
Simulation with Skeletons of Applications Using Dimemas
Short Paper

C. Camarero, C. Martínez, J. L. Bosque
Computer Science and Electronics Department. University of Cantabria. Spain.

{cristobal.camarero,carmen.martinez,joseluis.bosque}@unican.es

ABSTRACT
Large computer systems, like those in the TOP 500 ranking, com-
prise about hundreds of thousands cores. Simulating application
execution in these systems is very complex and costly. This article
explores the option of using application skeletons, together with an
analytic simulator, to study the performance of these large systems.
With this aim, the Dimemas simulator has been enhanced with the
capability of simulating application skeletons. This enhancement
allows simulating the skeleton of Lulesh, an application with 90k
processes in a single day. In addition, it also generates traces, which
is of great value to validate skeletons and simulations.

KEYWORDS
Computer System Simulation, Skeleton of application, Lulesh, Dimemas
ACM Reference Format:
C. Camarero, C. Martínez, J. L. Bosque. 2019. Simulation with Skeletons
of Applications Using Dimemas: Short Paper. In Proceedings of the 16th
conference on Computing Frontiers (CF ’19), April 30-May 2, 2019, Alghero,
Italy. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3310273.
3322827

1 INTRODUCTION
The Structural Simulation Toolkit (SST) is a structural event-driven
simulator developed at Sandia National Laboratories [3]. The SST/-
macro simulator is the macro-scale (system level) component of SST.
It simulates MPI applications, typically written in C, with variable
number of cores and nodes, detailed network model and different
process allocation policies. The simulation is done using application
skeletons [4]. This means that the computation phases of the appli-
cation are replaced by numerical models of their duration, and only
the communications are actually simulated. Employing application
skeletons provides flexibility, scalability and accuracy. Since the
skeleton uses the same arguments of the application, a well cali-
brated skeleton can represent an application independently of the
input size. In addition, it also enables simulations for an arbitrary
number of processes, even beyond the size of existent machines.

Dimemas [8] is an offline simulator, part of the Barcelona Super-
computing Centre (BSC) toolchain, that uses MPI traces to predict
the event times at the target machine. This tool has models for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CF ’19, April 30-May 2, 2019, Alghero, Italy
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6685-4/19/05. . . $15.00
https://doi.org/10.1145/3310273.3322827

point to point communication and resource contention among oth-
ers. It is commonly utilized together with other two BSC’s tools:
Extrae and Paraver. Extrae makes MPI traces from real executions
by means of a MPI interposition library, thereby constructing the
input for Dimemas. Paraver allows visualization of MPI traces in
many diverse ways, and it is employed to analyze the results of
Dimemas in depth.

In this paper we consider the suitability of simulating with skele-
tons of MPI applications using an analytical simulator such as
Dimemas. With this aim, we have developedDimemas online, which
constitutes an extension of the functionality of Dimemas that al-
lows the processing of application skeletons. As it will be shown,
Dimemas online increases the flexibility of the simulator compared
to trace based execution, as it is not necessary to feed the simulator
with a trace obtained from a real execution. In this way, it is straight-
forward to modify the parameters of the skeleton to simulate any
instance of an application. Moreover, Dimemas allows the obten-
tion of simulation traces, thus it is possible to generate traces also
from skeleton driven simulations. These traces can subsequently
be compared with real traces to validate both the skeleton and the
simulator.

Lulesh has been the application to test Dimemas online, and some
experiments with it are also presented. In these, we have carried out
a study of the accuracy and scalability of Dimemas online using the
skeleton of Lulesh. Our baseline will be the results obtained with
SST/macro, as this simulator also uses skeletons. Therefore, all the
results achieved with Dimemas online will be compared with those
obtained with SST/macro with an equivalent configuration. It must
be taken into account that SSt/macro 4.0 has been used in all the
experiments. Although the simulator supports parallel simulation,
our experiments do not take this advantage. Experiments show
that Dimemas online gives an accuracy similar to SST/macro. But
Dimemas online scales much better, since it needs less memory,
reaching up to 90k processes in a computer with 96 GB of main
memory. On the other side, SST/macro is faster than Dimemas
online. However, it should be taken into account that Dimemas
online is a functional extension of an analytical simulator while
SST/macro has been conceived as a structural simulator from its
design.

