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Abstract

In recent years, energy consumption has become a limiting factor in the evolution of high-
performance computing (HPC) clusters in terms of environmental concern and mainte-
nance cost. As computing power increases and workloads become more intensive owing
to the rising popularity of artificial intelligence and machine learning tasks, this prob-
lem is not expected to recede in the near future. Consequently, numerous techniques are
being researched as a means of tackling energy consumption in HPC systems, including
energy-aware job scheduling. Since this is known to be an NP-complete problem, heuristic
scheduling algorithms and, more recently, artificial intelligence have been the main focus
of the investigation carried out in this area.

Job scheduling approaches to reducing energy consumption have traditionally resorted to
time-related metrics as their main optimization target, seeing that execution time and
energy consumption are closely related. However, difficulties arise in the face of issues
such as memory contention and heterogeneous resources, giving rise to a need for more
specific solutions.

This work aims to design an intelligent job scheduler for HPC systems trained using deep
reinforcement learning techniques that focuses on reducing energy consumption explicitly,
by leveraging the information provided by the power consumption specifications of the
resources of a heterogeneous cluster, and by optimizing energy-related metrics directly
instead of relying on time measurements.

Keywords: Task scheduling, Deep reinforcement learning, High-performance computing,
Heterogeneous clusters, Energy consumption.
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Resumen

En los últimos años, el consumo energético se ha convertido en un factor limitante en
el desarrollo y evolución de los clusters de computación de alto rendimiento (HPC) en
términos de su impacto ambiental y coste de mantenimiento. A medida que la potencia
de cómputo de estos sistemas aumenta y la carga de trabajo a la que están sometidos
se vuelve más intensa debido a la creciente popularidad de las tareas relacionadas con
la inteligencia artificial y el aprendizaje automático, este problema no va a remitir en
un futuro cercano. Como consecuencia de esta situación, diversas técnicas están siendo
investigadas con el objetivo de reducir el consumo energético en los sistemas HPC, entre
las cuales destaca la planificación de tareas consciente de la energía. Puesto que este
es un problema NP-completo, las principales vertientes de investigación en esta área se
han centrado en algoritmos heurísticos de planificación y, más recientemente, modelos de
inteligencia artificial.

El campo de la planificación de tareas en sistemas HPC como medio para reducir el consumo
energético tradicionalmente se ha centrado en la optmización de métricas relacionadas con
el tiempo, dada la estrecha relación existente entre estas y el consumo energético. Sin em-
bargo, factores como la contención de memoria y la consideración de recursos heterogéneos
derivan en una mayor complejidad que requiere el desarrollo de soluciones más específicas.

Este trabajo pretende diseñar un planificador inteligente para sistemas HPC entrenado me-
diante técnicas de aprendizaje reforzado profundo que se centre explícitamente en reducir el
consumo de energía haciendo uso de la información proporcionada por las especificaciones
de consumo de potencia de los recursos de un clúster HPC heterogéneo, y optimizando
métricas relacionadas con la energía en lugar de con el tiempo.

Palabras clave: Planificación de tareas, Aprendizaje reforzado profundo, Computación de
alto rendimiento, Clusters heterogéneos, Consumo energético.
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Chapter 1

Introduction

This chapter introduces the motivation for this work as well as some basic concepts required
for its comprehension. More specifically, it presents the problem of energy consumption in
high-performance computing systems, and how it can be targeted by a variety of strategies
that include job scheduling. The complexity of this task is then exposed, followed by the
presentation of artificial intelligence techniques as a possible solution. At the end of the
chapter, the main objectives pursued in this work are summarized and the structure of the
document is outlined.

1.1 Energy Consumption in HPC Systems

High-performance computing systems are constantly evolving, reaching greater heights in
computing power, efficiency and scalability [2]. Along the way, energy consumption has
always remained a key obstacle both in terms of environmental impact [3] and maintenance
cost. As a reference for the latter, the costs of running an HPC cluster for two years can
be comparable to the cost of its purchase, owing to this factor [4].

Not only is this a problem in the further development of HPC systems, but also on a
larger scale. At the time of writing, data center and data transmission networks account
for between 1% and 1.5% of global electricity use and 0.9% of energy-related greenhouse
gas emissions, according to the International Energy Agency [5]. This represents only a
moderate increase with respect to 2010 thanks to improvements made in energy efficiency,
but CO2 emissions must still be halved by 2030 to achieve the United Nations net zero
objective.

Even though these numbers do not refer exclusively to data centers geared towards HPC,
the intensity of the tasks assigned to these clusters makes them a major contributor towards
energy consumption. In fact, the computational and storage requirements of specialized
applications continue to grow as the focus stays on artificial intelligence and data mining,
according to the Hyperion Research 2022 report [6]. As for the cause, energy consumption
in a cluster can be attributed to several factors. Firstly, the essential components needed
for the basic operation of a cluster, such as network cards or switches, need to be powered.
Secondly, energy is expended both while preparing and while executing jobs. Thirdly, idle
nodes consume energy as well. Finally, the energy consumption of cooling systems is a
considerable contributing factor [7].

For these reasons, research is still ongoing in this area. Over the last decade many aspects
have been considered in an attempt to reduce energy consumption, for example the im-
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pact of parallel programming paradigms of shared memory and message passing [8], the
willingness of users to write and submit energy-efficient programs [9], total energy budgets
[10] or the influence of fault tolerance mechanisms [11]. These are only a taste of the wide
range of alternatives that have been explored, while many more are still being tested. In
this work, the objective of reducing energy consumption is tackled through energy-aware
scheduling techniques. A broad survey that covers the research carried out in this area in
particular during the last 15 years can be found in [12].

1.2 The Job Scheduling Problem

A relevant aspect that influences energy consumption in high-performance computing sys-
tems, and efficiency on a broader scope, is job scheduling. Job scheduling determines the
manner in which free resources are assigned to incoming jobs within a cluster (or viceversa).
This task is usually carried out by an independent module with access to the pending job
queue and knowledge of the current state of the cluster, commonly known as the workload
manager or scheduler.

The workload manager implements a policy or algorithm that determines which resource is
matched to each submitted job. Different objectives to be met through a scheduling policy
may be specified, the most relevant being minimizing makespan, job return time or energy
consumption. In order to achieve them, several issues have to be taken into account that
impose constraints on the way job-resource assignments can be carried out. For example,
jobs may have requirements such as requested memory, dependencies with other jobs, a
waiting time threshold or affinity to a particular resource. At the same time, the state and
architecture of the cluster itself also have to be taken into account while scheduling. This
way, the scheduling problem becomes more complex when applied to heterogeneous clusters
in which assigning a job to a resource meeting its requirements produces different results
depending on the hardware specifications of the chosen candidate. Similarly, network
communications and access to shared memory also have to be coordinated in order to
prevent contention, and the list of restrictions goes on.

Even without considering these additional difficulties, optimal job scheduling is an NP-
complete problem in optimization theory [13], meaning that there is no known algorithm
that can solve it in polynomial time. For this reason, several methods have been proposed
that can provide approximate solutions, mainly scheduling heuristics and, more recently,
artificial intelligence approaches.

1.3 Artificial Intelligence

Soon after the advent of the first computers, researchers in the field started to develop an
interest towards the creation of systems that could mimic human intelligence. In other
words, a machine capable of thinking or acting like a human, or of thinking or acting
rationally. This is what is known as artificial intelligence or AI [14].

Many different subfields exist within AI, such as natural language processing, computer
vision or knowledge representation. The field of machine learning is of particular interest
for the objectives pursued in this work. Machine learning aims to train a system (or model)
to be able to reproduce a particular behaviour or make predictions. An example would be
image classification, a task in which a model is trained to correctly assign a category to an
image based on the pixels that conform it. Machine learning can be further classified into
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supervised learning, unsupervised learning and reinforcement learning [15].

• In supervised learning, the model is fitted to a collection of labelled data, where each
input has an associated tag. Once trained, the model should be capable of assigning
the correct tag to data it has not seen before. Image classification fits this category.

• In unsupervised learning, the model is expected to find relations or groups (clusters)
in a collection of unlabelled data, and later be capable of assigning unseen data to
one of the extracted categories.

• In reinforcement learning [16], the model is embedded in an agent that interacts
with an environment. Based on the state of the environment, the model is used to
predict an action. The agent then applies the action to the environment and receives
a corresponding reward indicating how beneficial the action was towards the end
goal. Through successive iteration, the agent eventually learns which actions are
more advantageous in a given situation.

Different variants of models can be trained using machine learning, some of which may be
more appropriate than others for a given task. Examples include artificial neural networks,
decision trees, support vector machines or bayesian networks. Recent advances have led
to deep learning, which is characterized by the usage of artificial neural network archi-
tectures with multiple layers, devised to progressively extract features from an input at
multiple levels. These deep neural networks can be leveraged in any of the aforementioned
paradigms.

In particular, the scheduling problem applied to an HPC cluster can be suitably modelled
as a reinforcement learning task, considering an environment composed by the current
state of the cluster and the pending job queue, and identifying the workload manager
or scheduler as the agent. This way, a workload manager can be trained to minimize a
given metric, such as the total makespan or energy consumption, by noting what kind of
job-resource assignments offer the best rewards for the chosen objective.

1.4 Objectives

Many alternatives have been tested to target the issue of energy consumption in the field
of high-performance computing, some of which focus on scheduling techniques that allow
for a more intelligent use of resources.

This work follows this line of thought and attempts to develop an intelligent energy-aware
workload manager for heterogeneous HPC cluster architectures based on deep reinforce-
ment learning, with the specific objective of reducing total energy consumption or EDP
(Energy-Delay Product). At the same time, it aims to analyze how this kind of intelligent
scheduler behaves when the power consumption specifications of the resources of a cluster
are considered as part of the information available for decision-making. This main goal
can be subdivided into the following partial objectives:

• Study of the problem and the applicable AI techniques: it is known that the schedul-
ing problem can be modelled using a reinforcement learning scenario, but several
algorithms exist in this paradigm, each with its own set of properties and drawbacks.
Similarly, neural network design is a vast field of research. Both areas shall be studied
before proceeding with the development of the intelligent workload manager.
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• Design and implementation of the intelligent scheduler in IRMaSim: the selected
reinforcement learning algorithm shall be implemented in the IRMaSim cluster sim-
ulation framework. To this end, the agent and environment components shall also
be defined and integrated in the infrastructure of the simulator.

