: represents ni’s Linpack benchmark (University
of Tennessee 2006; see Section 10)

* pmax : represents the Linpack of the best node
* npi: represents the number of processes that are

executing in the node “ni” at a given moment (this
model only considers CPU-intensive tasks).

In order to calculate the NimbusState of a given node,
the benchmark agent monitors the state of the system by
applying the previous formula. The value of the node’s
NimbusState is calculated by the function NimbusCal as
follows:

The NimbusCal function returns a value close to zero
when the load of the node is very high. The closer to 1
this value is, the lower is the load of the node.

5.1.2 NimbusState The NimbusState of the node
will be determined by the load index and it will depend
on the node capacity at a given time. This state deter-
mines if the node could execute more (local or remote)
tasks. Its possible values would be:

• Maximum: The load index is low and therefore this
infra-utilized node will execute all the local tasks,
accepting all new remote execution requests coming
from other nodes. The NimbusState will decrease
while load index increases.

• Medium: The load index has an intermediate value and
therefore the node will execute all the local tasks,
interfering in load balancing operations only if there
are no other nodes in the system whose NimbusState
would be maximum.

NimbusCal

Null load–indexi 0.33<⇒
Medium 0.33 load–indexi 0.66≤ ≤⇒

Maximum load–indexi 0.66>⇒





=
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• Null: The load index has a high value and therefore the
node is overloaded. In this situation, the node will not
execute new tasks, the computational capabilities
available are very low and for that reason it will reject
any request for new remote execution. If the node
receives any request for local execution, it will start a
new load-balancing operation that could be successful,
reallocating the new task execution in the appropriate
node, or unsuccessful, keeping the task in the queue
until any of the nodes changes its state.

The NimbusState of the node depends on the load
index value and an increase or decrease of this index over
a specific threshold will imply the corresponding modifi-
cation in the NimbusState.

5.2 Information Exchange Rule

The knowledge of the global state of the system will be
determined by a policy on the information exchange and
therefore it is important that this policy is suitable for the
problem which is being solved. This policy should keep
the information coherence without overloading the net-
work with an excessive number of unnecessary messages.
Traditionally there are three well known and widely used
rules (Xu and Lau 1997).

An optimum information exchange rule for the AMBLE
model should be based on events (Beltrán, Bosque, and
Guzmán 2004). This rule only collects information when
a change in the Nimbus (in the NimbusState or in the
NimbusSpace or in both) of the nodes is made. If the lat-
ter, the node that has modified its nimbus will be in charge
of notifying this modification to the rest of the nodes in
the system, thus avoiding synchronization points.

5.3 Initiation Rule

The initiation rule determines when to begin a new load
balancing operation. The execution of a load balancing
operation incurs non-negligible overhead, and therefore
the expected performance benefit must outperform this
overhead. An initiation policy is thus needed to deter-
mine whether a balancing operation will be profitable.
Therefore the initialization rule has a strong impact in the
algorithm performance.

As the model implements a non-user interruption algo-
rithm, the selection of the node must be made just before
sending the task execution. Once the execution of the
process starts in a specific node it has to finish in the
same node.

The decision of starting a new load balancing opera-
tion is completely local, depending on the local informa-
tion storage. If an overload node receives a new task T =

 to be executed, and it cannot execute it (Nim-

busState(ni) = Null or NimbusState(ni) = Medium), the proc-
ess load balancing operation will be automatically launched
to allocate the task (or at least some of its processes) in
those nodes that are inside its focus if Focus(ni) ≠ {∅}.
Otherwise, the task will pass to the node’s queue waiting
for a change on NimbusState or on the node’s Focus.

5.4 Load Balancing Operation

Once the node has made the decision to start a new load
balancing operation, this operation will be divided into
another three different rules: localization, distribution
and selection. Each of them will be described in the fol-
lowing subsections.

5.4.1 Localization rule The localization rule deter-
mines the partners of the balancing operation, i.e. the proc-
essors to be involved in the operation. Given a task T =

 to be executed in the node ni, and taking into
account that NimbusState(ni) = Null or NimbusState(ni) =
Medium, the localization rule has to determine which
nodes are involved in the CollaborativeOrganization of
the node ni.