This paper is organized as follows. In Section 2 the methodology
for simulating using application skeletons is explained. Dimemas
online is described in Section 3. Next, in Section 4, some experi-
mental results are shown and analysed. Finally, Section 5 presents
the main conclusions of this work.

274

CF ’19, April 30-May 2, 2019, Alghero, Italy C. Camarero, C. Martínez, J. L. Bosque

2 SKELETON BASED METHODOLOGY
Prior to making skeleton simulations of applications some steps
must be followed, regardless of whether Dimemas online, SST/-
macro, or other simulator is used. Indeed, with the proper macros,
a calibrated skeleton can work with different simulators. The main
requirement is a calibrated skeleton of the application to be simu-
lated. This is obtained after completing two steps: skeletonisation
and calibration.

(1) The skeletonisation of an application implies identifying
blocks of code which correspond to computation phases.
These code blocks are substituted by functions, that calcu-
late the computation time based on the parameters of the
application. To achieve this, the code has to be instrumented,
and the model for the computation times is calculated by
interpolating the obtained values.

(2) The calibration is the procedure by which the terms in the
arguments devised in the skeletonisation are chosen. This
usually requires running the application on a real machine.
We used Sandia’s toolchain (lwperf and Eiger) to generate the
models. This procedure is explained in [7] and summarized
in Figure 1.

Calibrated
Skel App

DIMEMAS

Dimemas
online

Statis
tics

ParaverTrace Trace

Figure 1: Obtention of a calibrated skeleton.

It is also necessary to have information about the target machine
to be simulated. This is represented through parameters like the
number of sockets, cores and their frequency, or the memory band-
width and latency. Also it is possible to model the interconnection
network, configuring its topology, the routers, or the bandwidth
and latency of the links. In our experimentation, the real machine,
used to calibrate the skeleton, and the target machine only differ
in the number of compute nodes. If the cores of the real and tar-
get machines were different, it would be necessary to correct the
models.

Once the skeleton and the target information is available, the
skeleton is linked against the simulator (Dimemas online or SST/-
macro). The target information together with the application argu-
ments are provided to the simulator through a configuration file.
The execution of the resulting binary gives the estimations of the
application execution on the target machine plus other simulator-
dependant outputs.

3 DIMEMAS ONLINE
3.1 Implementation
The Dimemas simulator is an analytical simulator based on the
use of MPI traces. With Dimemas online, simulations can also be
performed by using application skeletons. To make this possible,

the compilation of Dimemas has been extended such that, in ad-
dition to generating a Dimemas binary, it also generates a shared
library containing the simulator with the online functionality. This
Dimemas library can then be linked against an application or skele-
ton, resulting on the final executable. In addition to making an
online module, it has been necessary to make some changes to
other parts of Dimemas. In particular in the reading of data and the
processing of communications.

The basic procedure is the same as in SST/macro: the main rou-
tine of Dimemas spawns one thread per simulated process, each
executing the main routine of the skeleton. These threads behave
as the processes of the original application and they can use the
function SKELETON_Compute to implement the CPU models, as ex-
plained before. The communication between these threads is done
by the implementation of some MPI functions inside Dimemas.
When a thread calls an MPI function (1) it waits until it has no
pending actions to be processed by the main routine of Dimemas,
(2) it potentially makes data transfers among the threads in the same
way as the real MPI function would do, (3) it creates Dimemas’ ac-
tions in order to include the time of MPI calls in the total simulated
time and the corresponding entries in the trace file, (4) it waits for
commits or barriers if necessary, and (5) it frees internal structures
that no other thread requires. The waits in (1) and (4) take a large
portion of the time, as will be noted latter. The Dimemas’ actions
are processed by Dimemas’ main routine in the same way as if
they would had been read from a tracefile, this includes the use of
analytical models to estimate the duration of the MPI calls in the
target machine.