• Experimental validation of the scheduler : a first batch of simple experiments shall
be executed using the newly designed workload manager to verify that it behaves as
expected and that there are no errors in the implementation.

• Experimental evaluation of the scheduler : once the implementation has been vali-
dated, the developed scheduler shall be tested in more complex scenarios in order to
evaluate its performance.

1.5 Document Structure

This document is divided into five chapters, including the current Chapter 1: Introduction.
The remaining contents are organized as follows:

• Chapter 2 delves deeper into some of the notions introduced in this first chapter,
namely the scheduling techniques employed in modern HPC systems and the theory
behind reinforcement learning algorithms and neural networks.

• Chapter 3 describes the process followed to develop a new intelligent workload man-
ager that specializes in minimizing energy-related metrics, starting from the employed
algorithms and techniques and continuing by outlining the implementation.

• Chapter 4 details the experiments carried out to validate and evaluate the new work-
load manager, comparing its performance to that of a series of heuristic algorithms.

• Chapter 5 closes the document by highlighting the main extracted conclusions and
proposing future lines of work regarding the project.

4



Chapter 2

Background

This chapter delves into the fundamental concepts that conform the basis of this work.
Specifically, several techniques studied in academia and/or employed by the most com-
monly used HPC workload managers will be reviewed, and the basic ideas and theory
behind reinforcement learning and neural networks will be introduced. The chapter con-
cludes by listing related work concerned with smart job scheduling and energy consumption
in HPC systems.

2.1 State-of-the-Art HPC Scheduling

The scheduling problem introduced in Chapter 1 has been exacerbated in recent years
owing to several factors including, but not limited to, the steady rise in the processing
power of supercomputers, the emergence of new hardware resources and novel hardware
structure and the appearance of increasingly diverse workloads that combine compute-
intensive and data-intensive applications [17]. Not only workloads have become more
varied: the majority of modern HPC cluster systems display an heterogeneous architecture
combining resources with different frequencies, number of processing units, bandwidth or
memory capacity, in addition to hardware accelerators such as graphical processing units
(GPUs) or field-programmable gate arrays (FPGAs) [18].

This scenario creates a need to consider a variety of trade-offs in a dynamic environment
where new jobs may be received at any given time [19]. As an example, resources with
higher clock rates complete jobs faster, but may consume more energy during execution due
to their greater power consumption [20]. Moreover, resource sharing and interconnection
give rise to issues such as ensuring resource fairness and minimizing resource contention
while also focusing on job performance [17].

A first approach to tackle this complexity involves the use of heuristic functions -or schedul-
ing policies- that assign priorities to jobs waiting in the queue to the cluster based on their
attributes, effectively determining which job shall be scheduled next. These range from
simple one-parameter heuristic priority functions such as FCFS (First Come First Served)
or SJF (Shortest Job First) to complex metrics combining multiple parameters such as
WFP, UNICEF or F1 [21]. Going a step further, machine learning techniques can be used
to train the parameters of non-linear scheduling policies and adapt them to the current
workload dynamically [22].

Artificial intelligence can also be leveraged to define intelligent schedulers that do not re-
quire the specification of a particular heuristic function, but instead rely on current queue
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and cluster status to decide on the best job-resource assignments. Such workload man-
agers are therefore more adaptive than those implementing particular scheduling policies.
Multiple examples can be found in section 2.4.

Another frequently employed approach is backfill scheduling or backfilling. Given a priority
queue containing the pending jobs, basic backfilling relies on user-defined job runtime
estimates to schedule lower-priority jobs, located later in the queue, on already allocated
resources if this will not result in a higher-priority, already running job missing its deadline
or breaching any other kind of restriction. Common backfilling strategies include EASY
backfilling and conservative backfilling. EASY backfilling is more aggressive and considers
only the first job in the queue when evaluating higher-priority jobs that might be delayed,
whereas conservative backfilling requires that no job preceding the lower-priority job in the
queue is delayed [23].

Backfilling provides good results on production systems, but relies heavily on user-estab-
lished job time estimates being realistic. It has been found that inadequate user runtime
estimates significantly degrade performance due to both underestimation of the actual
runtime of the job, which leads to the job being killed, and runtime overestimation, which
might prevent the scheduling of jobs in the queue [24].

Another relevant aspect that has an impact on cluster performance is the choice between
two scheduling paradigms: list scheduling or pack scheduling. In list scheduling, pending
jobs are first organized in a queue before being dispatched sequentially, whereas in pack
scheduling jobs are partitioned into packs. Jobs within each pack are scheduled concur-
rently, and the next pack cannot start executing before all the jobs in the previous pack
have finished running. Pack scheduling is capable of achieving better performance than
list scheduling in environments with multiple types of resources, such as I/O, memory or
cache [25].

The aforementioned techniques have been implemented in some of the best-known commer-
cial HPC schedulers, including Slurm [26], IBM Spectrum LSF, OpenPBS (an evolution
of the NASA Portable Batch System [27]) and the TORQUE workload manager for the
Moab HPC Suite platform [17]. In their most basic form, however, commercial workload
managers for HPC systems still hold a First-In-First-Out queue of pending jobs that are
assigned in submission order to the resource which best matches the requirements specified
by each job in terms of processing power, number of nodes, memory, and so on. At the
time of writing, only Moab seems to offer a proprietary intelligent scheduling engine.

2.2 Reinforcement Learning

Within the field of machine learning, reinforcement learning is a strategy that involves
two main elements: an agent and an environment. The goal of reinforcement learning
is to teach the agent what action to take after having observed a particular state of the
environment so as to maximize a given reward value, defined by the pursued objective. The
complexity of this model resides in the fact that each action taken by the agent modifies
the environment and therefore influences future rewards [16].

More specifically, the agent learns a policy that maps states to actions. This policy may be
deterministic, always choosing the same action for a given state; or stochastic, assigning
a probability to each possible action depending on the current state. Neural networks are
often used to approximate the policy in the latter case. Every time the agent chooses an
action and applies it to the environment, the state of the environment changes and a reward
is generated indicating how beneficial the choice of that particular action was towards the
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end goal. These rewards are employed by the agent to gradually refine the policy through
successive iteration, as shown in figure 2.1.

Figure 2.1: Agent-environment interaction in reinforcement learning.

2.2.1 Formalization

The reinforcement learning scenario can be formally modeled as a Markov decision process
(MDP). In an MDP, a learner or decision maker (the agent) interacts with an environment,
comprised of anything that is external to the agent. Other elements of an MDP include
a set of states S, a set of actions A and a set of numerical rewards R ⊂ R [16]. In the
discrete case, the agent-environment interaction can be dissected into a series of time steps
t = 0, 1, 2, . . . In each time step, the following occurs:

1. The agent receives an observation of the state of the environment st ∈ S.

2. Based on the observed state, the agent selects an action at ∈ A.

3. As a consequence of applying the chosen action, the agent receives a reward rt+1 ∈ R
and the environment advances to state st+1.

In this manner, a trajectory of the form s0, a0, r1, s1, a1, r2, s2, . . . is generated, where st
and rt are random variables. The dynamics of how this trajectory evolves are completely
characterized by the probabilistic function p (equation 2.1), which determines the prob-
ability of transitioning to a certain state s′ with a reward of r by taking action a in the
current state s. This expression assumes that all the historical trajectory information
required for decision-making is contained within the last state, otherwise known as the
Markov property.

p(s′, r | s, a) .
= Pr{st = s′, rt = r | st−1 = s, at−1 = a}, ∀s′, s ∈ S, r ∈ R, a ∈ A (2.1)

The final goal of the agent is to maximize the expected return at each time step. The return
Gt is a function of the reward sequence defined as Gt

.
= rt+1+ rt+2+ rt+3+ . . .+ rT , where

T is a final time step. At this point it is necessary to make a distinction between episodic
and continuing tasks. Episodic tasks can be broken down into subsequences, or episodes.
Episodes terminate when a terminal state is reached at time T , a random variable that
may vary from one episode to the next. Continuing tasks, on the other hand, cannot be
broken down in this way and, logically, T = ∞. This poses a problem, since it makes
the return infinite. For this reason, Gt is usually defined as the discounted return instead
(equation 2.2). The parameter γ controls how far-sighted the agent is: a value of γ = 0
would consider only the immediate reward rt+1, whereas a value of γ = 1 would weigh the
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rewards at all future time steps the same. The expected return can also be formulated
recursively as Gt

.
= rt+1 + γGt+1.

Gt
.
=

∞∑
k=0

γkrt+k+1, 0 ≤ γ ≤ 1 (2.2)

Most reinforcement learning algorithms operate by estimating value functions that deter-
mine the expected return when following the current policy π(a | s), given either a state
(state-value function, equation 2.3) or a state-action pair (action-value function, equation
2.4). In episodic tasks, the value of a terminal state vπ(sT ) is always zero.

vπ(s)
.
= Eπ[Gt | st = s] (2.3)

qπ(s, a)
.
= Eπ[Gt | st = s, at = a] (2.4)

The state-value function can also be formulated in a recursive manner thanks to the re-
cursive definition of the expected return. This representation is known as the Bellman
equation (equation 2.5). A similar expression can be found for qπ(s, a).

vπ(s)
.
=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)[r + γvπ(s
′)], ∀s ∈ S (2.5)

Both value functions can also be combined to obtain the advantage function, shown in
equation 2.6. The advantage of taking action a in state s indicates how much the expected
reward can be improved by choosing action a with respect to following the default behaviour
of the policy π.

Aπ(s, a)
.
= qπ(s, a)− vπ(s) (2.6)

2.2.2 Policy Gradient Methods

Ideally, an agent should try to find an optimal policy, that is, a policy such that each
chosen action maximizes the real final return. This might be possible to achieve for sim-
ple problems where the action and state spaces are small enough to solve the Bellman
optimality equation without running out of memory or time. Nevertheless, this is seldom
the case, since reinforcement learning is usually applied to complex problems where many
state-action combinations are possible. In these situations, approximate solution methods
are used instead. Policy gradient methods fit in this category.