In order to make it possible, firstly, the AMBLE model
will need to determine the awareness of interaction of
this node with those nodes inside its focus. To optimize
the implementation, the previous awareness values are
dynamically updated based on the information exchange
rule. Those nodes whose awareness of interaction with ni
was Full will be part of the Interactive Pool of ni to solve
the task T, and from that pre-selection the TaskResolu-
tion method will determine those nodes that are suitable
for efficiently solving the task in the environment.

5.4.2 Selection and distribution rule This algorithm
joins the selection and distribution rules because it deter-
mines which nodes (among all the nodes constituting the
CollaborativeOrganization) will be in charge of execut-
ing each of the processes making up the task T. The pro-
posed algorithm takes into account the NimbusState of
each of the nodes – only those whose NimbusState would
be maximum or medium could receive new processes –
as well as the TaskResolution to solve any of T’s proc-
esses.

The goal of this algorithm is to find the most equili-
brated assignment of processes to computational nodes.
The optimal assignment of these processes, analyzing all
the possible combinations, is an NP-complete problem
which cannot be solved in a reasonable computational
time. Hence this algorithm is based on a set of heuristics
which result in an equilibrated spread even though it may
not be the optimum. This spread is made in an iterative
way. Firstly, a complete distribution is made taking into
account all the processes making up the task T as well as allpi ri,( ){ }

i∑

pi ri,( ){ }
i∑
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the computational nodes implicated in the Collaborative-
Organization. If, in this first iteration, it is be possible to
assign all the processes to be distributed to one of the
nodes involved in the CollaborativeOrganization, the
algorithm will have finished. Otherwise, it will again
calculate the NimbusState of the nodes belonging to the
CollaborativeOrganization, repeating the complete proc-
ess. The sequence of steps that implements the assign-
ment heuristic is:

1. From all the nodes belonging to the Collaborati-
veOrganization, only those whose NimbusState
Null will be selected in the first instance.

2. If any of the processes pi ∈ T could be executed in
just one of the nj nodes selected in the previous
step, this process would be automatically assigned
to the node that can execute it.

3. Among all the remaining nodes, and for each and
every process, the node whose score was highest
will be selected to execute the corresponding proc-
ess.

4. Once a T process had been assigned to every node
inside the pool, a message will be sent to each of
these nodes requiring the execution of the desig-
nated processes. The remote nodes can accept the
execution; in this case, the process will be defi-
nitely assigned, and, once the process execution
has started, they should again evaluate its Nim-
busState returning its value to the origin node.
However, if the candidate node rejects the process
execution, because of latency problems (the can-
didate node has changed its NimbusState to Null
but the origin node doesn’t know it yet), the origin

node should look for a new candidate to assign the
corresponding process.

5. Repeat the previous steps (1–4) until all the proc-
esses have been assigned or until all the nodes in
CollaborativeOrganization have NimbusState =
Null.

6. Once all the nodes in CollaborativeOrganization
have achieved a NimbusState = Null or once it is
impossible to find a candidate in the Collaborati-
veOrganization to execute any of T’s processes,
the task will be waiting in ni for a change in the
state of any of the nodes that comprise the Collab-
orativeOrganization (ni) (or even a change in its
own state) or an aura extension could be made
(thereby extending its focus or its nimbus) with
the aim of repeating the complete process from
the beginning

6 WE-AMBLE Architecture

From the beginning WE-AMBLE has been designed to
avoid any possible bottlenecks. In fact, the model archi-
tecture has been designed in a distributed way. In the fol-
lowing figure (Figure 2), it is possible to appreciate that
the middleware architecture of the load-balancing model
has been associated to a single node. This architecture is
replicated (according to Salvadores et al. 2005) in all the
nodes of the grid to avoid any possible bottlenecks.

The above architecture has been separated into three
different parts:

• SMI-Engine (Spatial Model of Interaction Engine):
This is the main core of the architecture and contains

Fig. 2 The load balancing model: middleware architecture.
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those components that implement all the logic of the
SMI and the load balancing algorithms explained in
Section 6. This engine is made up of the following
modules:

• Benchmark agent: This agent, based on the Linpack
benchmark (University of Tennessee 2007), maintains
a performance measure of the node which can be eval-
uated from the load balancer. Moreover, this agent is
connected to the monitor module of the system to eval-
uate its availability.