A partial implementation of the MPI library and runtime has
been incorporated into Dimemas, so an application can run cor-
rectly, both as an application and as a skeleton. In the current
prototype, the most frequently used MPI functions have been imple-
mented. Among them are point-to-point communications (blocking
and non-blocking), some collective calls (MPI_Barrier, MPI_Bcast,
MPI_reduce, MPI_Allreduce, ...) and communicators. Therefore,
many HPC applications such as Lulesh, HPCCG [2] or CoMD [1]
can be simulated without any changes. Note that the time associ-
ated to executing this partial implementation in the host machine
is completely unrelated to the time that Dimemas estimates for the
same MPI call to take in the target machine.

3.2 Utilization
Figure 2 shows a sketch of the methodology used to perform a
simulation with Dimemas online. As it can be seen, both a trace or
a skeleton can be used to perform the simulation. If this is the case,
the skeleton has to be linked to the Dimemas library mentioned
before, obtaining the final executable.

Calibrated
Skel App

Eiger
DB

App
runs

lwperf

Figure 2: Simulation methodology with Dimemas online.

275

Simulation with Skeletons of Applications Using Dimemas CF ’19, April 30-May 2, 2019, Alghero, Italy

Then, Dimemas statistics can be obtained. A configuration flag
can force a trace of the simulation to be created, which can then be
visualized using Paraver. Moreover, this trace can be converted to
Dimemas format and then be simulated in Dimemas with different
parameters. In Figure 3(a) a Paraver view of a Lulesh trace can be
seen, and Figure 3(b) shows the trace generated by the simulation
of the Lulesh skeleton with Dimemas online.

These figures show the state of the application during two itera-
tions. Each row corresponds to an MPI process and the abscissa is
a measure of time. The color indicates the state of the process at
a given time, black meaning the process is computing, and other
colors indicating the execution of some MPI call. For example, the
pink color is associated to the MPI_Allreduce collective call, it starts
when the process enters the call and finishes when all other pro-
cesses enter and perform the reduction. The time of the reduction
itself is negligible, and the processes end the call almost simultane-
ously, as the separation from pink to black is a vertical line.

Figure 3: Trace of a Lulesh execution on the ThunderXmini-
cluster.

Figure 4: Trace of a Lulesh skeleton simulation with
Dimemas online using Eiger models.

4 EXPERIMENTATION
This section presents the results of the experiments that validate
Dimemas online. All of them have been done using a skeleton for
Lulesh, which is explained in Subsection 4.1. We have focused on

the accuracy and the scalability of the simulations; these metrics are
described in Subsection 4.2. The results are shown in Subsections
4.3, 4.4 and 4.5.

4.1 Lulesh Skeleton Application
Lulesh stands for Livermore Unstructured Lagrangian Explicit Shock
Hydrodynamics [6]. This application has as inputs:

• -s SIZECreates a working set of a total of SIZE3×numprocs
elements to be distributed uniformly among the processes.

• -i MAXITERATIONS Is a limit to the number of iterations to
execute.

Also, the number of processes must be the cube of an integer.
The skeleton of the Lulesh application has been calibrated in the
following points:

• Total number of elements: 2103 and 4203.
• Number of processes: 1, 8, 64 and 216.
• Iterations per execution: 25.

All the executions for the calibration have been run in the Mont
Blanc project prototype ThunderX [5]. The models provided by
Eiger were all adopted except the one provided by the function
EvalEOSforElemens since it was not accurate (R < 0.65). Thus, it
was modeled by linear regression of the data set, in which every
point has a weight inversely proportional to the time it consumes.

4.2 Performance Metrics
Three figures of merit are considered in our experiments:

• Relative accuracy of the simulation predictions. We will com-
pare the predicted time given by the simulator, that is, the
time the complete execution of the application would take
in the target machine.

• Host time, which is the time employed by the simulator to
perform a simulation.

• Memory usage, which is the maximum amount of memory
used performing a simulation.

All these figures of merit are considered and compared using the
simulator SST/macro. Thus, simulations of the Lulesh skeleton with
SST/macro (labelled as SST/macro) and Dimemas online (labelled
as Dimemas online) are compared.