Policy gradient methods, unlike most other approaches, do not make direct use of the
value functions to choose actions. Instead, they define and learn a parametrized policy
π(a | s, θ) = Pr{at = a | st = s, θt = θ} that is improved iteratively by applying gradient
ascent on the estimate of a performance measure J(θ) (or gradient descent on −J(θ)).
This measure is usually an estimate of the expected return [16].

Within policy gradient methods, actor-critic methods involve learning both an approxi-
mation to the policy (actor) as well as to the value function (critic). In other words, the
value function is parametrized as well. Using the value output by the critic as a baseline
for the expected return helps reduce the variance in J(θ) [28].

2.3 Neural Networks

Neural networks can be considered universal function approximators, which makes them
a powerful tool in pattern recognition, classification or regression tasks. They consist in
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a series of layers of interconnected neurons, a structure inspired by the anatomy of the
brain. Feed-forward neural networks, also known as multilayer perceptrons (MLPs, figure
2.2), are the simplest kind of neural network models.

... ...
...

...

...

Input
layer

Hidden layers Output
layer

Figure 2.2: A multilayer perceptron (MLP) with three hidden layers.

Each layer of an MLP constructs m linear combinations of its input variables xn according
to the parameters of each neuron (weights wm×n and biases bm) as follows:

aj =
n∑

i=1

wj,ixi + bj , 1 ≤ j ≤ m

where m is the number of neurons in the current layer and n is the dimension of the input.
A differentiable, nonlinear activation function h is then applied to an activation aj to give
the final output of a neuron as zj = h(aj). These outputs can then be used as inputs to a
following layer of neurons defined in the same manner [15]. An example of these equations
in the context of the graphical representation of an MLP is shown in figure 2.3.
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Figure 2.3: Multilayer perceptron activation equations. Superscripts are used to differen-
tiate between layers.

Neural networks have to be trained in order to be capable of approximating a given func-
tion. This process involves comparing the output of the network for a series of input vectors
xn with the corresponding known correct values and adjusting the weights and biases of
the network in order to minimize the error En, usually making use of the information pro-
vided by the gradient of the error function (often called loss or objective function). This
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gradient can be computed efficiently through backpropagation, which entails the following
steps [15]:

1. Forward propagation: an input vector xn is propagated through the network to obtain
the activations of all the hidden and output units, from here on referred to as aj and
ak respectively.

2. The errors δk ≡ ∂En
∂ak

are computed for all the output units.

3. Backpropagation: the errors of the output layer are backpropagated through the
network to obtain the corresponding δj error terms for each hidden unit making use
of the chain rule for partial derivatives: δj ≡ ∂En

∂aj
=
∑

k
∂En
∂ak

∂ak
∂aj

.

4. The required derivatives are evaluated using ∂En
∂wji

= ∂En
∂aj

∂aj
∂wji

= δjzi.

2.4 Related Work

Machine learning approaches have been applied to tackle the scheduling problem in HPC
clusters before, especially in academia. Some notable examples of such projects include
DeepRM, DeepRM2, Decima, RLScheduler, RLSchert and DRAS.

DeepRM [29] was one of the first initiatives to apply reinforcement learning techniques
to the scheduling problem as an alternative to heuristic approaches. It assumes a single
large resource pool, abstracting away machine boundaries and resource fragmentation. In
other words, it models a cluster as a single collection of resources of different types (CPU,
memory and I/O). DeepRM can learn to optimize objectives such as average job slowdown
or completion time through the application of a standard policy gradient reinforcement
learning algorithm, in particular a variant of REINFORCE. During evaluation, it was
shown to best the SJF, Packer and Tetris heuristics.

Years later, DeepRM2 and DeepRM_Off [30], continuous online resource scheduling and of-
fline resource scheduling designs respectively, were proposed as improvements upon DeepRM.
The original neural network was replaced with a multi-layer convolutional neural network
and other changes were applied to speed up convergence during training.

Decima [31] employs reinforcement learning techniques and neural networks to learn work-
load-specific scheduling algorithms given a high-level objective such as minimizing average
job completion time. As a special characteristic, Decima is capable of scheduling while
taking into account job dependencies represented as directed acyclic graphs (DAGs), as
is the case in cluster managers such as Hive or Spark. This is a highly complex task for
which heuristics cannot possibly provide a satisfactory solution. In fact, upon integrating
a Decima prototype with Spark on a 25-node cluster, average job completion time was
improved by at least 21%.

RLScheduler [32] is an automated HPC batch job scheduler that uses a deep reinforcement
learning approach. It was also brought forward as an alternative to heuristic priority
scheduling, which was not deemed flexible enough to deal with varying workloads and
changes in scheduling requirements such as maximizing resource utilization, job throughput
or minimizing job wait time. RLScheduler manages to achieve these objectives, but it only
considers homogeneous cluster architectures, deeming it far too simplistic by present-day
standards. For this reason, RLScheduler was later used as a starting point in [33], where
it was adapted to heterogeneous architectures.

RLSchert [34] is a job scheduler based on deep reinforcement learning and remaining run-
time prediction. On the one hand, it estimates the state of a cluster by means of a dynamic
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job remaining runtime predictor that employs a recurrent neural network to encode time
series information. On the other hand, it learns the optimal policy in terms of what jobs
to schedule, or to kill and reschedule, based on the current status of the system. To learn
the policy, it applies imitation learning and a parallel implementation of the Proximal
Policy Optimization algorithm so as to speed up training. During evaluation, RLSchert
outperformed both static heuristic policies and DeepRM in terms of average slowdown and
completion time.

DRAS (Deep Reinforcement Agent for Scheduling) [35] also focuses on improving upon
heuristic scheduling strategies in complex HPC environments with dynamic application
workloads. DRAS is particularly concerned with preventing resource underutilization and
job starvation, which is achieved through resource reservation. To this end, it combines a
reinforcement learning approach with backfilling and employs a hierarchical neural network
for decision-making. This network is divided in two levels: a level 1 network selects jobs
to be executed immediately or when enough resources are freed, and a level 2 network
identifies backfilling candidates. However, DRAS does not consider heterogeneous cluster
architectures.

The aforementioned projects focus on intelligent scheduling, and some of them include the
reduction of energy consumption as one of multiple objectives. Other works that specifically
tackle energy consumption through job scheduling, combined with other techniques, can
also be found in the literature. Some examples are provided below.

ExpREsS [19] is a scheduler for the Apache Spark processing framework. Its main goal is
to orchestrate the execution of multiple big data applications in distributed processing sys-
tems while satisfying performance requirements and minimizing energy consumption. This
is achieved through adaptive dynamic voltage and frequency scaling (DVFS) and accurate
models capable of predicting the execution time and power consumption of an application
before it starts executing, which is especially needed when scheduling streaming applica-
tions for which no historical data is available. More specifically, ExpREsS orchestrates
the execution order of applications and automatically determines how many CPU cores
should be reserved, and what their running frequencies should be, so as to minimize energy
consumption for each particular application.

The HEA-PAS scheduling algorithm [36] minimizes the response time of parallel DAG
applications subject to energy constraints in heterogeneous HPC systems. In HEA-PAS,
the energy that can be allocated by an application is quantified and distributed among its
tasks according to their energy demand rate. This is done in two stages: first, a static
energy pre-allocation for each task is carried out before scheduling; then, dynamic energy
is allocated dynamically during the operation of the algorithm. The energy allocated to
each task is used to find the optimal processor and frequency combination to execute the
entire application.

The work presented in [37] explores the use of application signatures instead of full dynamic
power profiling to obtain application data for use in conjunction with energy-aware task
scheduling in data centers, including HPC systems. An application signature is a reduced
version of the original application in terms of execution time. Signatures can therefore
be used to estimate the energy consumed by applications without having to monitor and
profile their execution until completion, a task which is often not energy-efficient when
applied to batches of long-running applications.

Despite the extensive investigation that has been carried out in this area, several aspects
remain unexplored. The next chapter introduces the research that has been carried out in
this work regarding some of these challenges.
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Chapter 3

Development of an Energy-Aware
Scheduler

This chapter details the implementation of the new intelligent energy-aware scheduler,
which has been named “Energy scheduler”. First, an overview of the project is given,
followed by a description of the employed machine learning algorithms and techniques. The
rest of the chapter is devoted to describing the elements that compose the new scheduler
and how they interact with each other.

3.1 Overview

In recent years, energy consumption has become a limiting factor in the evolution of high-
performance computing clusters both in terms of environmental impact and maintenance
cost. The previous chapters gave several examples of intelligent and heuristic workload
managers that are capable of reducing consumption through job scheduling. However,
no studies have been found that consider energy-related parameters when optimizing for
energy consumption in HPC clusters. Instead, they focus on time-related job and resource
attributes such as user-specified job requested time or average resource frequency.

Although this time-focused approach might be enough when considering computationally
intensive jobs that do not access memory frequently, since energy consumption is rather
straightforward to estimate in these cases, the scheduling of memory-intensive jobs requires
a more rigorous analysis. For example, memory contention increases job execution time,
but dynamic energy consumption is lower while memory is being accessed. Thus, it is
worthwhile to investigate how this situation can be handled using more specific, energy-
focused strategies.

The proposed Energy scheduler incorporates the static and dynamic power specifications of
each resource as part of the information involved in the decision-making process. Further-
more, at each time step, the workload manager may choose either to schedule a pending
job or to wait until resources are freed and a more suitable job-resource assignment be-
comes available. This option is envisioned to explore how a less greedy strategy that does
not make immediate use of free resources can offer better results in terms of energy con-
sumption under certain circumstances. In addition, as an energy-focused tool, the new
scheduler allows users to specify maximum energy constraints for jobs.
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3.2 Algorithms

This section introduces the basic theory behind the algorithms, functions and models em-
ployed in the development of the Energy scheduler. These have been classified by their
domain of application: reinforcement learning or neural network design. The presented
reinforcement learning strategies are explained in more detail, whereas only the most im-
portant characteristics of the introduced neural network design techniques are exposed.