• Global state agent: This agent compiles all the infor-
mation related to the two main concepts of the SMI
(Focus and Nimbus), providing information about
those nodes that are available in the system to carry
out a load-balancing operation at a given moment.

• Load balancer agent: This module implements the
logic for the load-balancing operation, according to the
scores that each of the nodes has achieved executing a
specific process, and makes the final decision of which
node will execute each process.

• Execution framework: This interface contains the
modules dependent on the operating system (OS) to
access the process management APIs.

• SO native process management: This depends on the
OS and uses those functionalities that the APIs of this
OS offer to supply the process execution.

• SO native monitoring module: This module also
depends on the OS and uses those functionalities that
the APIs of this OS offer to monitor the state of the
computer.

• AMBLE-Service: A Web service2 interface that pro-
vides those methods necessary to establish the com-
munication between nodes through SOAP3 messages.
The operations deployed on this service are:

• registerVisibility: When a node detects a new resource
inside its focus, it invokes this operation. Moreover, if
the observer node is also inside the observed Nim-
busSpace, it would be included in the awareness of
interaction record with a value equal to Full.

• nimbusChangeCallback: This operation receives the
changes that a specific node has on its NimbusState.

• requestTask: This method is invoked by a client
requiring the execution of the task T composed by n
processes.

• taskResolution: This method is invoked by a node
requiring “offers/scores” for the processes associated
to a specific task.

• performTask: This method is invoked to order the
process execution once the process has been assigned
to a particular node.

• monitorExec: This operation is used to monitor the
state of execution of a process in an identifiable
node.

7 WE-AMBLE Workflow Step By Step

In Figure 3 it is possible to appreciate the sequence of
operations unleashed inside a node after it has received
the registerVisibility message from another one:

1. The first step is to corroborate if the node that
invoked the operation registerVisibility is inside its
NimbusSpace.

2. If the remote node is inside its NimbusSpace,
(enableReg=true), the remote node will add it to
its awareness of interaction record with a value
equal to Full, and the origin node will return its
NimbusState. This execution branch determines
that both nodes could collaborate, if needed, to
carry out a load-balancing operation.

3. However, if the remote node is not inside its Nim-
busSpace, it will return a rejected message. The
remote node will include the origin node in its
awareness of interaction record with a value equal
to Peripheral. This awareness could be change to
Full if the NimbusSpace is modified and the
remote node is included inside.

Figure 4 shows the sequence of steps necessary to carry
out a load-balancing operation in a node that requires
delegation of the execution of several processes associ-
ated to the task T:

1. The node receives a message from the grid client
containing the composition of processes to be
executed. Before starting the load-balancing oper-
ation, it will calculate the Interactive Pool.

2. Once the origin node has this set of nodes, it will
ask each of them (concurrently and through SOAP
messages) for the score associated with each of
the processes of the T task.

3. The origin node will set this information in a list,
and this list will be the input for the resolveLoad-
Balance function (this function implements the
final selection heuristic as has been defined in
Section 6.4.2) and returns the assignment of the
processes to the nodes.

4. For each of these assignments the origin node will
send an execution message to the node. Although
the remote node could reject the execution of the
process (because of its NimbusState), it could
happen that, because the system is asynchronous,
its NimbusState changes to Null, thereby creat-
ing the possibility of accepting the process exe-
cution. If the latter, the executionId assigned is
NOT_ASSIGNED and the process will be assigned
in the next round (in which the aura would have
been increased as well).
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The last situation will occur if any of the processes has
not been assigned. In this case the SMI Engine will
repeat the previous algorithm increasing the aura to catch
those nodes that are located at a higher distance. This
loop will be repeated until there are no more nodes in the
system and, if so, those processes that have not been
assigned will pass to the queue.

8 WE-AMBLE Architecture

WE-AMBLE provides an open interface to manage dif-
ferent levels of awareness, allowing different virtual
organizations to share computational resources based on
open protocols and interfaces.

