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Abstract

With every generation, GPUs incorporate an ever-increasing amount of computational

resources, which are dedicated to accelerate data-parallel applications. Using those re-

sources efficiently requires applications to expose high levels of parallelism. Even then,

they may not be able to maximize the usage of each resource type (bandwidth, compute

resources, memory, the different execution units of the same core, etc).

Not all applications can fully use a complete GPU, but when executing more than

one application concurrently, they may compensate for each other’s lacks. this is the idea

behind multiprogramming. It is supported by current GPUs, but the techniques they use

only tackle the lack of thread level parallelism (TLP) issue. Other methods like Warped-

Slicer have been proposed to reduce resource underutilization by making applications

share the resources of the same SM (Streaming Multiprocessor, which is a core of the

GPU in Nvidia terminology). This is called Intra-SM-sharing. Warped-Slicer, which is

the state of the art for thread block scheduling, tries to make an efficient partitioning of

the resources between kernels (programs executed by the GPU) to maximize performance.

However, its profiling strategy makes it agnostic to the interference between the kernels.

This dissertation proposes MIAS (Memory Interference Aware Scheduler), a thread

block scheduling algorithm that tackles the issues Warped-Slicer has. It carries out a pro-

filing phase where, unlike Warped-Slicer, it profiles kernels jointly, making them share the

SMs during that phase. It profiles all the resource partitioning configurations (or thread

block configurations) in parallel, in different SMs. It, then, chooses the best configura-

tion using different metrics to estimate the interference between the profiled alternatives

in the memory system, which they share. Evaluation results show that MIAS improves

performance by 32% over sequential execution and 20% over Warped-Slicer.
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Resumen

En cada generación, las GPUs incorporan mayor cantidad de recursos computa-

cionales, que se dedican a accelerar applicaciones paralelas en datos. Para utilizar dichos

recursos eficientemente, las applicaciones tienen que exponer niveles altos de paralelismo.

Aún cuando cumplen eso, es posible que no usen todos los recursos de los que despone la

GPU (ancho de banda, memoria, unidades de ejecución de cada core, etc.).

No todas las aplicaciones pueden hacer un uso eficiente de una GPU, pero, si se ejecu-

tan varias concurrentemente, puede que entre ellas compensen las deficiencias que cada

una tiene. Esta es la idea detrás de la multiprogramación. Las GPUs actuales tienen so-

porte para ella, pero solo abordan la falta de paralelismo. Otros metodos, como Warped-

Slicer, se han propuesto para reducir la infrautilización haciendo que las aplicaciones

compartan los recursos de un mismo SM (Streaming Multiprocessor, que es el equiva-

lente a un core de la GPU en la terminología de Nvidia). A esto se le denomina Intra-SM-

Sharing. Warped-Slicer, que es el estado del arte en la planificacion de bloques de threads,

intenta hacer un particionado eficiente de los recursos entre los kernels (programas ejecu-

tados por la GPU) para maximizar el rendimiento. Sin embargo, su estrategia de profiling

lo hace agnóstico a las interferencias entre los kernels.

Este trabajo propone MIAS (Memory Interference Aware Scheduler), un algoritmo

de planificación de bloques de threads sin las limitaciones de Warped-Slicer. Para ello,

MIAS lleva a cabo una fase de profiling donde, a diferencia de Warped-Slicer, realiza

un profiling conjunto de los kernels, haciendo que compartan los SMs durante esta fase,

y evaluando todas las configuraciones de particionado de recursos (o configuraciones de

bloques de bloques de threads) en paralelo, en diferentes SMs. Después, escoge la mejor

configuración usando diferentes metricas para estimar los efectos de las interferencias

entre las alternativas que están en profiling. Los resultados de evaluacion muestran que

MIAS mejora el rendimiento en un 32% respecto a la ejecución secuencial y en un 20%

respecto a Warped-Slicer.
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Chapter 1

Introduction

1.1 GPGPUs

CPUs have been the dominant architecture because of their ability to perform gen-

eral purpose computations. Moreover, their performance has been improving with every

generation, mainly due to a combination of advancements in chip manufacturing tech-

nologies, and architectural improvements.

However, those performance gains are slowing down. Performance no longer scales

well with improvements to transistor technology, which itself is hitting hard limits, and

considerable architectural improvements lead to smaller performance gains, usually for

only a subset of applications. Regardless of that, there are always significant potential

performance gains if optimizations for a specific kind of applications are made. Thus,

domain specific architectures emerged. These are optimized to do a very specific kind of

computations, very efficiently [1]. The most prominent of these architectures are Graphics

Processing Units (GPUs), FPGAs[2], and Google’s Tensor Processing Units (TPUs),

which are only used for the kind of operations found in deep learning algorithms.

GPUs started as a domain specific architecture that could only do graphics. Early

GPUs had very limited to no programmability, but they became more and more pro-

grammable over time to support a wider variety of graphics algorithms. In addition, those

graphics applications are data-parallel, the main characteristic that GPUs exploit to boost

performance [3, 4]. Therefore, they could be used to accelerate other data-parallel appli-

cations, which led manufacturers to add interfaces for general purpose programming [5,

6].

Current GPUs can perform a wide variety of computational tasks. In fact, they sup-
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1. Introduction

port a Turing-complete model, i.e. they can do any computation given enough time and

memory [7, 8]. Performance-wise, however, they only excel at data-parallel applications.

They perform poorly on other tasks [9, 10, 11, 12]. This is owing to their SIMT (Single

Instruction Multiple Threads) execution model, which, in short, requires all executing

threads to do the same operation on different data items to be efficient.

1.2 Multiprogramming

Since, GPUs have become quite versatile, and because of their excellence at data-

parallel applications, programs from many areas are ported over to run on them. they are

used for scientific, machine learning and graph applications, to name a few. Therefore,

there is a lot of heterogeneity in the workloads that GPUs run. Different applications

have different computational requirements, and stress the GPU in different ways, usually

underutilizing its computational capacity. They may even have complementary behaviour.

Moreover, GPUs are incorporating more and more resources with every generation

(more compute units, more memory bandwidth, etc) [3, 13, 14]. Using current GPUs

to their full potential requires very big and massively parallelized workloads. However,

This is not the case for many of the applications of GPUs. Furthermore, algorithms that

are less suitable for GPUs are sometimes run on them in order to minimize CPU-GPU

communication overheads [15].

To mitigate the inefficiencies mentioned previously, current GPUs use multiprogram-

ming [16, 17, 18, 19, 20, 21, 22, 23, 14], which is the concurrent execution of different

applications in the same GPU. This increases the occupancy of the GPU, and can balance

the usage of resources. These two aspects increase performance and energy efficiency.

To support multiprogramming, GPUs have to simultaneously manage different work-

loads. To do that, a scheduling algorithm that decides which workload to schedule is

needed. Current GPUs use the Left-over algorithm, which, as its name suggests, assigns

resources to a kernel greedily until its requirements are fulfilled and only schedules a sub-

sequent kernel if resources are remaining. However, this algorithm is far from optimal,

leaving quite a margin for improvement. That is why research proposals like Warped-

Slicer[18] have been made. Warped-Slicer makes different applications share and co-run

on the same core of the GPU (in all cores). It tries to determine the best way to partition

the resources of each core between them. For that, It carries out a profiling phase to profile

the performance behaviour of the applications and use it to decide. It profiles each appli-
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1. Introduction

cation separately (in deferent cores), which makes it agnostic about the interferences that

may happen between them. This leads to suboptimal decisions. Therefore, there is still

margin for improvement. This dissertation proposes MIAS (Memory Interference Aware

Scheduler), the algorithm that tackles the issues that Warped-Slicer has.

1.3 Objectives

The main objective of this dissertation is to design a scheduling algorithm, MIAS,

that can improve the performance of multiprogrammed workloads. The following smaller

objectives are set as a roadmap to achieve the main one:

• Study currently proposed multiprogramming methods to gain a wider perspective

on the subject and, especially, the state-of-the-art to be able to compare with it.

• Study GPGPU architecture in order to be able to understand its behaviour and derive

conclusions about the performance of a certain workload run on GPUs.

• Gather a diverse benchmark set to perform small evaluations during development

and for the final evaluation of the algorithm.

• Iteratively design the actual algorithm.

• Develop a simulated implementation of the algorithm, together with the baseline

alternatives for evaluation and comparison.

• Evaluate the impact of the algorithm on performance and compare it with the base-

lines.

1.4 Work plan

Each of the small objectives mentioned in the previous section is considered as a

task. They were carried out mostly simultaneously, except for final evaluation, which was

done at the end of development. The design of the algorithm required knowing about the

architecture of current GPUs and the current techniques of multiprogramming. Moreover,

benchmarks had to be used to evaluate and test new ideas. To do so, the execution of the

benchmarks had to be simulated, so significant time was dedicated to the development

and execution of the simulations.
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1. Introduction

1.5 Document structure

In addition to this chapter, the dissertation has four more, with the following structure:

• Chapter 2: Background. Explains background concepts about GPGPUs used in

the following chapters. It briefly covers the programming model and focuses on

the architecture. It also introduces the baseline multiprogramming techniques to

compare MIAS with.