3.2.1 Reinforcement Learning

This subsection introduces and explains Proximal Policy Optimization, the reinforcement
learning algorithm chosen to train the scheduler. Afterwards, the advantage estimator that
has been used to implement the algorithm is presented.

Proximal Policy Optimization

Vanilla policy gradient methods (introduced in section 2.2.2) suffer from two main defi-
ciencies. On the one hand, they are sample inefficient, since a whole trajectory has to
be simulated with the same policy in order to carry out a single step of gradient descent
and obtain an updated policy. On the other hand, an update step may result in a large
divergence from the old policy, causing the agent to miss local optima [38].

An algorithm by the name of Trust Region Policy Optimization (TRPO) [39] was first
brought forward to remedy these shortcomings, in particular the second issue. TRPO
offered a solution by limiting the Kullback-Leibner divergence between the old and new
policies to a trust region, thus avoiding destructively large policy updates.

Nevertheless, the implementation of the TRPO algorithm was considered complicated and
computationally expensive. Hence, in 2017 OpenAI proposed Proximal Policy Optimiza-
tion (PPO) [1] [38] as a simpler and more sample-efficient family of policy gradient methods.
Two main variants of PPO exist: penalty-based PPO, also based on the Kullback-Leibner
divergence, and PPO clip. In [1], the latter was found to outperform the former.

The basic PPO algorithm is outlined in Algorithm 1. It considers fixed-length trajectory
segments and the use of N independent actors collecting data in parallel to speed up the
learning process.

Algorithm 1 PPO, Actor-Critic Style. Extracted from [1].
for iteration=1, 2, . . . do

for actor=1, 2, . . . , N do
Run policy πθold in environment for T time steps
Compute advantage estimates Â1, . . . , ÂT

end for
Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT
θold ← θ

end for

In the PPO clip variant, the surrogate objective L is defined as shown in equation 3.1,
where ϵ is a hyperparameter controlling the range of acceptable deviation and Ât is the
advantage estimate at time step t, which may be positive or negative. Rt(θ) denotes the
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probability ratio of the newly updated policy with respect to the old policy (equation 3.2).

LCLIP (θ) = Êt

[
min (Rt(θ) · Ât, clip(Rt(θ), 1− ϵ, 1 + ϵ) · Ât)

]
(3.1)

Rt(θ) =
πθ(at | st)
πθold(at | st)

(3.2)

Figure 3.1 plots LCLIP for a single time step as a function of the ratio1, for positive
advantages on the left and negative advantages on the right. Conceptually, divergence
is bounded to a trust region when the new policy performs better, that is, when the
probability of choosing a more advantageous action increases or the probability of choosing
a less advantageous action decreases; whereas the ratio between policies weighs into the
objective function when the performance of the new policy is worse.

Figure 3.1: Plots showing surrogate function LCLIP for a single time step t as a function
of the probability ratio. Extracted from [1].

Generalized Advantage Estimate

Different techniques exist to estimate the advantage function from a series of collected
sample trajectories. A frequently chosen alternative is the Generalized Advantage Estimate
(GAE), defined in equation 3.3. This estimate can be easily adapted to episodic tasks by
setting the final time step T as the upper bound in the summation [40].

Â
GAE(γ,λ)
t

.
= (1− λ)

(
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + . . .

)
=

∞∑
l=0

(γλ)lδVt+l (3.3)

From the bottom up, equation 3.3 originates from the consideration of the advantage of a
particular action at given an approximate value function V , estimated as the TD residual
of V with discount γ [16]. The TD residual expression is shown in equation 3.4, respecting
the notation established in section 2.2.1. Next, the TD residuals for successive actions
are summed with the same discount factor, yielding Â

(k)
t , an estimator of the advantage

1The original paper denotes the ratio as r instead of R. In this document the notation r is reserved to
represent rewards.
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function for a sequence of k actions starting at time step t (equation 3.5). Finally, ÂGAE(γ,λ)
t

is the exponentially-weighted average of these Â
(k)
t estimators up to the specified bound.

δVt = rt+1 + γV (st+1)− V (st) (3.4)

Â
(k)
t

.
=

k−1∑
l=0

γlδVt+l = −V (st) + rt + γrt+1 + . . .+ γk−1rt+k−1 + γkV (st+k) (3.5)

The γ and λ hyperparameters influence the bias-variance tradeoff in the advantage esti-
mator. Setting λ to 0 is equivalent to considering Â

(1)
t = δVt exclusively, with high bias

and low variance. Setting λ to values close to 1, on the other hand, extends the number
of considered terms and leads to low bias but higher variance.

3.2.2 Neural Network Design

This subsection introduces the techniques that have been considered in an attempt to
prevent divergence during the training of the actor and critic neural networks embedded
in the scheduler, as well as to improve their ability to generalize over different scenarios.
In particular, actor and critic have been defined as self-normalizing neural networks and
the Adam optimization algorithm has been used for training. Finally, stochastic weight
averaging has been implemented as an optional feature to potentially improve test-time
results.

Self-normalizing Neural Networks

Standard feed-forward neural networks (FNNs) have not been nearly as successful as con-
volutional or recurrent neural networks in deep learning. Instead, they have stayed in the
shallow end of the spectrum owing to an increased instability in learning upon increasing
the number of layers. In FNNs, perturbations introduced by regularization and normal-
ization techniques result in an increased variance in the training error that slows down
learning and leads to divergence.

Self-normalizing neural networks (SNNs) [41] modify standard deep FNNs to achieve ro-
bustness and reduce variance mainly by using SELU (Scaled Exponential Linear Unit)
activation functions, plotted in figure 3.2. These have a normalizing effect that is tran-
sitive across layers, pushing neuron activations to zero mean and unit variance. In order
to achieve full self-normalization, weights are also initialized with close to zero mean and
unit variance. An adapted form of dropout may also be applied during training in order
to improve generalization.

Adam

Adam (derived from adaptive moment estimation) is an algorithm for first-order gradient-
based optimization of stochastic objective functions, characterized by its computational
efficiency and low memory requirements [42]. Stochastic objective functions are used, for
example, when working with minibatches of data: the objective function is then composed
of a sum of subfunctions evaluated at different subsamples. This subsampling can introduce
noise, especially when regularization techniques are employed, and hence efficient and
effective optimization techniques are required when working with stochastic objectives. In
this regard, Adam offers several advantages: it makes the magnitudes of parameter updates
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Figure 3.2: selu, the SELU activation function.

invariant to rescaling of the gradient, naturally performs a form of step size annealing and
can also work with sparse gradients.

The algorithm keeps track of the exponential moving averages of the gradient (mt) and
the squared gradient (vt) of each of the parameters of the objective function. These mov-
ing averages are estimates of the first moment (the mean) and the second raw moment
(the uncentered variance) of the gradient, respectively. Since both averages are initially
biased towards 0, they have to be bias-corrected, yielding m̂t and v̂t. These quantities
are then used to adjust the step size α in each iteration as α · m̂t/(

√
v̂t + ϵ), where ϵ is a

hyperparameter. The complete specification of the algorithm can be found in [42].

Overall, Adam is an efficient, versatile and scalable algorithm that generally provides good
results in deep learning tasks.

Stochastic Weight Averaging

Training deep neural networks with stochastic weight averaging (SWA) improves general-
ization, enabling models to find broader optima than standard training procedures using
some form of stochastic gradient descent (SGD) [43].

SWA consists in averaging the weights of a network taken at different points in time during
the training process, making it a simple and computationally inexpensive tool to improve
test-time accuracy. The idea behind this technique is that SGD, with cyclical or constant
learning rates in particular, leads to high-performing models that move around an optimum
in weight space but never actually reach its central points. The choice of constant or cyclic
learning rates is envisaged to allow better exploration of the relevant regions of the weight
space.

The SWA algorithm does not impose restrictions on when or how often the weights of the
network are sampled, making this approach flexible as well as efficient.

3.3 Implementation

This section describes how the proposed energy-aware scheduler has been implemented in
Python making use of the IRMaSim and PyTorch frameworks for cluster simulation and
machine learning respectively. The scheduler developed in [33] has been taken as a starting
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point, although several changes have been made to the structure of the code and the logic
of the intelligent agent.

New features have been incorporated as well, in particular the addition of a job maximum
energy constraint and an option enabling the scheduler to wait until resources are freed
instead of scheduling a new job whenever it is possible. This last option is referred to as
the wait action. Still, the key idea of assigning a score to each possible job-resource pair
remains at the core of the employed model. As in [33], resources are considered at the
compute node granularity since IRMaSim is not currently capable of simulating parallel
applications that involve inter-process communication while running on different nodes.
For this reason, as well as to reduce the complexity of the problem, cores and processors
are not seen as independent units, but as an aggregation of components belonging to a
specific node.

At the time of writing, the source code of the project can be found in GitHub, in a fork of
the main IRMaSim repository2.

3.3.1 Main Components

The development of an intelligent scheduler (or workload manager) in IRMaSim, and of a
reinforcement-learning-based scheduler in particular, requires the implementation of three
main components: the workload manager itself, an agent and an environment.

• The workload manager is employed by the simulator to assign the pending jobs in
the queue to available resources according to the choices of the agent.

• The environment is responsible for crafting observations based on current cluster
and queue status, which are in turn fed to the agent to predict the next job-resource
assignment.

• The agent is an artificial intelligence model capable of predicting the next job-
resource assignment. The parameters of the model are updated during training based
on a loss function to improve the quality of future predictions.

In the implementation of the Energy scheduler, these components are interrelated as shown
in figure 3.3. Standard arrows indicate an architectural relationship of the type “holds a
reference to”, whereas dashed arrows represent the flux of information between elements.
In the Energy scheduler, the workload manager is only responsible for orchestrating the
interaction between the agent and the environment, and it is the environment that takes
care of applying the chosen actions to the simulated instance of the cluster.

Before moving on to the specification of each of these elements, it is necessary to delve
into the structure of the simulation loop so as to better comprehend how the training of
the agent is integrated with the execution of a simulation.

1. Each IRMaSim simulation runs a number of trajectories of the specified length, where
a trajectory is made up of a sequence of jobs sampled from a workload file, complete
with their arrival times and user-specified parameters (requested time, memory, num-
ber of cores and so on).