As far as we know, none of the latest WS specifica-
tions offers functionalities useful for creating awareness
models or offers specific functionalities to manage task-
balancing delivery in collaborative grid environments, as
WE-AMBLE does. Through WE-AMBLE, it will be
possible to create new architectures oriented toward serv-
ices. Figure 5 shows the different levels of functionality
offered by each of WS_AMBLE components:

1. WS-Addressing: Allows a transport mechanism
to address services and messages (W3C standard).

2. WS-Resource Framework: This specification,
an evolution of the OGSI specification, has been
recently standardized by the OASIS consortium.
It promotes a standard way of deploying resources
and how to consult about them.

3. WS-Notification and WS-Topic: Jointly, they pro-
vide the facility to establish mechanisms based on
the model of interaction, publication and subscrip-
tion.

WE-AMBLE uses standard mechanisms based on WS to
interact with other resources. These mechanisms are sup-
plied by the recently standardized WS-Resource Frame-
work specification. In addition, the communication model,
founded on publication/subscription, is based on the WS-
N/WS-Topic specification. WS-N supplies the mecha-
nism to subscribe two resource management nodes, in
an AMBLE-grid environment, to the NimbusSpace as
well as to the NimbusSpace, with emphasis on changes
in state.

Fig. 3 General interaction diagram: AwareInt=Full and AwareInt=Peripheral.
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9 AMBLE as a Common Interface

The results presented in this paper come from the imple-
mentation of a first prototype to validate the model,

measure its efficiency and calculate the overhead. But
AMBLE goes beyond this because it allows the imple-
mentation of the interaction among different virtual
organizations (VO); each VO could implement this inter-

Fig. 4 General interaction diagram: load-balancing operation.

Fig. 5 WE-AMBLE architecture.
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action with the AMBLE model in a different way, using
the management tools and the scheduling elements most
suitable for each specific situation.4

A VO implements its own authorization mechanisms
based on LDAP as well as the configuration elements for
the SMI (NimbusState, NimbusSpace, aura, …) that are
stored in a data-store. This VO could have some specific
tools to manage these data structures. In the same way,
another VO could have the SMI configuration based on
agents in charge of modifying the AMBLE configuration
according to the environment. AMBLE could establish
non hierarchical interaction structures. The interaction
structure associated to the organization will depend on
the global configuration of the SMI. But WS-AMBLE
also leaves the resources management open: one resource
could be managed, through its configuration, by more
than one VO.

10 Experimental Results

This section presents a set of experiments with the fol-
lowing objectives: to corroborate whether the AMBLE’s
tasks delivery works in a real and heterogeneous grid
environment; to detect the overhead introduced by the
AMBLE’s model in a real environment; and to measure
the AMBLE’s speedup in different scenarios. These
experiments, as well as the set of scenarios and tests pre-
sented, could be extended if the reviewers consider it
appropriate.

10.1 The Grid Environment Infrastructure

The tests presented in this paper have been evaluated in a
real and heterogeneous services-oriented grid environ-
ment. The system heterogeneity is reflected not just in
the architecture of the computational nodes (and there-
fore in the computational power), but also in the OS uti-
lized. The grid infrastructure was made up of 20 nodes
with the following characteristics: 8 of them were Intel
Centrino P4 1.5 GHz with 0.5 GB of memory (referred to
here as “Type A” nodes), 11 of them were Intel P4 3.0
GHz (B) with 1 GB of memory (referred to as “Type B”
nodes) and the last one was an Intel Xeon 3.6 GHz (C)
with 4 GB of memory (referred to as “Type C” nodes).

In order to carry out the model evaluation we have
selected a set of CPU-intensive tests based in iterations
over the Linpack benchmark (University of Tennessee
2007). The High-Performance Linpack benchmark is a
numerically intensive test which was developed in 1979
to measure the floating-point performance of computational
systems and since then has been widely used in scientific
environments for carrying out performance measuring
experiments. The following subsection presents a com-
parison of the speedup achieved with the different types

of resources (Types A, B and C) mentioned above, as
well as the different scenarios raised to make this evalua-
tion possible. In each of these scenarios, there is a task T,
composed of 20 processes, to be executed and a node N
that receives the T execution request. Each of these sce-
narios also presents four different tests; each of them dif-
fers from the others in the size of the processes to be
executed.