All the experiments are carried out considering strong scaling,
thus the number of elements to compute (the workload of the
application) is fixed to 10503 while the number of processes varies.
The number of processes ranges from 216 = 63 to 15, 625 = 253,
since the application needs a cube as the number of processes. For
all the executions, the number of iterations is fixed to 5.

However, as it will be seen, SST/macro is not able to perform
simulations over 3, 375 = 153 processes due to memory restrictions.
As it will be shown in subsection 4.5, Dimemas online is able to
perform simulations well above 15, 000 processes.

4.3 Time predictions of Dimemas online
In Figure 5 predicted time of Lulesh with 10503 elements varying
the number of processes is shown. The same skeleton calibrated in
the ThunderX cluster is simulated with SST/macro and Dimemas
online. As it can be seen, the predicted time for both simulators
is practically the same. That is, for this skeleton application, both

276

CF ’19, April 30-May 2, 2019, Alghero, Italy C. Camarero, C. Martínez, J. L. Bosque

0 5,000 10,000 15,0000

100

200

procs

ta
rg
et

tim
e
(s)

Dimemas online SST/macro

Figure 5: Predicted time of Lulesh simulation with 10503 el-
ements and ThunderX as target machine.

simulators provide the same predicted times. This would suggest
that, if the application does not stress the communications, then an
analytical simulator such as Dimemas would be enough to obtain
accurate time predictions. Also, it seems that the most part of the
accumulated error comes from the calibration of the skeleton, which
includes the obtention of the CPU models.

It is also interesting to note that the ThunderX cluster in which
the calibration of the skeleton has been carried out has 4 nodes,
each one with 96 cores. However, with Dimemas online it has been
possible to simulate a machine with 1000 nodes, providing a total
of 96k cores.

4.4 Host time and Memory Usage

0 5,000 10,000 15,0000

1,000

2,000

procs

tim
e
(s)

Dimemas online SST/macro

Figure 6:Host time of Lulesh simulationwith 10503 elements
and ThunderX as target machine.

Figure 6 shows the host Time of Lulesh with 10503 elements
varying the number of processes in the ThunderX cluster, simulated
with SST/macro and Dimemas online. Clearly, SST/macro is faster
than Dimemas online. In this particular case, the host time for
Dimemas online is between 2× and 2.5× slower than SST/macro.
However, the absolute values of the execution time in both cases are
very reasonable for this kind of simulations, in the order of a few
minutes. Therefore, the improvements provided by Dimemas online
can overcome in many cases the inconvenience of the increased
response time.

Dimemas online is somewhat slower than Dimemas, when the
latter simulates the traces generated by the former. This should not

be surprising because of two reasons. As explained in Section 3,
Dimemas online is executing more code, including the implemen-
tation of MPI calls and the fragments of the application comprised
in the skeleton. The second reason is that threads are continuously
waiting for the result of others, resulting in time regions where the
kernel of Dimemas is idle.

0 5,000 10,000 15,0000

10

20

procs

m
em

or
y
(G
B)

Dimemas online SST/macro

Figure 7: Host memory of Lulesh simulation with 10503 ele-
ments and ThunderX as target machine.

Figure 7 presents the host memory of Lulesh with 10503 elements
varying the number of processes in the ThunderX cluster, for both
simulators SST/macro and Dimemas online. As it can be observed,
the use of memory by SST/macro suffers sudden changes and is
its main limitation against Dimemas online. This abrupt changes
make it impossible to determine a priori if a specific simulation is
possible or not.

On the contrary, Dimemas online makes a more smooth and reg-
ular use of memory, which allows the estimation of the simulation
capacity regarding the memory of the host. Furthermore, Dimemas
online requires less host memory to carry out the same simulations.
This means that, with the same host node configuration, Dimemas
online is able to simulate a larger number of processes than SST/-
macro. In particular, it suggests that much bigger simulations could
be done, which will be explored in Subsection 4.5.