2. Each trajectory is itself simulated as a series of time steps delimited by three kinds
of events: the arrival of a new job, the completion of a running job or the expiration
of a timer set by the workload manager.

2https://github.com/Archiel19/IRMaSim.git, in branch EnergyScheduler.
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3. At each time step, the agent is invoked to choose an action which is then applied
to the simulated instance of the cluster. Then, the corresponding reward and other
training data are stored.

The agent is only trained when a complete simulation finishes. For this reason, multiple
simulations are required to progressively refine the agent. A flowchart depicting this process
is given in figure 3.4.

Figure 3.3: Main components and their relations in Energy scheduler.

Figure 3.4: Flowchart depicting a high-level view of the main simulation loop using a
reinforcement learning agent in IRMaSim.

3.3.2 Workload Manager

The source code of the workload manager component of the Energy scheduler can be found
in EnergyWM.py, under irmasim/workload_manager/.

The EnergyWM class implements the IRMaSim WorkloadManager interface3, which de-
fines a series of methods that indicate how the workload manager shall behave after cer-
tain events. Namely, on_job_submission, on_job_completion, on_end_step, on_alarm,

3WorkloadManager is actually a class, since interfaces do not exist in Python.
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on_end_trajectory and on_end_simulation. In terms of attributes, EnergyWM only con-
tains references to the agent and the environment, as well as a flag indicating whether a
new trajectory has just started.

EnergyWM is mainly responsible for coordinating calls to methods in the agent and the envi-
ronment, and it is the environment that congregates most of the functionality related with
scheduling jobs on the simulated instance of the cluster. Consequently, the implementation
of the methods specified in the interface is quite straightforward:

• The on_job_submission and on_job_completion methods are used to update a
pending job queue in the environment.

• On each call to on_end_step, the workload manager first checks if there are any
pending jobs available for scheduling by making use of a helper function defined in
the environment, can_schedule. If at least one job can be scheduled, a new state of
the environment is retrieved and fed to the agent, which returns the corresponding
action together with its value and log probability. The action is subsequently applied
to the environment, successfully scheduling the next job, and the observation, action,
value and log probability obtained at the current time step are stored in the agent.

Normally, at this point the environment would have also provided the agent with a
reward, but due to the issues that will be explained in section 3.3.3, this step has
to be postponed until the next call to on_end_step, before a new action is applied.
Appropriate care is taken so as to only start storing rewards after the first time step
of a trajectory by making use of the aforementioned flag attribute.

• The same steps are taken when a timer expires, so the on_alarm method simply calls
on_end_step.

• The on_end_trajectory event is used to reset the state of the environment and
the flag, as well as to store the final reward corresponding to the last action in the
trajectory. At the same time, a method by the same name in the agent is called to
compute the advantages and expected returns for the trajectory.

• The on_end_simulation method calls a training_step method in the agent to
optimize the parameters of the model based on the collected data and saves the
resulting model to a file. When the agent is being tested, this functionality is omitted.

3.3.3 Environment

The environment component of the Energy scheduler is implemented in EnergyEnviron-
ment.py, under irmasim/workload_manager/.

There was an initial attempt to leverage the OpenAI Gym environment interface and its
step method, which complies with the standard reinforcement learning sequence shown in
section 2.2.1, but problems arose when trying to replicate this structure in the workload
manager. When an action is applied and the simulator is given the order to schedule the
chosen job, this does not happen until after the call to the on_end_step method in the
workload manager has exited. Therefore, if an energy consumption reward were to be
computed in the same call, the result would not be accurate since this value depends on
the statistics generated by the simulator, which would not have been updated yet. For
this reason the step method of the Gym environment interface could not be used. The
rest of the methods supplied by the interface were not applicable or relevant, so in the end
EnergyEnvironment was defined as a standalone class with separate methods to get an
observation, apply an action and get the reward for the last applied action.
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Once this issue has been clarified, the main attributes of the class shall be introduced.
Apart from a reference to the simulator, EnergyEnvironment keeps a list of the compute
nodes of the cluster, a list of pending jobs and a series of dictionaries used to store pre-
computed values which are later used to craft observations. The current reward function
and the observation and action spaces, as well as variables storing markers of the last
measured energy consumption and simulation time, are also defined as attributes of the
class. Multiple constants are also specified, the most relevant being NUM_JOBS, NUM_NODES
and NUM_FEATURES. These are used to define the observation and action spaces making use
of the space utilities provided by the Gym API.

NUM_JOBS indicates the number of jobs in the queue that are considered for scheduling at
any given time, counted from the front of the queue. This constant is necessary because
the actor and critic networks of the agent require a fixed-size input, but the length of the
pending job queue is variable. NUM_NODES is the number of compute nodes in the cluster,
and NUM_FEATURES is the number of features considered when assigning a score to each
job-node pair, shown in table 3.1.

The main methods of the EnergyEnvironment class are reset, add_jobs, finish_jobs,
can_schedule, energy_estimate, get_obs and apply_action.

• The reset methods restores the energy and time marker variables and the pending
job queue to their default values, whereas add_jobs and finish_jobs update the
state of the queue when jobs are submitted or completed.

• can_schedule checks if any node exists with enough free cores to satisfy the demand
of any of the first NUM_JOBS jobs in the queue, and performs a similar test regarding
the maximum energy constraints on jobs. For this, it uses an estimate of the energy
that will be consumed by scheduling a job on a particular node obtained through a
call to energy_estimate. This last method is detailed in subsection 3.3.3: Energy
Estimation.

• The get_obs method crafts a normalized observation based on the current status of
the job queue and the platform as described in subsection 3.3.3: Observations.

• The apply_action method takes an action encoded as an integer, retrieves the cor-
responding IDs of the chosen job and node and calls on the simulator to schedule the
tasks comprising the job on the free cores of the node.

Observations

Observations are crafted by recording a series of features for each possible pairing between
a job and a node, following the definition given in [33]. Thus, the observation space is a box
of values bounded between 0.0 and 1.0 of shape (NUM_NODES × NUM_JOBS, NUM_FEATURES).

In particular, the features shown in table 3.1 are considered. The features that have been
added with respect to the ones introduced in [33] are highlighted in italic. The submit time
of a job serves as an indicator of its position in the queue. The static power of a node
is the sum of the static power of its cores if it is running at least one task. Otherwise,
this value is set to the idle power of the node, which is a percentage of its static power.
The dynamic power of a node is the sum of the dynamic powers of the cores in said node
that are currently running a task. Availability is defined as the ratio of free cores to total
cores in the node and is meant to provide useful information in the presence of memory
contention. This information was already present in [33], but in separate features.

20



Job Node Common
Wait time Availability

Energy estimateRequested time Static power
Submit time Dynamic power
Requested cores Average clock rate

Table 3.1: Observation features considered for each job-node pair in Energy scheduler.

However, some job-node combinations are invalid, in particular the ones where the number
of free cores in the node is not sufficient to allocate all the tasks in the job or where
the energy consumption estimate for the given pairing surpasses the maximum energy
constraint specified for the job. In these cases all feature values are set to zero, enabling
the agent to mask out the corresponding entries when deciding on an action.

Actions

An action refers to a job-node pairing. This way, the action space can be defined by
a discrete space of size (NUM_NODES × NUM_JOBS + 1), which shall be referred to as
ACTIONS_SIZE. The added one corresponds to the wait action. This special action cor-
responds to the choice of waiting until the next time step instead of scheduling a job
immediately.

Actions are encoded as an index to a job-node matrix relating all the nodes in the cluster to
the first NUM_JOBS in the queue, as defined in [33]. A specific action index, corresponding
to the position NUM_JOBS × NUM_NODES, is reserved for the wait action. If this action is
chosen, a timer is set in the simulator and the method returns. The use of a timer is
required because otherwise the simulation might run out of job submission/completion
events before the agent decides to schedule the remaining jobs, leading to the simulation
ending even though pending jobs still remain in the queue. In principle, the timer is set
for one second into the future, but this value might be more or less appropriate depending
on the characteristics of the workload.

Reward Functions

Only two objectives are implemented in the Energy scheduler: energy consumption and
EDP (Energy-Delay Product, [44]). The corresponding reward functions are included as
private methods of the environment class. They return the negative increment in energy
consumption, multiplied by the time increment in the case of EDP, so as to minimize
the chosen metric. The increments are obtained using the previously mentioned marker
variables, which are updated each time a reward is generated. It should be noted that
the sum of the EDP rewards at all time steps is not equivalent to the total EDP of the
workload, since this value is impossible to calculate beforehand. Instead, these incremental
rewards are envisioned to offer guidance during training.

Special considerations have to be made when the use of the wait action is enabled, since
a truly intelligent agent may realize that the best scheduling strategy to reduce energy
consumption is, in fact, to not schedule any jobs at all. Different ways of including a
penalty for this action in the reward function were tested, for example making it depend
on the number of jobs currently waiting in the queue, the static power of the platform
multiplied by a factor, including a penalty only in the final time step of a trajectory,
combinations of all of the above and more. However, no satisfactory solution was found as
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the proposed alternatives introduced variance and hindered training.

Energy Estimation

The environment provides a convenient method that takes a job ID and a node ID as input
and returns an estimate of how much energy will be consumed during the execution of the
job on the specified node. This estimate is computed as the product of the estimated
runtime and power consumption when the job is run on the node, taking into account the
current status of the cluster. The resulting formula can be expressed as follows:

treq ·
fmin

f
·
(

ps
j + 1

+ n · pdi
)

(3.6)

In equation 3.6, treq · fmin

f is the expected runtime. The treq user-specified job parameter
indicates the expected runtime of executing the job on the slowest node in the cluster,
running at a frequency fmin, so this value has to be adjusted to the frequency of the target
node, f .

The parenthesized term corresponds to the power estimate for the job-node pair. ps is the
static power consumption of the target node, whereas pj represents the dynamic power
consumption of a single core. The static power is distributed among the j jobs that are
currently running on the node, plus one considering the target job. Otherwise, the sum of
the individual static energy consumption estimates for all the jobs would be greater than
their joint estimated consumption. The dynamic power estimate is obtained by adding the
dynamic powers of the n cores needed to allocate the n tasks of the target job.