Table 1 presents the response times, in seconds, for
each of the tests carried out in the different nodes of the
grid.

The metric used to measure the AMBLE performance
was the response time achieved for each of the tests in
the proposed scenarios. These measures allow calcula-
tion of the speedup as well as the heterogeneous effi-
ciency of the system (Pastor and Bosque 2001).

The heterogeneous efficiency depends on the total
computational power of the grid, and this power repre-
sents the total amount obtained by adding the computa-
tional power of each of the nodes comprising the grid,
which is the amount of work that the node can perform in
a given interval (Pastor and Bosque 2001). The optimum
time in the grid can be defined as the time that one com-
puter – with a computational power equivalent to the
total computational power of the grid – would invest to
solve the problem. Additionally, the communication
overload introduced by the AMBLE model is calculated.

10.2 Experimental Scenarios

This subsection presents a set of scenarios that were
designed with the aim of evaluating the main characteris-
tics of the AMBLE model presented in this paper.

10.2.1 Scenario A This scenario describes the ideal
conditions for the model. As mentioned above, the node
N receives the T execution request. The node N has full
awareness of interaction with the rest of the nodes mak-
ing up the grid, and therefore this node launches a load
balancing operation to carry out the task execution taking
into account all the nodes comprising the grid.

For each of the four tests carried out, we measured the
execution time in each of the types of nodes (A, B and C)

Table 1
Response time (s).

Type A Type B Type C

Test 1 4.95 3.86 3.48

Test 2 24.02 19.20 17.80

Test 3 47.00 38.72 34.97

Test 4 232.93 192.30 175.03
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as well as the total response time of the system using the
AMBLE implementation. Tables 2 and 3 present the results
obtained in seconds.

10.2.2 Scenario B This scenario raises the non-ideal
situation in which all the nodes in the grid are being
infra-utilized and therefore they could receive more
processes to be executed, but they are located in different

auras. The grid client requests the execution of one of
the tasks in node N. This node has 10 more nodes inside
its aura with a distance equal to 1 and the nine remain-
ing in another aura with a distance equal to 2. Tables 4
and 5 present the improvements, the speed up related to
the types of nodes, the communication overhead and
the heterogeneous efficiency for the different types of
nodes.

Table 2
Scenario A: Improvements and speed up related to the types of nodes (s).

Avg (seg) 
Amble

Improv. A 
nodes

Improv. B 
nodes

Improv. C 
nodes

Speed up A 
nodes

Speed up B 
nodes

Speed up C 
nodes

5.9 –0.95 –2.04 –2.42 0.84 0.65 0.59

6.964 17.06 12.24 10.84 3.45 2.76 2.56

8.233 38.77 30.49 26.74 5.71 4.70 4.25

17.693 215.24 174.60 157.34 13.17 10.87 9.89

Table 3
Scenario A: Communication overhead and heterogeneous efficiency.

Work load Grid total comp. power Grid optimal response time Comm. overhead Heter. efficiency

1000 4037.14 0.25 5.65 0.04

5000 4163.20 1.20 5.76 0.17

10000 4255.05 2.35 5.88 0.29

50000 4246.28 11.78 5.92 0.67

Table 4
Scenario B: Improvements and speed up related to the types of nodes (s).

Avg (seg) 
Amble

Improv A 
nodes

Improv. B 
nodes

Improv. C 
nodes

Speed up A 
nodes

Speed up B 
nodes

Speed up C 
nodes

6.54 –1.59 –2.68 –3.06 0.76 0.59 0.53

7.45 16.57 11.75 10.35 3.22 2.58 2.39

9.906 37.10 28.81 25.06 4.74 3.91 3.53

19.289 213.65 173.01 155.74 12.08 9.97 9.07

Table 5
Scenario B: Communication overhead and heterogeneous efficiency.