• Chapter 3: MIAS. presents the design and the simulated implementation of MIAS,

the proposed algorithm that improves upon the current state of the art in GPU mul-

tiprogramming. It also discusses some of the limitations that were faced during the

design of the algorithm.

• Chapter 4: Evaluation. Discusses the evaluation of MIAS. It presents the evalua-

tion methods and then the results. It compares MIAS with the baseline multipro-

gramming schemes, including the state-of-the-art. It also reasons about the insights

behind the obtained results.

• Chapter 5: Conclusions and future work. Discusses conclusions about what has

been accomplished so far, and presents future lines of work.
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Chapter 2

Background

In this chapter, concepts and background related to GPGPUs, and specifically to thread

block scheduling and GPU multiprogramming, will be introduced. First the programming

model is explained and, then, microarchitecture concepts relevant to the topic of the dis-

sertation are discussed.

2.1 CUDA programming model

CUDA [24] and OpenCL [25] are the most popular languages for general purpose

programming on GPUs. There are alternatives such as SCYL or OneAPI, but they higher-

level languages and focus on usability rather than performance [26, 27]. CUDA and

OpenCL both share the same core ideas in their programming models. Unlike OpenCL,

CUDA is exclusively used for Nvidia GPUs, and exposes all of their features. CUDA is

chosen because the simulator used in this dissertation, called GPGPU-Sim[28], comes

preconfigured for Nvidia GPUs, and it is much easier to use than the verbose OpenCL.

However, the algorithm proposed in this dissertation should have the same effects regard-

less of the programming model.

The CUDA heterogeneous model defines two separate compute entities, host and de-

vice, each with its separate memory. This is called the host-device programming model.

2.1.1 Execution model

A CUDA program starts in the host, conventionally, as a sequential C/C++ program.

Then, heavy data-parallel functions are offloaded to the GPU, as kernels. In this disserta-
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2. Background

tion, host and device memory spaces are considered to be separate. Therefore, necessary

data has to be sent in advance to the device, and retrieved afterwards.

Kernels

In CUDA, computations that are run on the device are expressed as functions that are

executed by thousands, or even millions, of threads in parallel, these functions are called

kernels. Kernels are declared using the __global__ keyword, as can be seen in code 2.1.

The parameters of a kernel are the same for every thread. Inside the kernel, the blockIdx,

blockDim and threadIdx variables are available. They are set by the runtime and help

to identify each thread and the data it will work with.

Kernel execution is initiated by the host using the notation in code 2.2. This special

call is called a kernel launch. It is similar to a C function call with extra parameters in

between ‘<<<’ and ‘>>>’ which determine the configuration of the offload to the GPU.

These parameters are the grid dimensions, thread block dimensions, and, optionally, the

amount of shared memory assigned to each thread block (if not known at compile time)

and the stream to which the kernel will be launched. They will be discussed in more detail

in later sections.

1 __global__ void saxpy(int n, float a, float *x, float *y) {

2 int i = blockIdx.x * blockDim.x + threadIdx.x;

3 if (i < n) y[i] = a * x[i] + y[i];

4 }

Code 2.1: Example of a kernel in CUDA

1 //...

2 threads_per_block = 256;

3 num_blocks = 1000

4 saxpy <<<num_blocks , threads_per_block >>>(N, 2.0f, d_x , d_y);

5 //...

Code 2.2: Kernel launch example

Thread organization

In a kernel launch, millions of threads, organized into a grid of blocks, are issued to

the device. Each of those blocks is called a thread block, and is a group of threads that can

communicate and synchronize with each other. All threads of a thread block are scheduled

8



2. Background

on the same core or SM (Streaming Multiprocessor), and they share its private resources,

like shared memory. The maximum size of a thread block is usually at around 1024 to

2048 threads.

Figure 2.1: Illustration of a grid of
thread blocks [15]

The blocks in a grid have a one, two or

three-dimensional organization. Threads inside

a block can also have similar organizations, in-

dependent of the grid dimensions. The multi-

dimensional organization of threads makes in-

dexing in applications that deal with matrices

or volumes easier. Figure 2.1 illustrates a two-

dimensional grid of thread blocks, having a

2×3 organization. However, neither the organi-

zation of thread blocks, nor the organization of

threads within a block, are relevant to their scheduling, therefore, it is not covered in

detail.

The SIMT model

GPUs run threads in groups that execute instructions in lock-step, having the same

PC, fetching and decoding one instruction per thread group each cycle. This way of ex-

ecution is called SIMT (Single Instruction, Multiple Threads). In Nvidia GPUs, those

thread groups are called warps, and they are 32 threads each.

CUDA Programmers should be aware of this Implicit SIMT model. It is one of the

core ideas that make GPUs much more efficient than CPUs in data parallel applications.

Control flow and memory access patterns should be adapted to it. Kernels that take ad-

vantage of it can be several times faster and more energy efficient [29].

Streams

CUDA supports GPU multiprogramming via the streams API [15]. Stream behave as

FIFO queues of operations. Usually, interdependent operations (kernels, memory trans-

fers, etc.) are launched to the same stream. Independent operations can, and usually

should, be launched to different streams to allow them to overlap execution or run in

parallel.

9



2. Background

2.1.2 Memory model

All Discrete GPUs have their own memory. For this reason, from the point of view

of the programmer, CPU and GPU memory spaces are considered to be separate, which

requires data transfers between both devices. However, this particular detail is not relevant

to the topic of the dissertation. Consequently, the rest of the section focuses on the memory

of the GPU.

In the device side, CUDA distinguishes between five memory spaces: global, local,

constant, texture and shared memory [15]. The first four are all located on the off-chip

DRAM and have similar latency behaviour. Therefore, in this dissertation, only global

memory is considered when discussing the off-chip DRAM.

Global memory is the space where data is initially located when it gets transferred

from the host. It has relatively low bandwidth and long latencies. As discussed in sec-

tion 2.2.5, caches are used to reduce latencies and increase bandwidth. However, this is

transparent to the programmer since the hardware manages them.

Shared memory is a scratchpad memory that is managed by the programmer. It is lo-

cated in the SM and, when used correctly, delivers more bandwidth than the other mem-

ory spaces. Shared memory variables are declared using the keyword __shared__. These

variables are only visible to and shared by threads in the same thread block, i.e., there is

one instance of the variable per thread block, hence the name shared memory. Code 2.3 is

an example of a kernel that uses shared memory.

Usually the use of shared memory implies thread synchronization to control the use

of shared memory by the different threads of a thread block. This is usually carried out

using barriers like the __syncthreads() call in code 2.3

1 // m, n and k are assumed to be multiples of BLOCK_SIZE

2 __global__ void matmul(int *d_a ,int *d_b ,int *d_result ,int m,int n,

int k) {

3 // Declare shared memory variables

4 __shared__ int tile_a[BLOCK_SIZE ][ BLOCK_SIZE ];

5 __shared__ int tile_b[BLOCK_SIZE ][ BLOCK_SIZE ];

6

7 int row = blockIdx.y * BLOCK_SIZE + threadIdx.y;

8 int col = blockIdx.x * BLOCK_SIZE + threadIdx.x;

9 int tmp = 0;

10 int idx;

11 int chunks=n/BLOCK_SIZE;

10



2. Background

12

13 for (int sub = 0;sub < chunks; ++sub) {

14 // Load data to shared memory

15 idx = row * n + sub * BLOCK_SIZE + threadIdx.x;

16 tile_a[threadIdx.y][ threadIdx.x] = d_a[idx];

17 idx = (sub * BLOCK_SIZE + threadIdx.y) * k + col;

18 tile_b[threadIdx.y][ threadIdx.x] = d_b[idx];

19 // Make sure all data is loaded before computations

20 __syncthreads ();

21 for (int i = 0; i < BLOCK_SIZE; ++i)

22 tmp += tile_a[threadIdx.y][i] * tile_b[i][ threadIdx.x];

23 // Make sure all computations have finished before

24 // overwriting shared data

25 __syncthreads ();

26 }

27 d_result[row * k + col] = tmp;

28 }

Code 2.3: Shared memory example: A simplified matrix multiplication

2.2 GPGPU Architecture

GPUs have a throughput oriented architecture. Their memory systems are designed to

maximize bandwidth and their execution cores are optimized for operation throughput. In

this section, the architecture will be explained in a top-down approach. First, an overview

of the structure of a GPU is presented, and then each component will be explained in more

or less detail depending on its relevance to this dissertation.