Data structures had to be added to the EnergyEnvironment class to keep track of the
number of jobs running on each node at any given time, owing to the fact that this
information cannot be extracted from the simulator. To be precise, a dictionary keeping
a set of assigned jobs for each node was included and updated on job scheduling and
completion. To quickly remove a job from one of these sets, a dictionary storing the node
assignment for each job was added as well.

3.3.4 Agent

The agent component of the Energy scheduler can be found under irmasim/workload_ma-
nager/agent/, in EnergyActorCritic.py.

The agent class implements the PPO algorithm in an actor-critic paradigm and therefore
contains three key attributes: an actor, a critic and a buffer used to store the collected
training data. Both actor and critic are deep neural networks and have been defined as
nested classes inside the agent class, whereas the buffer has been implemented as a separate
class in the same file.

In the constructor these three attributes, together with the actor and critic Adam opti-
mizers4, are initialized. The actor and critic models and the states of their optimizers may
be loaded from a file or initialized randomly. Afterwards, the infrastructure required to
implement stochastic weight averaging is set up. When SWA is enabled, models start to
be sampled after 75% of the total training epochs have been completed. At this point,
the learning rate starts to decrease linearly for 15% of the remaining epochs and remains
constant for the rest. In [43], the authors experimented with constant and cyclic learning

4In PyTorch, an optimizer implements an optimization algorithm that is applied to the parameters of
a particular model.

22



rates, but the PyTorch SWA utilities provide linear and cosine annealing only. This addi-
tion has only been implemented for the actor network, since it is directly responsible for
scheduling.

The most relevant methods of the EnergyActorCritic class are decide, called in each
time step to obtain the next action; and training_step, called when a simulation ends in
order to update the parameters of the model based on the collected training data.

• The decide method receives an observation of the state of the environment and
returns the action predicted by the actor, the value predicted by the critic for the
observed state and the log probability of the chosen action in the probability distri-
bution over actions output by the actor network.

• The training_step method was inspired by the implementation provided in [38].
Actor and critic are trained for a number of epochs with independent loss functions.
The loss function corresponding to the actor network includes a term corresponding
to the entropy of the policy, which may be set to a non-zero value to encourage
exploration. In each epoch, the collected training data is sampled in minibatches of
a set size. For each minibatch, the standard PyTorch training structure is applied to
obtain the gradients of the loss functions and apply a step of the optimizers to the
parameters of the networks.

Even though actor and critic are trained in the same loop, changes in one of them
do not affect the other during the same call to training_step, since the training
data is collected with a single, constant version of each of them. The changes in the
models are only reflected when they are used to sample new data during the next
simulation.

Actor

The nested Actor class contains a deep neural network with six hidden layers. The input
layer has a size of NUM_FEATURES, and the hidden layers have decreasing dimensions of
16, 16, 8, 8, 4, and 4 respectively, with a final output of dimension 1. Since the shape of
an observation is (ACTIONS_SIZE, NUM_FEATURES), the resulting shape of the raw output
is (ACTIONS_SIZE, 1). One additional external dimension is added when working with
observation batches. The initial weights are normalized to zero mean and unit variance and
SELU is used as the activation function between layers, making the actor a self-normalizing
neural network.

After forwarding the observation through the network and flattening it to obtain a tensor
of dimension (ACTIONS_SIZE), a mask is applied to artificially lower the scores of invalid
job-node combinations, preventing the model from selecting them in most scenarios. The
masked output is then used to initialize a categorical distribution from which an action
is sampled. The forward method of the nested actor class returns this action, its log
probability and the mean entropy of the distribution.

An issue arises when the use of the wait action is enabled: since the features corresponding
to this action are set to zero in the observation, they would be masked out by the agent and
the probability of the wait action would be reduced in the policy. This can be prevented
thanks to the established convention of identifying the wait action by the last index in the
action space. Therefore, unmasking the last action is enough for the agent to consider not
scheduling.

The loss method of the nested actor class computes the PPO loss function for a minibatch
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of collected data.

Critic

The nested Critic class contains a neural network with a total of ten hidden layers divided
into two phases. The input layer is identical to the input layer of the actor network. The
following five hidden layers have decreasing sizes 32, 16, 8, 4 and 1. At this point, the
result is squeezed, giving a shape of (ACTIONS_SIZE) for a single observation. The five
following hidden layers further reduce the dimensionality from (ACTIONS_SIZE) to (1) in
the sequence 128, 64, 32, 16, 8 and 1 for the output layer, resulting in a single numerical
value. SELU is also used as the activation function in this network, and the weights are
initialized with zero mean and unit variance as well.

The forward method returns the raw output of the forward pass of an observation through
the network: the estimated value for the given state of the environment.

The loss function is the standard mean squared error (MSE) comparing the prediction
supplied by the network to the expected return values collected during training.

Buffer

The buffer attribute of the agent class stores the necessary values after each time step so as
to later compute the losses and train the actor and the critic. Specifically, it keeps separate
arrays for observations, actions, rewards, values, action log probabilities, advantages and
expected returns. The first five are stored after each time step, whereas the last two are
computed after each complete trajectory as discounted sums based on the collected data,
using GAE in the case of the advantages. To extract the data corresponding to the last
trajectory, the buffer keeps an index indicating its first time step, as well as the index of
the last stored value.

When a simulation finishes, the content of the buffer can be retrieved through a call to
collect. This method resets the buffer indices and normalizes the advantages before
returning the collected training data.

Special considerations have to be made when the use of the wait action is enabled. In
this case, the number of time steps in a trajectory cannot be known before the buffer
is constructed, since it will not necessarily match the number of jobs to be scheduled.
Therefore, the buffer has to be capable of supporting variable trajectory lengths. This can
be achieved in two ways: a first option involves increasing the capacity of the buffer up to
a fixed upper bound, whereas a second option would be to replace the arrays with lists.
The former wastes memory but offers better performance, while the latter comes at a cost
in performance but makes a more efficient use of memory.

The buffer implements the first alternative by reserving the originally required array length
multiplied by a constant. This choice follows from the fact that memory is not scarce in
modern-day systems and that the computational efficiency of NumPy arrays is desirable
when computing advantages and expected returns. However, it is difficult to estimate
what the upper bound of the size of the buffer should be. In theory, the agent could wait
indefinitely, up to an infinite number of time steps. In this case any established bound
would make the training process fail due to lack of space if the agent waited more times
than expected. Since the actor may decide that not scheduling is the most energy-efficient
strategy, this can be an issue in practice, but the same problem would persist if lists were
used instead.
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Chapter 4

Scheduler Evaluation

This chapter exposes the experiments that have been carried out to validate the correct
operation of the newly implemented Energy scheduler and, at the same time, identify
possible challenges and areas of improvement. First, two simple examples with synthetic
workloads and platforms are employed to comprehend how decision-making takes place
and to identify possible shortcomings in the design (section 4.2). Afterwards, the Energy
scheduler is put to the test with more complex synthetic examples to analyze its general-
ization and scaling capabilities (section 4.3). The results obtained by the Energy scheduler
in these tests are compared against the reference values generated by a series of heuristic
algorithms for two metrics: energy consumption and EDP.

4.1 Methodology

The evaluation process has been supported by the IRMaSim cluster simulation framework,
which makes testing possible without the need to deploy the new scheduler in a real HPC
environment [45]. IRMaSim provides an infrastructure that is capable of modelling het-
erogeneous clusters based on multicore architectures according to the hierarchical cluster
model shown in figure 4.1, where the resources at each level do not necessarily share the
same specifications.

Cluster Proc.
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Figure 4.1: Heterogeneous cluster architecture in IRMaSim.
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IRMaSim can simulate memory contention at the node level, but at the time of writing it
does not, however, implement the interconnection network of a cluster. For this reason,
parallel applications that involve inter-process communication while running on different
nodes cannot be simulated realistically, as no penalties are introduced for network con-
tention and traffic volume. Consequently, these kinds of jobs have not been considered in
this work.

In order to execute a simulation using IRMaSim, separate JSON files have to be created
specifying the workload and the target platform (or cluster).

Workload definition A workload in IRMaSim is defined as a sequence of jobs, each
complete with its own set of user-defined parameters. The most relevant are the following:

• Submit time (s): timestamp signaling the arrival of the job.

• Requested cores (or tasks): number of cores needed to execute the job.

• Requested time (s): expected execution time of the job, estimated by the user as the
runtime when executing the job on the slowest node in the platform.

• Requested operations: number of instructions that the job will run.

• Requested memory (MB): memory requested by the job.

• Memory volume (MB/s): parameter indicating the volume of memory instructions
in the job.

• Maximum energy consumption (J): maximum amount of energy that may be con-
sumed by the job.

Some of these parameters are meant to be used by the simulator to accurately estimate
the progress of the running processes, in particular submit time, requested operations and
memory volume; whereas the rest exist to provide useful information for the scheduler
exclusively.

In this work, the memory requested by each job is not relevant, but this parameter is
required. Therefore, it has been set to a fixed value of 100MB in all cases. The maximum
energy constraint has not been used in the experiments, but its implementation has been
verified at development time.

Job profiles may be used to specify multiple jobs with the same characteristics.

Platform definition A platform in IRMaSim consists of a series of nodes, each with one
or more processors that themselves are composed of multiple cores. Resource characteristics
are specified at the processor level. The main modifiable parameters are the following:

• Clock rate (GHz): average working frequency of the processor.

• Cores: number of cores in the processor.

• Dynamic power (W): dynamic power consumed by a single core while executing a
job. In a real processor, dynamic power is expressed as Pd = 0.5 · CL · V 2 · F .

• Static power (W): static power consumed by the hardware of the processor that is
shared by all of its cores. In a real processor, Ps = V · I.

• Minimum power (%): when the processor is idle, its power consumption is equivalent
to its static power multiplied by this factor.
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The static and dynamic power consumption parameters used in the experiments have been
estimated based on a regression model trained on data collected from real Intel processors.

The following paragraphs detail the pursued scheduling objectives, as well as the heuristic
algorithms that have been used as points of comparison to evaluate the performance of the
Energy scheduler.