Work load Grid total comp. power Grid optimal response time Comm. overhead Heter. efficiency

1000 4037.14 0.25 10.68 0.03

5000 4163.20 1.20 10.88 0.10

10000 4255.05 2.35 11.78 0.17

50000 4246.28 11.78 12.52 0.49



262 COMPUTING APPLICATIONS

10.2.3 Scenario C This same scenario also raises the
non-ideal situation in which all the nodes in the grid are
being infra-utilized and therefore they could receive more
processes to be executed, but they are located in different
auras. The grid client requests the execution of one of the
tasks in node N. This node has 10 more nodes inside its aura
with a distance equal to 1 (aura1) and the nine remaining
in another aura with a distance equal to 2 (aura2). How-
ever, in this situation half of the nodes that are inside aura1
reject the execution of the processes assigned. Then, the
load balancing algorithm increases aura2 and therefore the
nine remaining nodes can accept any of the processes that
are looking for a location. The task delivery process is
performed among the nodes located in aura2. While this
distribution is being carried out, some of the nodes that
are located inside aura1 change their NimbusState so that
they could receive new processes. The system will report
this change in their NimbusState and those processes that
were not assigned among the nodes located in aura2, will
be assigned, through the load balancing algorithm, among
all those nodes which changed their NimbusState in aura1
and have, therefore, the capacity to receive new proc-
esses. Tables 6 and 7 present the improvements, the speed
up related to the types of nodes, the communication over-
head and the heterogeneous efficiency for the different
types of nodes.

10.3 WE-AMBLE: Task Delivery Capability

The following experiment determines WE-AMBLE’s
capability to deliver tasks and processes. With this pur-

pose we have raised a new scenario requiring the execu-
tion of 25 tasks, each of them with 25 processes. Every
20 seconds a group of tasks is sent to the same node of
the grid. Figure 6 shows the number of processes exe-
cuted in each and every node of the grid following WE-
AMBLE’s task delivery assignment. Nodes with identifi-
ers 1–8 are type A, those with identifiers 9–19 are type B
and node 20 is type C. Figure 6 shows that the more pow-
erful nodes execute more processes.

Figure 7 shows the response time of each of the nodes in
the grid. Even though each of the nodes executes a different
number of processes, all of them finalize at the same time.

From the experimental results shown in Figures 6 and 7),
it is possible to conclude that the task assignment made

Table 6
Scenario C: Improvements and speed up related to the types of nodes (s).

Avg (seg) 
Amble

Improv. A 
nodes

Improv. B 
nodes

Improv. C 
nodes

Speed up A 
nodes

Speed up B 
nodes

Speed up C 
nodes

10.924 –5.97 –7.07 –7.44 0.45 0.35 0.32

12.082 11.94 7.12 5.72 1.99 1.59 1.47

14.13 32.87 24.59 20.84 3.33 2.74 2.47

24.29 208.64 168.01 150.74 9.59 7.92 7.21

Table 7
Scenario C: Communication overhead and heterogeneous efficiency.

Work load Grid total comp. power Grid optimal response rime Comm. overhead Heter. efficiency

1000 4037.14 0.25 10.68 0.03

5000 4163.20 1.20 10.88 0.10

10000 4255.05 2.35 11.78 0.17

50000 4246.28 11.78 12.52 0.49

Fig. 6 Number of processes vs. node.
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by WE-AMBLE is proportional to the computational
power of each of the nodes, and therefore it uses the grid
resource in a optimal way.

10.4 Analysis of Results

Generally speaking, it would be possible to conclude that
the experimental results obtained in the tests described
above are very successful and corroborate the usefulness
of the AMBLE model as applied to workload balancing
operations in real heterogeneous grid environments.

Tables 2, 4 and 6 show that the performance improve-
ments obtained using this model are excellent in all the
scenarios and in almost all the tests. It is notable that the
model achieved the worst results in Test 1. These results
are a consequence of the small size of the task to be exe-
cuted, which incurs a considerable communication over-
head in this delivery operation, increasing the response
times and making these times higher than the one associ-
ated with the local execution. As a result of this, the spee-
dup of these experiments is less than 1. An important
conclusion can be drawn from these results: if the proc-
esses to be processed have a response time lower than a
specific threshold (given by the model communication
overhead), it would be preferable to carry out a local exe-
cution of the task instead of distributing the processes
across the grid.