2.2.1 High level overview

Like multicore CPUs, GPUs have a set of compute units (cores), which in Nvidia

and CUDA’s terminology they are called Streaming Multiprocessor (SM), connected via

a NoC (Network on Chip) to multiple memory partitions. A memory partition consists of

a share of L2 cache and a memory controller. Each SM can accommodate a number of

thread blocks depending on their resource requirements. A hardware thread block sched-

uler assigns thread blocks to the SMs, one block at a time, in round-robin order. This

structure is illustrated in the diagram on the left in figure 2.2

11



2. Background

Figure 2.2: Illustration of the architecture of a GPU [28]

2.2.2 NoC

Current Nvidia GPUs use two crossbars to connect SMs with memory partitions, one

for traffic from SMs to memory and the other for traffic in the other direction. This kind of

network between the SMs and Memory partitions supply the SMs with the large memory

bandwidth they need. Different SMs can communicate with different memory partitions

in parallel. However, some conflicts can occur if two or more SMs communicate with

the same memory partition at the same time or vice versa, in that case, communication is

serialized.

2.2.3 Memory Partition

A memory partition has a portion of the L2 cache and one or more memory controllers

that connect it to the off-chip DRAM. The memory controller, schedules DRAM accesses

in a way that increases row buffer locality. Some algorithms to achieve that are FR-FCFS

and others proposed for multi-application execution [30].

2.2.4 Streaming Multiprocessor

GPU SMs use two key Ideas to increase performance. SIMT execution for more effi-

ciency and throughput, and aggressive multithreading to hide memory and execution unit

latencies. Figure 2.2 depicts a breakdown of an SM on the right.

12



2. Background

SIMT model

In SIMT execution, only one instruction is fetched and decoded for each warp. Then,

it is executed as a SIMD instruction on data items from all the scalar threads. This saves

energy and area and allows more of it to be dedicated to execution units, since the control

logic is shared between all threads of a warp.

There is an issue with this model, the CUDA programming model does not restrict

threads of the same warp to always execute the same instruction. They can follow different

control paths in an if-else statement, for instance. This issue is called thread divergence.

One way it is solved is by using predication masks, like in vector processors[1]. A thread’s

lane is active only when its corresponding bit is set. More advanced ways are used to

support complex control flow[7] in GPUs.

Pipeline

Compared to the standard CPUs found in most computers, The pipeline of an SM is

simpler, no out of order execution is used. The pipeline has the following 6 stages:

1. Instruction fetch: Like in CPUs, this stage brings instructions from memory.

2. Instruction decode: Fetched instructions are decoded and placed into the instruc-

tion buffer ready to be scheduled for execution.

3. Warp scheduling: The warp scheduler, then, selects a ready warp and issues from

its instructions to the corresponding execution pipelines. Current GPUs use the

GTO (Greedy Then Oldest) algorithm[31].

4. Operand collection: Operands of issued warp instructions are read from the mas-

sive register file[32, 33, 34].

5. Instruction execution: At this stage, instructions are executed. Different instruc-

tions can have different execution latencies. Execution units can be further seg-

mented, increasing the depth of the pipeline.

6. Write back: The last step is writing the result back to the register file.

Memory pipeline

Memory instructions are executed, with each thread specifying its own address. A

warp instruction can produce up to 32 memory accesses. The memory pipeline has a

13



2. Background

coalescer which joins consecutive accesses into one access before sending it to the L1

cache. If all threads access consecutive and aligned data items, just one access to the

L1 cache is made. If accesses are not coalesced, the memory pipeline may stall and the

memory system may get saturated with fewer memory instructions.

Sub-cores

In contemporary GPUs, an SM is made up of simpler cores, each executing a portion

of warps assigned to the SM, with its separate instruction buffer, warp scheduler, register

file and execution units. They, however, share caches (Instruction and data), shared mem-

ory and can synchronize with each other. Usually, the number of warp-schedulers is used

instead of the number of sub-cores, since every sub-core has one warp-scheduler.

2.2.5 Memory hierarchy

Apart from the use of multithreading to hide memory latencies, GPUs employ caches

as well. Usually, they have two cache levels, and the DRAM as the lowest level in the

memory hierarchy. Those levels are explained next:

L1 cache. It is the highest level in the memory hierarchy and the fastest (After the register

file, which is sometimes considered a level in the memory hierarchy). Each SM has

its own private L1 cache. No cache coherency is maintained, i.e. different SMs can

have different data in the same variable (same memory address). An SM has mul-

tiple L1 caches (instruction cache, constant cache, etc). However, this dissertation

only focuses on the data cache.

L2 cache. It is bigger, but slower, than the L1 cache. It is shared by all SMs and connected

to them via the NoC. It is distributed across memory partitions.

DRAM. It is the lowest level and the slowest. Its latencies are variable because of re-

freshes and the use of the row buffer (a memory buffer to which a row of the DRAM

matrix is brought before smaller items are read).

To hide memory latencies, GPUs have to be able to continue issuing instructions even

if a miss happens. GPU caches allow a number of misses to be outstanding at the same

time. This is achieved by the MSHRs (Miss Status Holding Register) table, which is in-

dexed and tagged by parts of the address, like caches are. It holds information to determine
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which accesses correspond to which memory requests. It also allows for access merging:

If two or more accesses are to the same cache line, then only one memory request is

generated.

2.2.6 Thread block scheduler

The thread block scheduler, assigns thread blocks from kernels to SMs. First, it com-

putes the maximum number of thread blocks that can fit in each SM, which depends on

the resources that the kernel to be scheduled needs. Then, it starts issuing thread blocks,

one to an SM each cycle, using a round-robin policy. When doing so, the resources re-

quired by the thread block are allocated. These include: hardware threads/warps, registers,

shared memory, and hardware thread blocks (per thread block resources). The number of

thread blocks assigned to an SM can be limited by any of these resources. In fact, usu-

ally, more thread blocks than the SMs can accommodate are launched. In that case, the

remaining thread blocks are issued as resources become available when previous thread

blocks finish.

Thread scheduling in GPUs is done in two levels. The first is thread block scheduling

and the second is warp scheduling. When the thread block scheduler issues a thread block,

it assigns its warps (logical ones) to hardware warps. The warp scheduler schedules the

execution of the warps and issues their instructions to be executed in the execution units

(ALUs, FPUs, etc). Warp scheduling happens in the issue stage of the pipeline in every

SM (section 2.2.4). In contrast, thread block scheduling happens outside the SMs and

there is just one thread block scheduler in all the GPU.

In the context of GPU multiprogramming, there are many ways in which thread blocks

from different kernels can be scheduled. This can have a significant impact on perfor-

mance. Next, in section 2.3 some of these methods will be explained.

2.3 Related work

This dissertation proposes an algorithm that tries to maximize throughput by efficient

multiprogramming. GPU multiprogramming is the concurrent execution of different ker-

nels in a GPU. It aims to use the resources of the GPU more efficiently. Many scheduling

algorithms for multiprogramming have been proposed, some of them are explained next.
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Left-Over is the algorithm implemented in current GPUs. it runs kernels in the order

they were launched. thread blocks from one kernel are assigned to SMs until they run

out. Then, it starts issuing thread blocks from the next, if there are enough remaining

resources or as they become available. It is meant to mitigate the lack of thread level

parallelism (TLP) in kernels, but it does not co-run them if they have enough TLP except

briefly at the end of execution of each kernel.

Spatial Multitasking[16] makes kernels share resources at the SM granularity. Each

kernel is assigned a set of SMs where only thread blocks from it are run. This mitigates

the lack of TLP in kernels. Moreover, it can give performance gains if the co-run kernels

have different memory behaviour.

Other methods use Intra-SM sharing, which is the concurrent execution of thread

blocks from different kernels in the Same SM. Most of them try to partition resources

among the kernels in a way that achieves better performance and/or fairness. Some of

them approach that at the thread block scheduling level [17, 18, 19, 20], while others try

to solve it at the warp scheduling level or both levels [21, 22, 23].

Warped-Slicer [18] is the state of the art for Intra-SM sharing. It uses information

about how performance scales with increasing number of thread blocks of each kernel to

predict the configuration of thread blocks (the number of thread blocks of each kernel to

run concurrently) that minimizes performance loss for both kernels when they co-run.

First, it carries out a profiling phase to get the performance scalability information.

All thread block numbers from 1 to the maximum possible on an SM are scheduled on

different SMs for each kernel. For instance, if kernel K0 has a maximum of 3 thread blocks

and kernel K1 can fit 4 thread blocks, then SM0, SM1 and SM2 run 1, 2, and 3 thread blocks

respectively from kernel K0, while SM3, SM4, SM5 and SM6 run 1, 2, 3 and 4 thread blocks

from kernel K1. Figure 2.3 illustrates the profiling strategy, but with both kernels having

a maximum of 4 thread blocks per SM. Once the profiling phase is over, the performance

(IPC) achieved by each SM is gathered and used to predict the best configuration.