Scheduling objectives Two objectives are considered in the proposed experiments:
minimizing either energy consumption or EDP.

• Energy consumption measures the sum of the energy consumed by each of the indi-
vidual nodes in the platform over the time period required to finish executing the
workload.

• EDP multiplies the energy consumption metric described above by the total execu-
tion time of the workload.

Heuristic algorithms To find the best-performing heuristic for each of the proposed
experiments, another intelligent scheduler developed in IRMaSim by the name of “Policy
scheduler” has been used [45]. This workload manager schedules jobs in an intelligent
manner according to the selected objective by choosing the best job selection policy and
the best resource selection policy for the target platform and workload. The available
policies are given in table 4.1.

Job Selection Policies
random Any job
first Oldest job in the job queue
shortest Job with the lowest expected execution time
smallest Job with the least requested cores
low_mem Job with the lowest requested memory
low_mem_ops Job with the lowest memory access volume

Resource Selection Policies
random Any resource
high_gflops Resource with the highest peak compute capability
high_cores Resource with the most currently available cores
high_mem Resource with the highest currently available memory
high_mem_bw Resource with the highest currently available memory bandwidth
low_power Resource with the lowest power consumption

Table 4.1: Job and resource scheduling policies in the Policy workload manager.

The Policy scheduler is capable of distributing the tasks of a single job among cores in sep-
arate nodes, but since network communications cannot currently be simulated realistically
in IRMaSim, and since the Energy scheduler does not consider this possibility, the Policy
scheduler was modified accordingly in order to provide a fair comparison during testing.

Four main heuristics implemented in the Policy scheduler have been applied to the designed
experiments to serve as reference points for the performance of the Energy scheduler,
namely first - high_gflops, first - high_cores, first - high_mem_bw and random - random.
In all cases, the most fitting heuristic has also been retrieved using the Policy scheduler
and used for comparison.

All the experiments have been executed in a workstation equipped with an AMD Ryzen
5 3600 6-core processor with 12 threads and 32MB of L3 cache, running at a variable
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frequency between 3.6 and 4.2 GHz. This system is also provided with 16 GB of RAM
memory, an NVIDIA GeForce RTX 3060 12GB graphics card and Ubuntu 20.04.6 LTS as
a native operating system.

4.2 Experimental Validation

This section explores the capabilities of the Energy scheduler regarding scenarios of interest
that consider memory contention and heterogeneous platforms where not all nodes consume
the same amount of power. With this objective in mind, two basic, synthetic experiments
have been tested. A first experiment considers a workload with two types of jobs and a
platform with two nodes running at the same frequency, but with a different number of
cores. A second experiment adds more heterogeneity in terms of job profiles and nodes.

4.2.1 Experiment 1

This first synthetic experiment has been devised to analyze whether the new scheduler is
capable of taking appropriate decisions when the main issue penalizing energy consumption
(or EDP) is an increased execution time derived from memory contention. For this reason,
nodes with the same power specifications but with a different number of cores, and hence
different bandwidths, are used.

In addition, this same scenario is also employed to test the impact of allowing the work-
load manager to wait instead of scheduling a pending job whenever enough resources are
available. This is achieved by enabling the usage of the implemented wait action.

Configuration

The complete configuration for the execution of this first experiment is gathered in tables
4.2, 4.3, 4.4 and 4.5.

Node Node 0 Node 1
Cores 4 8
Clock rate (GHz) 2.5 2.5
Dynamic power (W) 2.3 2.3
Static power (W) 24.38 24.38
Min. power (%) 5 5

Table 4.2: Experiment 1 - Platform.

Profile A B
Req. cores 4 2
Req. ops. (×1010) 1.25 6.25
Req. time (s) 5.5 25
Mem. vol. (MB/s) 1 104

Table 4.3: Experiment 1 - Job profiles.

Time (s) 0.00 0.05 0.10 0.15 0.20 0.25
Job ID J0 J1 J2 J3 J4 J5
Profile A A B A B A

Table 4.4: Experiment 1 - Workload.

The employed platform, described in table 4.2, consists of two nodes with a single processor
each, both running at the same frequency. The regression model used to estimate the power
consumption specifications of the resources strongly depends on processor frequency, so the
resulting values for static and dynamic power consumption are the same. This way, the
only difference between the nodes is the number of cores of their processor and, therefore,
their maximum bandwidth.
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Simulations 100
Trajectories 3
Trajectory length 6
Minibatch size 18
Epochs 50
SWA No

Seed 40
ϵ 0.1
γ 0.99
λ 0.95
Actor lr 0.001
Critic lr 0.001

Table 4.5: Experiment 1 - Training hyperparameters.

Two types of jobs, defined in table 4.3, are considered. The B profile models a heavy job
that accesses memory frequently and is almost five times more computationally intensive
than profile A, which is also lighter in terms of memory accesses. However, each A job
requires four cores to allocate its four tasks, whereas a B job only requires two. The
platform is faced with a workload of six jobs that arrive in fifty-millisecond intervals,
following the sequence shown in table 4.4.

Table 4.5 shows the hyperparameters that have been used to train the agent. This simple
experiment attempts to overfit a particular example in order to explore the capabilities
of the scheduler, so the three sampled trajectories correspond to the same sequence of six
jobs. For this same reason, SWA has been disabled. By scheduling the same trajectory
more than once, more data is made available to evaluate the loss of the current policy,
since different runs may produce different schedules from which useful information can be
extracted. The minibatch size has been set to average over the data collected during all
three trajectories.

The PPO clipping factor ϵ has been made small in order to prevent excessive policy fluc-
tuation during training, considering that even slight changes in the policy can have a
significant impact on the reward. The remaining hyperparameters have been modified
through trial and error until arriving at a configuration that seemed to work well in the
general case.

Energy Consumption Objective

The Energy scheduler has first been trained for the energy consumption objective without
enabling the use of the wait action. Figure 4.2 illustrates the evolution of the rewards and
the policy and value losses during training.

Figure 4.2: Experiment 1 - Loss and reward plots for the energy consumption objective,
wait action disabled.

The loss plots in figure 4.2 show that convergence can be achieved quite smoothly for both
actor and critic, although this is not always the case: several executions were run before
selecting the one that gave rise to the most promising model. Regarding the reward plot,
no clear progress can be appreciated past the first twenty-five simulations. Instead, the
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actor oscillates between two scheduling alternatives and does not settle on a single solution,
even though one of them offers a considerable reduction in energy consumption.

The two scheduling configurations obtained by the resulting policy are shown in figures
4.3 (configuration 1) and 4.4 (configuration 2). In the figures, jobs are segregated by their
assigned node and appear in the order in which they have been scheduled, from top to
bottom. The waiting time of each job has been highlighted by reducing the opacity of the
corresponding color.

Figure 4.3: Experiment 1 - Configuration 1 obtained by the Energy scheduler for the energy
consumption objective, wait action disabled.

Figure 4.4: Experiment 1 - Configuration 2 obtained by the Energy scheduler for the energy
consumption objective, wait action disabled.

Configuration 1 results in an energy consumption of approximately 2853.83 J, whereas
configuration 2 consumes around 3564.94 J. Comparing both figures brings to light that
the increased memory contention, however low, introduced in N1 by J1 in configuration 2
is enough to increase the total execution time by more than ten seconds with respect to
configuration 1. Conversely, executing the two B profile jobs on the same node without
additional contention in configuration 1 reduces execution time and hence energy consump-
tion, both static and dynamic, on N0. The static energy consumption in N1 is also reduced
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in this configuration, since the four scheduled jobs finish early and the node only consumes
a very low fraction of its static power while idle.

As to how the intelligent scheduler is capable of reaching these conclusions, it is hard to
provide an answer when the employed models are deep neural networks. Still, it is safe to
say that the scheduler has based its decisions on the features considered in table 3.1.

Different hypotheses can be elaborated in an attempt to explain why the scheduler cannot
seem to converge to a single configuration for such a simple example. A relevant factor
might be that the agent has no access to any information regarding the memory volume of
a job, a key feature that could have made it possible to obtain a stable policy in this case,
although not with certainty. Another plausible explanation could be that the provided
training data was too scarce or not representative enough.

For reference, the schedule found by the best heuristic, which assigns the job with the
lowest memory access volume to the node with the highest currently available memory
bandwidth, is shown in figure 4.5 and results in a a slightly higher energy consumption of
3575.07 J.

Figure 4.5: Experiment 1 - Configuration obtained by the best heuristic (low_mem_ops -
high_mem_bw) for the energy consumption objective.

To understand the resulting configuration, it should be noted that the Policy scheduler
measures available bandwidth as the sum of the requested bandwidths of the jobs currently
running on the target node. Due to a tie, J0 was assigned to N0 instead of N1. Afterwards,
although J4 could have been scheduled at the same time as J1 and J2 on N1 (as in figure
4.4), the scheduling policy prevented this from happening since J3, with a lower memory
access volume, was still in the queue and no resources were available to satisfy its demand
of four cores. Consequently, the rest of the jobs in the queue were stalled until N0 was
freed and J3 was scheduled, increasing the total execution time and energy consumption.

This shows that even if the chosen heuristic was conceptually correct, a more intelligent
approach can be more appropriate.

Enabling the Wait Action

The solutions found by the Energy scheduler in the previous section were restricted by the
need to schedule an incoming job whenever possible. To unlock new scheduling combina-
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tions, the same experiment has been tested enabling the use of the wait action. When this
option is enabled, the scheduler may wait even when it is possible to schedule a new job.
Otherwise, the scheduler is forced to wait only when no resources are available.

Since the use of the wait action may increment the trajectory length, the minibatch size
was increased to sixty-four in order to capture the three simulated trajectories at once in
most cases. At the same time, the clipping factor ϵ was set to 0.2 in order to allow for
greater changes in the policy and discourage stagnation. The plots of the resulting actor
and critic losses, as well as the evolution of the rewards during training, is shown in figure
4.6.

Figure 4.6: Experiment 1 - Loss and reward plots for the energy consumption objective,
wait action enabled.