The results for the other scenarios and tests show that
the response times exhibit an important improvement not
just for the speedup but also for the heterogeneous effi-
ciency and, in general, it would be possible to conclude
that, the larger the size of the problem to be solved the
better the results achieved. The communication overhead
is the factor limiting the performance increase. This over-
head is independent of the problem size (as indicated in
Tables 3, 5 and 7). In this way, when the problem size
increases, the parallelizable portion of the task also
increases and therefore the speedup shows a considerable
improvement.    

Fig. 7 Response time vs. node.

Fig. 8 Response times for the different scenarios and tests.
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Of the scenarios presented in this paper, scenario A
gets the best speedup results for the AMBLE model spee-
dup in relation to the local execution. This is a conse-
quence of the ideal conditions, for the execution of the
AMBLE model, in which this scenario takes place. Sce-
nario B presents an increment in the aura. This implies
that the load-balancing model will require a set of mes-
sages to carry out the delivery operation (see Section 7).
This communication overhead (see Tables 3, 5, 7) is
reflected in the speedup results, but in spite of this com-
munication overhead the results are pretty good.

Scenario C introduced an additional handicap: modifi-
cations of the NimbusState of some of the nodes, increas-
ing, even more, the number of messages to be exchanged
among the nodes to carry out the delivery operation.
However, in spite of this additional communication over-
head the results are still very successful. These conclu-
sions are illustrated in Figures 8 and 9.

11 Conclusions

Equilibrating the amount of work assigned to each of the
nodes in a grid environment is a complex problem, even
more so than for other kinds of parallel systems. This
paper presents an awareness model, AMBLE, for balanc-

ing the load in collaborative grid environments and col-
laborative multi-agent systems. This model extends and
reinterprets some of the key concepts of the most successful
models of awareness in Computer Supported Coopera-
tive Work (CSCW), called the Spatial Model of Interac-
tion (SMI). This reinterpretation merges research carried
out in CSCW, agents and grid communities, to create a
collaborative and cooperative agent-based grid environ-
ment. AMBLE manages the interaction in the environment
facilitating the autonomous, efficient and independent
task allocation in the environment.

WE-AMBLE, a workflow engine to manage aware-
ness in collaborative grid environments through the
AMBLE concepts, has been designed, from the begin-
ning to be a parametrical, generic, open, model that could
be extended and adapted easily to new ideas and purposes.
This model allows management not just of resources and
information but also of interaction and awareness. WE-
AMBLE allows: i) control of the user interaction (through
the aura concept); ii) guiding the awareness towards spe-
cific users and resources (through both focus and nimbus
concepts); iii) scaling interaction through the awareness
concept.

WE-AMBLE also has the ability of being: i) extended
and adapted to new modifications in the model; ii) scala-

Fig. 9 Speed up for the different scenarios and tests.
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ble to different configurations; iii) re-used to manage dif-
ferent levels of awareness in different infrastructures and
virtual organizations; and iv) free of bottlenecks because
of its distributed nature.

This model has been evaluated in a real and heteroge-
neous grid infrastructure. Different scenarios were designed
for this purpose. Each of these scenarios was also com-
posed of a set of different computation-intensive tests
based in iterations over the Linpack benchmark. These
scenarios were designed in such way that each of them
introduced some additional handicaps to the previous one.
However, in spite of this gradual chain of handicaps, the
results obtained in this evaluation have been pretty good.

The most important conclusions that could be extracted
from the experimental results presented in this paper are:
Firstly, the AMBLE model can contribute to the perform-
ance of heterogeneous systems by distributing the work-
load in an equilibrating way among all the nodes com-
posing the grid; Secondly, the communication overhead
in a grid environment is a factor to be considered because
of the remarkable limitations in the performance improve-
ments. This overhead does not depend on the problem
size, it mainly depends on the dynamism of the grid sys-
tem, at each and every moment, and therefore it cannot
be predicted beforehand. Finally, it is important to high-
light that the size of the processes, to be distributed in
the grid, has a fundamental impact in the global per-
formance of the system. Those processes with low
response times are not suitable for distribution to the grid
because the communication overhead could be higher
than the local response time, resulting in a worsening of
the system.
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