4.5 Scalability of Dimemas Online
In this subsection we explore the feasibility of making larger simu-
lations with Dimemas online. In this case, simulations have been
performed in Mare Nostrum 4, where available memory is 96GB.
Table 1 shows host time, host memory and predicted time of Lulesh
with 10503 elements varying the number of processes in the Thun-
derX cluster simulated with Dimemas online. Experimental results
show that Dimemas is capable of simulating up to 90kMPI processes
in a single node of the Mare Nostrum 4.

5 CONCLUSIONS
This paper has considered the use of application skeletons to sim-
ulate large systems. At least for the application considered in the
paper, the skeleton application of Lulesh emulates correctly the ap-
plication behaviour. Also, this simulation methodology significantly
reduces the response time and improves its scalability. Dimemas
online has been developed, as an extension of the Dimemas simu-
lator, in such a way that it allows the execution of skeletons and

277

Simulation with Skeletons of Applications Using Dimemas CF ’19, April 30-May 2, 2019, Alghero, Italy

Simulated
Procs

Host Time (s) Host Memory
(GB)

Predicted
Time (s)

15,625 2,729 25.9 6.399
32,768 9,640 33.8 5.979
64,000 38,396 41.8 6.819
91,125 85,910 47.9 7.822

Table 1: Host time, host memory and predicted time of
Lulesh with 10503 elements in the ThunderX cluster simu-
lated with Dimemas online in Mare Nostrum 4.

the obtention of traces from them. For example, there it is possible
to generate a trace for 15, 625 processes, which for five iterations
in Lulesh, has a size of 1.6GB. It is possible to convert this trace to
Dimemas format and perform a simulation. As it has been shown,
Dimemas online is slower than SST/macro, but it is still within a
reasonable range considering the size of the simulation. On the
contrary, Dimemas online uses much less memory, improving the
simulation scalability, which has allowed to perform simulations
up to 90k MPI processes. Moreover, the predictions made by both
simulators are practically the same, when it is possible to make the
comparison. This suggests that an analytical simulator is enough
to make simulations of huge systems, provided that the skeleton
application is well-calibrated.

ACKNOWLEDGMENTS
The authors would like to thank Judit Jimenez, Marc Josep Fabrego
and Jesus Labarta for their helpful support and to Esteban Stafford
for his proofreading labor. This work has been partially supported
under grants the Spanish Ministry of Science, Innovation and Uni-
versities under contract TIN2016-76635-C2-2-R (AEI/FEDER, UE),
the Mont-Blanc project has received funding from the European
Union’s Horizon 2020 research and innovation programme under
grant agreement No 671697 and Juan de la Cierva–Formación con-
tract (FJCI-2017-31643) by the Ministerio de Ciencia, Innovación y
Universidades of Spain.

REFERENCES
[1] ECP Proxy Applications CoMD website. https://proxyapps.exascaleproject.org/

app/comd/.
[2] HPCCG Mantevo website. https://github.com/Mantevo/HPCCG.
[3] SST: The Structural Simulation Toolkit. http://sst.sandia.gov/about_sstmacro.html.
[4] C. Aguston, Y. B. Asher, and G. Haber. Parallelization hints via code skeletonization.

IEEE Transactions on Parallel and Distributed Systems, 26(11):3099–3107, Nov 2015.
[5] E. Calore, F. Mantovani, and D. Ruiz. Advanced performance analysis of hpc work-

loads on cavium thunderx. In 2018 International Conference on High Performance
Computing Simulation (HPCS), pages 375–382, July 2018.

[6] Ian Karlin, Jeff Keasler, and Rob Neely. Lulesh 2.0 updates and changes. Technical
Report LLNL-TR-641973, August 2013.

[7] Andrew Kerr, Eric Anger, Gilbert Hendry, and Sudhakar Yalamanchili. Eiger: A
framework for the automated synthesis of statistical performance models. In High
Performance Computing (HiPC), 2012 19th International Conference on, pages 1–6.
IEEE, December 2012.

[8] Jesus Labarta, Sergi Girona, Vincent Pillet, Toni Cortes, and Luis Gregoris. Dip:
A parallel program development environment. In Luc Bougé, Pierre Fraigniaud,
Anne Mignotte, and Yves Robert, editors, Euro-Par’96 Parallel Processing, pages
665–674, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

278