An algorithm similar to the water filling one [35] is used to determine the best config-

uration. It starts by reserving resources for one thread block of every kernel. To minimize

the performance loss suffered by each one, it tries to compensate the kernel with the low-

est performance, by reserving resources for more of its thread blocks to level it up with

the rest. It does so iteratively until resources run out. The algorithm falls back to Spatial

Multitasking if it predicts that kernels will lose too much performance as a result of intra-

SM sharing. Figure 2.3 illustrates the previously described steps.
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Figure 2.3: Illustration of the Warped-Slicer algorithm.
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Chapter 3

MIAS

This chapter will explain MIAS (Memory Interference Aware Scheduler), the pro-

posed algorithm for thread block scheduling. It starts with a motivation. Then, the al-

gorithm is explained. Afterwards, the implementation in GPGPU-Sim[28] simulator is

covered.

3.1 Motivation

As of the writing of this dissertation, The state of the art for thread block scheduling is

Warped-Slicer[18]. Its profiling strategy, explained in section 2.3, has the following two

main issues:

Kernels profiled separately which makes the profiling process agnostic to the impact of

interferences between kernels on performance, especially due to contention in the

L1 cache.

Lower occupancy during profiling this considerably lowers the stress put on the mem-

ory system during profiling, leading to very inaccurate performance measure-

ments for memory intensive kernels. Moreover, computational resources are also

underutilized during profiling, which makes it (the profiling phase) more costly

performance-wise.

Figure 3.1 shows the performance of Warped-Slicer for some example kernel com-

binations. The y-axis represents the speedup (a metric explained in section 4.1.4). It has

four bars, each indicating the speedup that corresponds to the kernel combination in-

dicated by the x-axis. Below every kernel combination label, the type of its kernels is
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Figure 3.1: Examples of the performance of Warped-Slicer

indicated. “com” and “mem” respectively stand for compute intensive and memory in-

tensive. The kernels are Matrix Multiplication [15] (mm), Binomial Options [15] (bopt),

Fast Walsh Transform [15] (fwt), DXTC [15] (dxtc), Breadth First Search [36] (bfs) and

Black Scholes [15] (blk).

These results will be further explained in section 4.2. They are used as examples of the

behaviour of Warped-Slicer here. Warped-Slicer performs well when all combined kernels

are compute intensive (mm-bopt combination in figure 3.1). Only the separate profiling

issue affects this kind of combinations. But still, it achieves results that are better than

running the kernels sequentially.

Warped-Slicer does not perform as well when memory intensive kernels are involved.

The low stress on memory during profiling makes the performance measurements of this

kind of kernels very inaccurate. Although a technique is used to adjust the measured val-

ues and take into account memory behaviour, experimentation results showed that it does

not make much of a difference in the baseline GPU used in this dissertation (section 4.1.1).

For some memory-compute combinations like fwt-dxtc it achieves great speedups of up to

1.6. However, for others, like bfs-bopt, its performance is less than sequential execution.

The results are worse for memory-memory combinations. All the speedups of Warped-

Slicer are less than 1 when dealing with that type of combinations in the experimentation

done for this dissertation.
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Although Warped-Slicer outperforms the other thread block scheduling policies cov-

ered in section 2.3. It still leaves a considerable margin for improvement. GPUs are grow-

ing in complexity with each generation of architecture [3, 13], which makes their per-

formance less and less predictable. Hence, MIAS is proposed, an algorithm that creates

profiling conditions that are as close to normal post-profiling execution as possible. This

can make accurate performance evaluations to better decide thread block configurations.

3.2 Algorithm design

This section explains the design of MIAS. An overview of the algorithm is given, then,

its steps are explained in depth.

The main objective of MIAS is to maximize the throughput of the GPU when multiple

kernels run on the same device. It tries to select the best performing thread block config-

uration (How many thread blocks of each kernel) to schedule on the SMs. It is expected

to achieve results close to the Ideal case, where the performance of each thread block

configuration is known beforehand.

MIAS has three main steps: profiling, decision and broadcasting. Figure 3.2 illustrates

these steps, which are also explained next:
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Figure 3.2: Illustration of the steps of MIAS.

1. Profiling: The strategy used in MIAS makes kernels execute inside the SMs, ex-

actly how they do in post-profiling execution. All the possible thread block config-
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urations (Ways of partitioning SM resources between kernels) to be scheduled are

generated, and issued to different SMs. They are let to run for enough time to allow

performance to stabilize. Hardware performance counters are used to collect and

measure certain metrics in each SM.

2. Decision: Once the profiling period is over, the values collected in the performance

counters are used to determine the best performing thread block configuration.

Estimations of the effect of memory interference are made, and the measured per-

formance is adjusted accordingly.

3. Broadcasting: The chosen thread block configuration is broadcast to all SMs. Thus,

the post-profiling execution starts. It continues until either a new kernel is launched

or one of the kernels finish execution. In both cases, rescheduling is done by repeat-

ing the tree steps.

3.2.1 Profiling

In a multiprogramming scenario with intra-SM sharing, kernels can interfere with

each other, either constructively or destructively. The constructive interference happens

when kernels are more intensive in different resources. Combining them in good propor-

tions leads to a more balanced workload, which increases the throughput. The destructive

interferences happen when both or one of the kernels uses a certain resource too inten-

sively, causing contention or saturation. Contention mainly occurs in the L1 data cache

when kernels start to evict each other’s data due to conflict misses. Saturation takes place

mostly in the memory pipeline when too many memory requests are generated, causing it

to stall.

Unlike Warped-Slicer, which profiles kernels separately, the profiling strategy used

in MIAS makes kernels share the SM so that the interferences between them take place,

and affect performance as they would do in post-profiling execution. All candidate thread

block configurations are run in parallel, using different SMs, to reduce the time it would

take to finish profiling. Step 1 in figure 3.2 illustrates this strategy.

For the generation of thread block configurations, the algorithm 1 is proposed. It has

the following two main steps:

1. Recursive assignation of resources to kernels. At each call, it incrementally re-

serves resources for thread blocks of a kernel and makes a call to partition the rest
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Figure 3.3: An example of the tree produced during the generation of thread block
configurations.

between the remaining kernels. This step generates a tree, where each path from a

leaf to the root corresponds to a thread block configuration. Figure 3.3 illustrates

the structure of the tree with an example with three kernels, each one can fit the

number of thread blocks indicated by max_TB in one SM. The first leaf in the left

represents the (0, 0, 4) configuration (0 TBs of kernel K0, 0 TBs of kernel K1 and 4

TBs of kernel K2). Each node points to its parent to allow for an easy extraction of

the configurations.

2. Extraction of thread block configurations from the tree. The paths from each

leaf to the root correspond to the configurations. Pointer chasing is carried out to

extract them. It also checks for and removes incomplete configurations, i.e. the ones

that leave enough resources for more thread blocks from one of the kernels. This can

occur if the kernels are limited by different resources (section 2.2.6). later reserved

thread blocks leave room for previously assigned ones because they do not consume

the resources that limit them.

Single kernel thread block configurations (where only thread blocks of one kernel

are executed in the SM) are not considered when two or more kernels are available for

execution. The algorithm always does intra-SM sharing. The configurations returned by

algorithm 1 are filtered to remove the single kernel ones.

The amount of cycles dedicated to profiling should be as short as possible, but enough

for the performance to stabilize. An experiment has been carried out on the benchmarks

to determine an adequate length for the profiling phase. The execution of the bench-

marks (covered in section 4.1.2) was simulated, with periodic measurements of the IPC

(Instructions Per Cycle). Results are plotted in figure 3.4. The IPC of most kernels seems

to stabilize at around 45000 to 50000 cycles. Therefore, the length of 45000 cycles was
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Algorithm 1 The algorithm to generate all possible thread block configurations
function GENERATE_TB_CONFIGURATIONS(kernels)

L← /0 ▷ The leaves of the configuration tree.

▷ A recursive procedure to recursively generate the configuration tree. ◁
procedure GENERATE_SUBTREE(parent,remaining_resources,k)

max_T Bs← TBs of kernels[k] to fill remaining_resources

if k = |kernels|−1 then
▷ Assign remainig resources to the remaining kernel. ◁
L← L∪{Node(parent,max_T Bs)}
return

for nT Bs← 0 to max_T Bs do
node← Node(parent,nT Bs)
r← Resources for nT Bs of kernels[k]
GENERATE_SUBTREE(node,remaining_resources− r,k+1)

resources← The resources of the SM

▷ After this, L contains all the leaves of the configuration tree. ◁
GENERATE_SUBTREE(null,resources,0)

con f igurations← /0
for node ∈ L do

k← |kernels|−1
con f ig← A list with size |kernels|
resources← The resources of the SM ▷ Used to check for incomplete configs

▷ Chase the path to the root to get the configuration. ◁
while node ̸= null do

con f ig[k]← node.nT Bs
r← Resources for node.nT Bs of kernels[k]
resources← resources− r
k← k−1
node← node.parent

▷ Check if the configuration fills the SM as much as possible. ◁
complete← true
for k← 0 to |kernels| do

if resources are enough for one more TB of kernel kernels[k] then
complete← f alse
exit for loop

if complete then
con f igurations← con f igurations∪{con f ig}

return con f igurations
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Figure 3.4: The IPC measured as execution progresses. The x-axis indicates the time in
cycles. The y-axis indicates the IPC. Each curve corresponds to the evolution of the IPC

of the corresponding benchmark over time.

chosen for the profiling phase of the experiments of this dissertation. Nevertheless, if other

applications are used, their stabilisation threshold should be measured. This is a config-

urable parameter of the algorithm. It takes that much for the performance to stabilize due

to the following reasons:

• Caches have to be warmed up (filled with data).

• The memory system can handle thousands of outstanding accesses which have to

be made before latencies stabilize

• Compute intensive kernels that rely on shared memory start by fetching data to it

from global memory, which produces memory intensive behaviour.

This strategy takes into account every thing that can happen inside the SMs. However,

The memory system outside (NoC, L2 cache, Memory controllers and DRAM) is shared

by all the profiled configurations. This lets them interfere in each other’s performance dur-

ing profiling, which produces inaccuracies in the measurements. The next section (3.2.2)

discusses proposed techniques to mitigate this issue.

3.2.2 Decision

Once the profiling phase is over, hardware counters for number of cycles, instructions

executed, stalls, L1 cache misses, accesses, etc... are read and used to decide what thread

block configuration will give the greatest IPC. The IPC is affected by three factors:
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1. Control flow and thread synchronization, which prevent some warps from issu-

ing instructions until, for instance, others get to a barrier.

2. Instruction diversity, which allows instructions to overlap more as they execute

on different execution units.

3. Memory latency, which causes warps to wait for a long time while data is fetched

from memory.

Three methods are proposed to mitigate the issue mentioned at the end of the previous

section (3.2.1), apart from the trivial method of choosing the configuration with the great-

est IPC. They differ in the metric they use to choose the best thread block configuration.

They are all original ideas of this dissertation. Therefore, there are four variants of MIAS.

Each one uses a different method at this step. They will all be evaluated in the next chapter

and the best performing variant is kept. Next, these variants are explained.

The IPC metric

The IPC, Instructions per Cycle, is the performance metric we are trying to maximize.

It is computed as follows:

IPC =
I
C

(3.1)

Where I is the number of executed instructions and C is the number of cycles. It

probably is the variant with the simplest hardware implementation.

The IPM*IPC metric

Memory accesses that miss in the L1 cache are sent to the memory system outside

the SM, and are the cause for the variability of memory latency. The SM continues to

execute until all instructions from all active warps are waiting for data from memory. The

more instructions can be executed after a miss, the more of its latency is hidden. One

metric that can approximate this property is the IPML1 (Instructions per L1 miss). The

proposed metric in this case combines it with the IPC, which has the information about

synchronization behaviour and instruction diversity. This metric is computed as follows:

S = IPML1 · IPC (3.2)
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L1 misses are the accesses responsible for long stalls in the SM due to memory latency.

However, it is not enough to know how many misses happen on average per instruction

(The inverse of IPM). If cache misses happen sporadically, The SM can cover them by

multithreading and may never stall. But, if the same amount of misses takes place in a

burst, they will probably cause the SM to stall for a long time. The next metric is meant

to tackle this issue.

The Factor metric

The number of outstanding memory accesses increases memory latency [21]. If ker-

nels with different memory behaviour are co-run, each thread block configuration will

have different behaviour. When run together during profiling, memory experiences a stress

that could be approximated as the average of all the configurations. When the chosen

configuration is replicated on all SMs, the stress on the memory system can increase or

decrease, leading to different performance with respect to the profiling phase.

One way to account for that, is by measuring the stress one SM is putting on memory

compared to the overall, and use it to predict the change that will happen to memory stall

cycles once that SM’s configuration is broadcast. The difference in memory stress can be

represented by a factor:

f =
Memory stress produced by SMi

Memory stress produced by all SMs
(3.3)

If this factor is greater than 1.0, it means that the thread block configuration on SMi

will increase the memory load in the post-profiling phase. The opposite happens if the

factor is less than 1.0.

The cycles lost due to memory latencies can be multiplied by this factor to increase or

decrease them accordingly. Then, the IPC can be computed using:

IPCSMi =
ISMi

CSMi +MSMi · ( fSMi−1)
(3.4)

Where I is the number of instructions executed, C the total cycles, and M the memory

stall cycles, of the profiling phase, in each SMi. The intuition behind this formula is to

compute the IPC, adjusting the number of cycles to what it would be under normal execu-

tion. The adjustment is done by increasing or decreasing the number of cycles lost due to

memory latencies by an amount determined by the factor f , hence, the term M · ( f −1).

( f −1) is used instead of f because the formula 3.4 is derived from the next formula
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where memory stall cycles are treated separately (extracted from the total and then f is

applied):

IPCSMi =
ISMi

(CSMi−MSMi)+MSMi · fSMi

(3.5)

Now, what should be addressed is how to quantify the memory stress from the SM’s

perspective. In order to measure the accesses responsible for memory stalls, every time

the SM stalls because of memory, the number of outstanding accesses gets accumulated in

a register. The accumulated number of outstanding accesses is an indicator of how much

stress the SM puts on memory. The factor can now be calculated as follows:

fSMi =
ASMi · |SM|

∑
|SM|−1
j=0 ASM j

(3.6)

Where ASMi is the accumulated outstanding accesses on SMi and |SM| is the number of

SMs of the GPU. This is the formal version of expression 3.3. The numerator represents

the stress that the configuration executing in SMi would put if it was broadcast to all SMs.

The denominator is the sum of the stress put by every SM on memory during the profiling

phase. The resulting factor indicates how the stress would change post-profiling.

The Linear metric

The method described in the previous section overestimates the memory stall cycles

for thread block configurations that put a load greater than the average of all SMs, and

underestimates for their counterparts. To get a better approximation, the following linear

regression of memory stall cycles as a function of accumulated outstanding accesses was

used:

M = coe f ·A+b (3.7)

Where coe f is the coefficient of the linear regression and b is the bias term. A is the

accumulated outstanding accesses.

The variation in stall cycles is approximated using the derivative of the function (i.e.

only the coe f parameter), because the reference point (current memory stall cycles and

current accumulated outstanding accesses) already provides us with a bias term that is

better than the average one (the one that comes with the function). The change in memory

stall cycles is computed as follows:
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∆MSMi = coe f ·

(
ASMi · |SM|−

|SM|−1

∑
j=0

ASM j

)
(3.8)

The term |SM| ·ASMi approximates the stress that the configuration executing in SMi

would put on memory when it is broadcast. The term ∑
|SM|−1
j=0 ASM j is an estimation of

the stress that was put on memory during profiling. The difference between these two,

is the estimated change that will happen to memory stress. When it is multiplied by the

coefficient coe f (the derivative of the linear regression), it estimates the change that will

happen to the stall cycles induced by memory latency.

With this model, the IPC that each thread block configuration would have post-

profiling is estimated, and used to choose the best performing one. The IPC is computed

as follows:

IPCSMi =
ISMi

CSMi +∆MSMi

(3.9)

This equation is similar to equation 3.4. The estimated change to the memory stall

cycles is applied by adding it to the total cycles, and the IPC is computed using that.

3.2.3 Broadcasting

This step is the simplest out of the three. Once the previous step is done, the thread

block configuration that is estimated to perform the best is issued to be applied on all

SMs.

3.2.4 The complexity of the memory system and latency prediction

The methods described in section 3.2.2 try to predict memory latency variations using

mostly the rate at which memory requests are generated by an SM. However, between

the SMs and DRAM, there are components that exploit locality and access patterns to cut

latencies:

NoC and memory partitions: The network on a chip can have variable latencies de-

pending on access pattern and the way addresses are mapped to memory partitions.

The former depends on the hardware implementation. The first is a property of

kernels or TB configurations running on the SMs. NoC latency increases with the

number of conflicts.
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L2 cache: accesses with greater locality can have their memory latencies considerably

reduced by the L2 cache. However, it is shared by all the SMs and co-running

kernels interfere a lot in it as they can evict each other’s data.

Row buffer: DRAM’s data is organized into a matrix. Entire rows have to be read to the

row buffer and, then, smaller data items can be read from the latter. Accesses that

are ready in the row buffer have reduced latency.

Some techniques have been developed to evaluate the locality of programs and even

GPU kernels[37, 38]. However, they all need traces of accessed memory addresses, which

is too expensive to implement in hardware. In summary, the methods proposed for the

decision step can be improved by incorporating locality and access pattern information

(of L2, row buffer, etc. L1 is excluded) in their estimations. However, this is too complex

and costly to implement in GPU architectures.

3.3 Implementation in GPGPU-Sim

To evaluate the impact of the proposed algorithm on performance, it was implemented

in the GPGPU-Sim simulator[28]. In this section, the simulator is first introduced, and

then the implementation is discussed.

3.3.1 GPGPU-Sim

GPGPU-Sim[28]1 is a cycle accurate simulator for GPGPUs, one of the most widely

used in the scientific literature. It models the architecture described in section 2.2. It

can run both CUDA and OpenCL kernels. Most features of the architecture are config-

urable and don’t need any changes to the source code. Its configuration is specified in the

gpgpusim.config file with option-value pairs like "-gpgpu_scheduler gto" to set the

warp scheduling algorithm to GTO, for instance. It comes with configurations that were

fine-tuned, using the Accel-Sim framework[28], to quite accurately simulate a handful of

real GPUs. However, to implement new techniques, code modifications may be needed.

This is the case of this dissertation.

GPGPU-Sim intercepts CUDA calls, such us cudaMemCpy() and kernel launches,

from running programs and simulates them. Programs have to be dynamically linked to

1https://github.com/gpgpu-sim/gpgpu-sim_distribution.git
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the CUDA runtime, and the shell environment has to be set up to redirect the calls to the

simulator. Configuration files must be placed in the working directory of the simulated

program.

3.3.2 Pre-existing thread block scheduling implementation

Thread block scheduling was not configurable for the most part. Left Over (sec-

tion 2.3) was the only algorithm implemented, since it is what current GPUs use.

The code for it was spread across two classes: gpgpu_sim which is the class con-

taining all the simulated components of the GPU and the shader_core_ctx which

simulates an SM. Every simulated cycle, the gpgpu_sim::cycle() method, i.e. the

cycle() method of the gpgpu_sim class is called to simulate a GPU cycle. It,

then, calls the gpgpu_sim::issue_block2core() which tries to issue one block

to one SM iterating over them in round-robin order. For each one, it calls its

shader_core_ctx::issue_block2core() until one of them accepts a block, when the

SM has enough free resources. The former calls gpgpu_sim::select_kernel() which

selects and returns a kernel to issue the thread block from.

This implementation is pretty much hardcoded for the Leftover policy. Moreover,

more advanced algorithms would require processing information related to thread block

scheduling, distributed across multiple classes, leading to unnecessary complexity.

3.3.3 A self-contained and extendable implementation

After familiarizing with the Simulator and gaining more insight into its inner

workings, a self-contained and extendable implementation was made. A class called

tb_scheduler (thread block scheduler) contains all the variables that are related to thread

block scheduling, common to all the SMs. Also, it implements common functionality to

all thread block scheduling algorithms. It has a list of intra_sm_slicer objects. Each

tracks the thread block scheduling state on its corresponding SM, and manages resource

allocation on it.

Two lists of kernel entries are used in the tb_scheduler class: One for kernels

launched and issued to the hardware thread block scheduler, and one for kernels that

are scheduled, or to be scheduled, on the SMs. Another list is used to hold thread block

configurations. Each thread block configuration is a vector of integers the same size as the
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scheduled kernels list. The position i of that vector corresponds to kernel i in the scheduled

kernels list.

Every thread block configuration is scheduled in an SM. If there are more SMs than

configurations, they can be scheduled on multiple SMs. It also handles the profiling logic,

which is common to all algorithms that use it. It profiles whatever is executing on the

SMs, which is determined by downstream implementations, for a configurable amount of

cycles.

The Leftover, Spatial-Multitasking, Warped-Slicer (section 2.3) and MIAS thread

block scheduling algorithms were implemented. They were found to only differ in the

following three operations:

update_scheduled_kernels(): which decides which kernels from the list of launched

kernels are going to be scheduled on the SMs. It puts them on the scheduled kernels

list (m_scheduled_kernels). The default implementation passes all the launched

kernels to the scheduled list.

generate_configs(): Generates the thread block configurations. It does not have a

default implementation.

on_done_profiling(): It is used by algorithms that need profiling to decide what to do

once the profiling is over. The default implementation does nothing.

Most algorithms only redefine one or two of these operations:

Spatial multitasking: It redefines the generate_configs() operation. It generates one

configuration per kernel, where the corresponding position is set to the maximum

number of thread blocks of that kernel, and the others are set to 0. This way, it

dedicates a set of SMs to each kernel.

Leftover scheduler: It extends the spatial multitasking scheduler and redefines the

update_scheduled_kernels() function to schedule only one kernel at a time in

the order they were launched. Once there are no more thread blocks to issue from

the current kernel, thread block scheduling entries are updated and thread blocks

from the next kernel are issued to the leftover resources.

MIAS: This one overrides the generate_configs() function to generate all config-

urations for profiling and, once it is over, choose the best configuration. The

on_done_profiling() function is used to make the decision and reschedule.
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Warped-Slicer: This one overrides the same functions as MIAS, but with different pro-

cedures to implement its algorithm.

As can be seen, with this infrastructure, implementing different thread block schedul-

ing algorithms requires only adding their logic by reimplementing some of the described

functions, making implementing new algorithms quite easy. This is a contribution to the

simulator that may benefit other researchers. Therefore, its incorporation to the upstream

GPGPU-Sim git repository will be requested.

3.3.4 The phase to phase transition issue

Thread blocks cannot be pre-empted until they finish execution. Therefore, before pro-

filing starts on an SM, the thread block scheduler has to wait until the SM is partitioned

according to the desired configuration, i.e. the extra thread blocks from the first kernel

finish and get substituted by thread blocks from the newly launched one. The same hap-

pens when transitioning from the profiling to post-profiling execution. These transitions

are inevitable and add to the time that the GPU is not running the optimal configuration.

They can last from a few cycles to millions, depending on the time it takes the thread

blocks that have to be substituted to finish execution.

This is an implementation related issue and not part of the algorithm. If thread block

pre-emption is used, the implementation will no longer have this overhead.

32



Chapter 4

Evaluation

In this chapter, the performance impact of MIAS (Memory Interference Aware

Scheduler) is discussed. It is compared with sequential execution and Warped-Slicer. The

variants of MIAS are also compared with each other. First, the methodology and resources

used to perform the evaluation are covered. Then, the results are explained.

4.1 Methodology

This section explains the setup of the experiments to carry out the evaluation. It starts

with the architecture of the baseline GPU. Then, the benchmarks and, afterwards, the

metrics used for evaluation is discussed.

4.1.1 Baseline GPU configuration

The GPGPU-Sim[28] simulator has been configured to model an Nvidia GeForce

RTX2060, which has a Turing GPU architecture[39]. It is used as the baseline and mod-

ified to implement the thread block scheduling algorithms, as explained in section 3.3.

It has 30 SMs, each having 4 Greedy-Then-Oldest (GTO) warp schedulers. There are

1024 hardware threads in each SM organized into 32 warps. An SM can accommodate a

maximum of 32 thread blocks, has 65536 registers, 64KB of shared memory and a 64KB,

512-block, fully-associative L1 cache. The GPU has a 3MB, 16-way associative L2 cache,

shared by all SMs and distributed across memory channels. Both caches have blocks that

are 128 bytes. There are 12 FR-FCFS Memory controllers that are connected to GDDR5

DRAM chips. It has 12GB of DRAM. Table 4.1 summarizes the configuration.
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SMs 30, SIMD width=32, 1365MHz
Per-SM warp schedulers 4 Greedy-Then-Oldest schedulers

Per-SM resources max 1024 threads, max 32 thread blocks, 65536 Registers,
64KB Shared Memory

Per-SM L1 Data Cache 64KB, 512 blocks, fully-associative, 256MSHR
L2 Cache 3MB, block size=128B, 16-way

Memory Model 12 MCs, FR-FCFS, 3500MHz, GDDR5, 12GB

Table 4.1: The configuration of the baseline GPU.

4.1.2 Benchmarks

Most of GPGPU literature classify applications as Compute intensive or Memory in-

tensive [17, 21]. These categories are defined as follows:

Compute intensive Their performance is not bounded by memory bandwidth, since they

do not use much. Therefore, it increases with more TLP (Thread Level Parallelism).

Memory intensive Their performance is limited by memory bandwidth, and saturates

very quickly as their TLP is increased. It can even start to degrade due to increased

memory latencies and, possibly, L2 cache contention as well.

To be able to rigorously evaluate MIAS, the benchmark set has to be as diverse as

possible. It has three memory intensive kernels and 4 compute intensive ones. They are

from the CUDA SDK[15] and Rodinia[36] benchmarks. Next, the peculiarities of each

benchmark are discussed:

Breadth First Search[36] (bfs) It is a graph exploration algorithm. These kinds of algo-

rithms tend to be very Memory Intensive, since the main operation they perform

is edge chasing. The implementation of the algorithm for GPGPUs does a lot of

uncoalesced memory accesses. As illustrated in figure 4.1, its threads spend most

of their time waiting for data from memory (RAW dependencies).

Fast Walsh Transform[15] (fwt) It is also a Memory Intensive kernel that does very

little computations per data item. It, however, makes coalesced memory accesses.

Black Scholes[15] (blk) It is a Memory Intensive kernel, but it performs a considerable

amount of computations per data item and makes coalesced memory accesses.

Matrix Multiplication[15] (mm) It is a Compute Intensive kernel. Its memory latency

induced stalls are very reduced due to the use of shared memory. It, however, loses
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a substantial amount of cycles to compute stalls. It could probably be owing to the

lack of diversity in compute instructions, which leads to using one of the pipelines

a lot more than the others.

N-body[15] (nbdy) It is mostly a Compute Intensive kernel, but it has quite a bit of RAW

stalls that are caused by memory latencies.

Binomial Options[15] (bopt) It is a Compute Intensive kernel that has little memory in-

duced stalls. It loses a considerable amount of cycles due to thread synchronization

(idle or control stall in figure 4.1).

DXTC[15] (dxtc) It is a very Compute Intensive texture compression algorithm. The

implementation for GPGPU achieves high IPC values as it does not produce too

much memory traffic.

Figure 4.1 depicts their stall behaviour. Each bar corresponds to one benchmark and,

in its entirety, represents the percentage of cycles when a warp-scheduler stalls (cannot

issue an instruction). Each one is further broken down according to the reason the stall was

produced: RAW stall (Read After Write) are caused mostly by long memory latencies.

Idle or control stall mean that either there are no valid instructions in the instruction

buffer or the warps are waiting, probably due to synchronization. Memory pipeline stall

and Compute pipeline stall are caused when instructions are issued to the corresponding

pipeline faster than it can accept them.

4.1.3 Benchmarking infrastructure

The evaluation process encountered different kinds of issues. Next, these are discussed

together with the solutions that were come up with.

GPGPU-Sim is compiled as a shared library that is dynamically linked to programs,

substituting the CUDA runtime. However, GPU programs execute in different processes

that share the code of the simulator library but not the mutable data. Multi-kernel simula-

tion requires the kernels to be launched by the same process.

Some benchmarks don’t allow to change workload size, as they are part of a bigger

algorithm. Others, allow that but not directly because they read their data from a file like

an image for instance. A way to precisely adjust the size of the workloads of the kernels

was needed to control the time each kernel executes for.

35



4. Evaluation

Figure 4.1: The composition of the percentage of stall cycles of the benchmarks.

Moreover, some of the selected benchmarks use features of CUDA that are not im-

plemented in the simulator, like Cooperative Thread Groups[15]. Therefore, benchmarks

need to be adapted by using low level synchronization primitives like __synchthreads()

instead.

To overcome all of these issues, a program that launches the kernels in parallel with the

specified number of thread blocks is developed. Each kernel is extracted from its original

program and wrapped in a library with four functions:

<kernel_name>_init() takes as parameter the number of thread blocks, allocates and

initializes the variables needed by the kernel.

<kernel_name>_launch() launches the kernels to the stream that it receives as parame-

ter.

<kernel_name>_check_results() checks the results of the kernel to make sure they are

correct.

<kernel_name>_uninit() frees up the memory that was allocated for kernel execution.

The main program stores pointers to these functions together with the name of the

kernel they belong to in a data structure. It receives the names of the kernels to launch,
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with the number of thread blocks of each as command line arguments. It looks up the

function pointers in the data structure and initializes all the kernels. Once they are all

ready to go, it launches all of them to different streams. When they finish, it checks the

results and frees up memory. This way, kernels are launched by the same process and,

thus, they share the same simulated GPU.

The number of simulations that had to be made was quite big (sometimes hundreds

of simulations), so scripts were written to automatically generate their configuration and

run them. For that, Python was chosen over Bash because it provides more flexibility and

ease to carry out the tasks of configuration generation. Although, executing commands is

more verbose in Python.

Simulating computer architecture is a heavy process. It can take hours to simulate a

millisecond of a GPU. Moreover, simulations of all the pairs of kernels with each alter-

native (MIAS, Warped-Slicer, etc.) have to be carried out, adding up to a total of 112

executions. A cluster, named Triton that belongs to the ATC group in the University of

Cantabria, was used to perform the heavy simulations. They are launched to be executed

in parallel by three, 20-core, 40-thread nodes. This reduced the simulation time, which

would take several days in a normal computer, to less than a day.

During multi-kernel execution, it is more likely that one of the kernels finishes earlier

than the other. That is why simulations are stopped before neither of the kernels finish

execution. Only the part where both kernels are running is relevant to the evaluation.

Moreover, Execution time is not used as the performance metric (section 4.1.4) and having

predictable simulation time is important for running the simulations in Triton. Therefore,

a fixed execution time of 5 million cycles is simulated in each experiment. Even if the

multi-kernel execution continues beyond the 5 million cycles, the behaviour would not

change until one of the kernels finish execution.

4.1.4 Metrics

To evaluate the impact of MIAS on performance and compare it to the other alterna-

tives, the speedup metric is used. It measures the relative performance improvement of an

alternative relative to another. It is calculated as folows:

SA,B =
IPCA

IPCB
(4.1)
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Where SA,B is the speedup of alternative A relative to B. IPCA and IPCB are, respec-

tively, the IPC of A and the IPC of B. The performance is usually considered as the inverse

of the time it takes to finish execution. However, in the case of this dissertation, the IPC is

used because MIAS aims to maximize it. Moreover, time cannot be used because the sim-

ulations are cut before the programs finish execution since they are run for a fixed amount

of cycles. The next section (4.2) uses the speedup of variants of MIAS and Warped-Slicer

relative to sequential execution.

For the performance of sequential execution of kernels, the average IPC of the kernels

executed separately is used. No distinction between the pure sequential execution and

Left-Over is made, because the transition from the execution of the first kernel to the sec-

ond would last for less than a hundred thousand out of the five million simulated cycles.

Those are the cycles where the GPU may have low occupancy in pure sequential execu-

tion, or kernel execution may overlap in Left-Over. The impact on performance would not

be significant because of Amdahl’s law[40]. This would simplify the evaluation process

since fewer simulations are required, while results would not differ from actual Left over

or pure sequential simulations.

Moreover, the percentage of cycles when the SM is stalled is used to study the be-

haviour of simultaneous kernel execution. The stalls have different causes, and they are

distinguished as explained in sections 4.1.2.

4.2 Results

In this section, evaluation results will be discussed. First, the charts used are explained.

Then, the achieved performance is discussed.

To visualize the results of the evaluation, the charts in figure 4.2 were made. The com-

binations of kernels were separated into three groups: Compute-compute combinations

where both kernels are compute intensive (figure 4.2a), memory-memory combinations

where both kernels are memory intensive (figure 4.2b) and memory-compute combina-

tions where one of the kernels is memory intensive and the other is compute intensive

(figure 4.2c). Every group has its own chart. All three charts have the same layout: The

y-axis represents the speedup relative to the sequential execution, and the x-axis indicates

the pair of benchmarks which the group of bars belong to. Each bar in a group indicates

the speedup achieved by running the pair of kernels using the algorithm specified by the

colour according to the legend. The first four bars each belong to the variant of MIAS
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indicated by the legend. The purple bar is dedicated to Warped-Slicer for comparison.

The last group of bars are the mean speedup achieved by each algorithm for the type of

combinations of kernels.

Figure 4.3 has four charts with the same layout as the one in figure 4.1. They are

used to explain the results by having an insight into what happens in the SM when two

kernels are executed together. Each chart has three bars which represent the percentage

of stall cycles, broken down according to what caused them. The first two are for each

kernel executed individually, while the one in the right depicts what happens when they

are executed together.

4.2.1 Compute-compute combinations

For compute-compute combinations, all five algorithms perform well, with the IPC

and Linear variants of MIAS being in the lead with a mean speedup of 1.19. The strong

influence of memory behaviour on the IPM*IPC and Factor variants make them choose in-

correct thread block configurations because they overestimate the impact on performance.

Because Warped-Slicer profiles the kernels separately, it does not take into account the in-

teractions between them, thus, it achieved the lowest speedup out of the five algorithms.

The performance gains for this group of combinations comes mainly from the diver-

sification of the instructions being executed. This leads to better distribution of work-

load across all execution units in the SM, which in turn reduces the stalls caused by

overutilization of one of the execution pipelines. Moreover, most compute kernels use

thread synchronization to control shared memory access, which causes some warps to

become temporarily unavailable for execution and, thus, the SM stays idle for quite a

bit of time. Combining a kernel with this problem with others gives the SM work to do

during synchronization bursts. Figure 4.3a illustrates these two phenomena. For exam-

ple, Matrix Multiplication (mm) has a lot of compute pipeline stalls (first bar), while

Binomial Options (bopt) has a lot of Idle or control stalls due to synchronization (second

bar). When the two kernels are combined, both kinds of stalls are reduced because each

kernel compensates for the other’s deficiencies (third bar). The rest of compute-compute

combinations have similar behaviour.
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(a) (b)

(c)

Figure 4.2: The speedup achieved by each algorithm relative to sequential execution of each pair of benchmarks. Per
combination group mean values are plotted alongside.
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4.2.2 Memory-memory combinations

When two memory intensive kernels are combined, there is probably not a significant

difference in the stress put on memory by the different thread block configurations. This

explains why the IPC and IPM*IPC variants of MIAS have the best performance, achiev-

ing a mean speedup of 1.19. Because the memory system is already very saturated, small

changes in the stress put on it do not produce as much of an impact as predicted by the

Factor and Linear variants. That is why they fail to make the right choice. Warped-Slicer

significantly reduces the number of thread blocks that are simultaneously executing dur-

ing profiling, which reduces the stress on memory compared to post-profiling execution.

This leads to an inadequate choice.

Figure 4.3b depicts what happens when two memory intensive kernels are combined.

Most of the gains come from the diversifications of the small compute workload of the

two kernels, like what happens in compute-compute combinations.

4.2.3 Memory-compute combinations

Combining Memory intensive kernels with compute intensive ones gives the best re-

sults, as can be seen in figure 4.2c. The IPM*IPC, Factor and Linear variants of MIAS are

the best performing for this type of combinations, achieving a mean speedup of 1.43 with

a 28% improvement over Warped-Slicer. Some combinations got a speedup of more than

1.7 which indicates a great performance gain. The more extreme the kernels get in being

compute intensive or memory intensive, the better are the gains because they complement

each other.

Predicting the impact of memory on the final IPC is very important for this type

of combinations, because their thread block configurations have very different memory

behaviours. This is specially important when combining compute intensive kernels that

have pipeline stalls like Matrix Multiplication (mm) with memory intensive ones like Fast

Walsh Transform (fwt) and Black Scholes (blk). That is what led to the IPC*IPM, Factor

and Linear variants outperforming the IPC variant.

Figure 4.3c shows what happens when a memory intensive kernel is combined with a

compute intensive one. The SM has more compute workload to cover the long memory

latencies of the memory intensive kernel. The combined execution of fwt and dxtc gets a

RAW stall percentage that is the same as when dxtc is executed alone. Both the SMs and

memory system are kept busy, which increases overall throughput of the GPU.
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(a) (b)

(c) (d)

Figure 4.3: Comparisons between separate and joint executions of stall cycles
composition of the best performing combination of each group of figure 4.2
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Figure 4.4: The global mean speedups of each algorithm

Warped-Slicer does not perform well for this type of combinations, getting speedups

that are less than 1 in many of them. On one hand, profiling kernels separately does not

allow it to take into account the interactions inside the SM. On the Other hand, it reduces

the workload during profiling which lowers memory latencies, leading to significant dif-

ferences between the pre and post profiling behaviours.

bfs-mm is the only combination in which successful multi-kernel execution is not

achieved under any of the evaluated algorithms. Figure 4.3d shows that memory induced

stalls were not reduced enough. BFS makes a lot of uncoalesced memory accesses, which

increase memory latency even if its thread blocks are significantly reduced (only one out

of the four run under MIAS). This keeps latencies high, which slows down mm too much.

Empirical experimentation revealed that all possible thread block configurations (1-3, 2-

2 and 3-1) have a speedup that is less than 1. In fact, MIAS chooses the best thread

block configuration, which is 1-3 (1 thread block of bfs and 3 thread blocks of mm). This

means that those two kernels are not good for multi-kernel execution, and should rather

be executed sequentially or under Spatial Multitasking[16].

4.2.4 Overall performance

Figure 4.4 depicts the global mean speedup acheived by each algorithm (The variants

of MIAS and Warpped-Slicer) relative to sequential execution. It is a bar chart whose
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y-axis represents the speedup, and the x-axis indicates the algorithm that corresponds to

each bar. the bars indicate the global mean speedups.

The IPM*IPC variant of MIAS achieved a mean speedup of 1.32 which is the greatest.

The IPC variant follows it at 1.3 and, then, the Linear variant at 1.27. The Factor variant

achieved the lowest mean speedup out of MIAS variants at 1.24. Therefore, the IPM*IPC

metric is the definitive metric for the decision step of MIAS. Warped-Slicer has a global

mean speedup of 1.1.

These results show that MIAS has been quite a success. It improves overall perfor-

mance by 32% over sequential execution and by 20% over Warped-Slicer. Moreover, it

gets performance gains for all types of kernel combinations and excels when combining

different types of kernels, achieving a speedup of up to 1.72 and a mean speedup of 1.42.
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Conclusions and future work

5.1 Conclusions

GPUs have become an integral part of most current computing systems, ranging from

small ones, like mobile phones, to supercomputers. They accelerate computationally de-

manding tasks and make them cheaper and more accessible. They are still the dominant

platform for deep learning, in which they enable more advancements as their performance

and capacity grows.

GPGPUs make a good compromise between being specific and general purpose archi-

tectures, which makes them a compelling platform for many diverse applications. More

data-parallel applications are expected to get ported over to GPUs, with different compu-

tational requirements. Moreover, GPUs are still growing at much faster rate than CPUs do.

A lot more compute and memory resources are added with every generation. Therefore,

multiprogramming is necessary for an overall efficient usage of these devices. Scheduling

algorithms that can maximize performance by efficiently partitioning the resources of the

GPUs are needed.

Left-over, the currently used algorithm for thread block scheduling for multipro-

grammed workloads on GPUs leaves quite a margin for improvement. It is only meant

to increase the occupancy of the GPU, but does not co-run the applications except maybe

briefly. Warped-Slicer is currently the best research proposal that makes applications

share resources at the finest-grain possible, by intra-SM sharing (sharing resources of the

same Streaming Multiprocessor or core). It tries to make efficient resource partitioning.

However, it profiles kernels separately, which does not allow for interference detection.

Therefore, it still leaves room for improvement.
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This dissertation proposes MIAS (Memory Interference Aware Scheduler). a thread

block scheduling algorithm that improves upon the state of the art. It has a rigorous pro-

filing strategy that creates the different resource partitioning configurations and conditions

that the different kernels may encounter if they co-run. Unlike Warped-Slicer, the kernels

are profiled jointly, which takes into account their interferences. Moreover, the different

configurations are profiled in parallel in different SMs, significantly reducing the over-

head of profiling. The impact of accesses to the memory system outside the SMs, which

the profiled configurations share, is estimated and taken into account when deciding which

one is the best configuration. The dissertation proposes four alternative metrics to decide

the best configuration. For homogeneous kernel combinations (of only compute inten-

sive kernels or only memory intensive ones), the IPC metric is enough to predict the best

thread block configuration. However, when the combined kernels are of different types,

the proposed memory estimation methods achieve better results. Because the factor and

linear metrics do not perform well for combinations with only memory intensive kernels,

the IPM*IPC metric is the one that achieves the best overall results. Thus, it is chosen as

the metric for the final version of MIAS.

Evaluation results show that MIAS have been quite a success. It improves overall per-

formance by 32% over the Left-over or the sequential approach (They have very similar

results on big workloads), and by 20% over the Warped-Slicer approach, which is the

state of the art. For homogeneous kernel combinations, MIAS improves performance by

18% over sequential execution. It performs much better for heterogeneous combinations,

improving performance by a mean of 43%.

5.2 Future lines of work

This dissertation has achieved considerable advancements in the multiprogramming

realm. Nevertheless, there are still some issues and lines of work to explore. They are

discussed next:

• Locality estimation for better decisions: The methods used to decide which thread

block configuration is the best, in this dissertation, do not take into account the lo-

cality behaviour, i.e. how close memory accesses are in both space (spatial locality)

and time (temporal locality). An estimation of the locality of the workloads would

improve the decision step of MIAS.
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• A kernel scheduler on top of the thread block scheduling level: In current GPUs,

kernels are issued to the hardware thread block scheduler in FIFO order, regardless

of what type they are. However, from the results of this dissertation and other mul-

tiprogramming literature[18, 21], it is clear that executing different types of kernels

concurrently yields greater performance. A kernel scheduler, that can determine the

types of kernels and try to schedule complementary ones together, would consider-

ably improve performance.

• MIAS with a kernel-aware warp-scheduler: In this dissertation, the default GTO

scheduler was used. It is agnostic about the origin of the warps (to which kernel they

belong). Putting together MIAS with a kernel-aware warp-scheduler might improve

performance. The warp-scheduling algorithm might be a new one that takes into

account what MIAS decides or an already proposed one[21, 22, 23]

• MIAS with kernel-aware memory request scheduling algorithms: This is simi-

lar to the previous line of work. It consists in using a kernel-aware memory request

scheduling algorithm[30] together with MIAS. An ultimate implementation of a

GPU with all four, previously mentioned, schedulers (kernel, thread block, warp,

and memory request schedulers) supporting multiprogramming, would also be a

good option to explore.
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