The policy and value loss plots in 4.6 do not seem to have converged as smoothly as in the
previous subsection at a first glance, but it should be noted that the scale of the y-axis
is relatively small when compared to the plots in figure 4.2. In contrast, more variability
can be observed in the reward plot. This is logical, since introducing the option of not
scheduling at every time step greatly increases the scheduling configuration space. Again,
the rewards do not seem to increase steadily during training, fluctuating within a particular
range instead. This might be related to the factors mentioned in the previous subsection.

One of the best schedules obtained during testing when employing the wait action is shown
in figure 4.7, with an energy consumption of 2737.42 J.

Figure 4.7: Experiment 1 - Best configuration obtained by the Energy scheduler for the
energy consumption objective, wait action enabled.

In this case the scheduler is capable of distributing the two heavy tasks in different nodes,
thus reducing memory contention. With the wait action disabled, J0, J1, J2 and J4 would
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be scheduled in this order, while J3 and J5 would be forced to wait due to a lack of
available cores. Then, they would be scheduled immediately after one of the lighter jobs
had finished. This is precisely what happens in figures 4.3 and 4.4. In figure 4.7, however,
the six jobs are instead scheduled in the order J0, J1, J2, J3, J5, J4 by waiting during
the arrivals of J2, J3 and J4. In particular, J2 is scheduled when J5 arrives, whereas J3
and J4 are scheduled as the running jobs finish executing. This makes it possible for the
scheduler not to immediately schedule J4 on N1 even though enough cores are available
to allocate its two tasks, and instead wait until N0 is freed to execute both heavy jobs on
different nodes.

Although the difference in energy consumption with respect to the best schedule found
when disabling the wait action is not significant, execution time is reduced from 70 s to
around 50 s, which has a noticeable effect on EDP. Still, the scheduler waits more than
necessary in some cases, introducing slight delays. This could be mitigated by adjusting
the timer.

EDP Objective

The Energy scheduler has also been trained for the EDP objective. No changes in the
policy were discovered with respect to optimizing the energy consumption objective when
the wait action was disabled, or when training the Policy scheduler to obtain the most
appropriate heuristic.

However, the previous subsection showed that enabling the use of the wait action unlocks
configurations capable of drastically reducing EDP. In theory, training the agent to optimize
the EDP objective should help it converge to one such policy. Nevertheless, this was not
the case upon evaluating this scenario, as the agent tended to stagnate on worse policies
or fluctuate considerably during training.

An example of the evolution of the loss and reward plots during a training execution with
ϵ = 0.1 can be found in figure 4.8. The rewards oscillate between the values corresponding
to the two policies exposed in figures 4.3 and 4.4 even though much lower EDP values
can be achieved, as indicated by the peaks in the reward slightly before simulation thirty.
Increasing ϵ to 0.2 prevents this stagnation and lets the agent explore better policies, but
makes convergence harder to achieve. This is illustrated in the loss and reward plots in
figure 4.9, which are representative of a standard training execution using this setting.
Even though the scale of the y-axis is smaller, the value of the losses does not decrease
towards the end as in figure 4.8.

It should be noted that the EDP reward is not equal to the total EDP but rather to the
sum of the EDP calculated at discrete time steps. Consequently, intermediate rewards may
not be providing the agent with enough guidance. This could also be a factor involved in
the instability experienced during training.

Comparison

The energy consumption and EDP statistics collected throughout one hundred test iter-
ations with and without the use of the wait action have been compared to the results
obtained by the heuristics mentioned in section 4.1 for the same platform and workload.
Strictly speaking, testing the proposed scheduler on the workload used for training only
serves as an indicator of how the model has overfitted the training set, and not as validation.
But this is precisely the goal of this initial experiment.
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Figure 4.8: Experiment 1 - Loss and reward plots for the EDP objective, wait action
enabled, ϵ = 0.1.

Figure 4.9: Experiment 1 - Loss and reward plots for the EDP objective, wait action
enabled, ϵ = 0.2.

The resulting energy consumption and EDP statistics are shown in figures 4.10 and 4.11,
where the mean and standard deviation are plotted, as well as the minimum and maximum
values (white and black triangles) obtained during the testing of the Energy scheduler.
The bars plotted for the wait action alternatives correspond to the values obtained after
training with ϵ = 0.2, for the energy consumption and EDP objectives respectively. Table
4.6 gives the percentage reductions in both metrics with respect to the best heuristic for
the minimum, maximum and average values obtained by the Energy scheduler in the three
analyzed cases.

In the worst case scenario, the Energy scheduler obtains an energy consumption similar
to that of the best heuristic, but is capable of providing a reduction of between 9% and
14% on average, and 20% in the best case scenario. When the wait action is disabled,
the scheduler fluctuates between the two schedules introduced in subsection 4.2.1: Energy
Consumption Objective, which explains the deviation on the corresponding bar in figure
4.10. Enabling the wait action does not make much of a difference regarding this metric.

When comparing EDP on the other hand, the best schedule obtained when the wait action
is enabled more than halves the EDP obtained by the heuristics, as opposed to a 35%
reduction in the best case when this option is disabled. On average, both configurations
reach a reduction of between 20% and 30% in EDP.

In general, the Energy scheduler does not consistently offer better schedules for this objec-
tive but instead fluctuates considerably. The standard deviation is higher than for energy
consumption since EDP combines this metric with execution time, which also varies be-
tween executions. And, in the case of the wait action, this is further aggravated by the
introduction of delays that do not follow a specific pattern. Figure 4.11 also evidences that
optimizing for the EDP objective instead of for energy consumption when the wait action
is enabled has not led to better results in this particular scenario.
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Figure 4.10: Experiment 1 - Energy consumption comparison.

Figure 4.11: Experiment 1 - EDP comparison.

Percentage reduction w.r.t. Best heuristic Energy consumption EDP
Min Avg Max Min Avg Max

No wait action 20.20 11.84 0.28 35.04 22.54 5.26
Wait action, Energy consumption objective 20.58 14.05 0.03 55.58 29.13 2.20
Wait action, EDP objective 20.58 8.80 -0.09 55.58 20.01 1.77

Table 4.6: Experiment 1 - Percentage reductions in energy consumption and EDP obtained
by the Energy scheduler with respect to the best heuristic.

Discussion

This first experiment showcases the complexity of the scheduling problem even for a small
example. Although the Energy scheduler has been capable of finding some good solutions,
especially when enabling the use of the wait action, difficulties have been encountered
upon training and consistent results at test time have been hard to achieve. This could
be explained by the fact that the scheduler has no way of directly estimating the memory
access volume of a job.
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Still, a different conclusion might be reached after training the agent in a more complex
scenario, with more training data and different hyperparameters. At the same time, this
approach has been shown to be more suitable than simple heuristic scheduling despite
these issues, indicating that the implemented scheduler behaves as intended.

4.2.2 Experiment 2

A second, more complex experiment has been devised that considers resources with distinct
compute capabilities and static and dynamic power consumption specifications. The target
workload has also become slightly more varied, including three job profiles with increasing
intensities in terms of memory access and requested time.

In this synthetic scenario, the cluster is first filled with light jobs that occupy all the
available cores. Afterwards, a series of heavier jobs are submitted. The scheduler should
be capable of predicting which of the light jobs will finish first according to the average
frequency of their assigned node, their submit time and the level of memory contention,
enabling it to plan ahead so that the most suitable nodes are available when the heavy
jobs arrive. At the same time, it should discover what these most suitable nodes are in
order to minimize total energy consumption or EDP.

Configuration

The complete specification of the platform, workload and training hyperparameters em-
ployed in this experiment can be found in tables 4.7, 4.8, 4.9 and 4.10.

Node Node 0 Node 1 Node 2 Node 3
Cores 8 16 32 48
Clock rate (GHz) 4.2 3.8 3.4 3.0
Static power (W) 68.81 56.33 45.09 35.11
Dynamic power (W) 6.49 5.32 4.26 3.31
Min. power (%) 39.59 39.59 39.59 39.59

Table 4.7: Experiment 2 - Platform.

Profile A B C
Req. cores 8 8 4
Req. ops (×1010) 1.375 6.25 12.5
Req. time (s) 4.6 20.8 41.7
Mem. vol. (MB/s) 1 103 106

Table 4.8: Experiment 2 - Job profiles.

Time (s) 0.00-0.65 0.70-0.75 0.80-0.85
Job ID J0-J13 J14-J15 J16-J17
Profile A C B

Table 4.9: Experiment 2 - Workload.

Simulations 100
Trajectories 5
Trajectory length 18
Minibatch size 45
Epochs 50
SWA No

Seed 1234
ϵ 0.1
γ 0.99
λ 0.95
Actor lr 0.001
Critic lr 0.001

Table 4.10: Experiment 2 - Training hyperparameters.

The proposed platform, shown in table 4.7, consists of a total of four nodes, each with an
increasing number of cores from 8 up to 48. As the number of cores increases, their clock
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rate decreases and so does their static and dynamic power consumption. This way, larger
nodes may allocate more jobs and have a greater bandwidth but execute tasks more slowly,
and vice versa.

Table 4.8 describes the three job profiles considered in this experiment, ordered from least
to most intensive in terms of both requested time and memory access. The number of
requested cores per job has been increased with respect to Experiment 1 according to the
capacity of the new platform. Again, the most intensive profile requires less cores. These
kinds of jobs are submitted in the order given in table 4.9, in fifty-millisecond intervals.
The platform is first saturated with A jobs before one more A job and two intensive C jobs
arrive. Finally, another two B jobs of intermediate intensity have to be scheduled.

The hyperparameters used to train the agent for this example can be found in table 4.10.
The complete sequence of eighteen jobs is scheduled five times using the same policy and
baseline state values before using the collected data to update the actor and critic networks.
The minibatch size has been set to cover half of the total data at a time so that not much
information is lost by averaging over the whole dataset, while at the same time achieving
reasonable training times. The actor and critic learning rates shown in the table are
appropriate for this example, although others were found to provide similar results.

Energy Consumption Objective

The Energy scheduler has first been trained with the objective of minimizing energy con-
sumption. The evolution of the rewards and the average actor and critic losses during one
of the training executions is plotted in figure 4.12.

Figure 4.12: Experiment 2 - Loss and rewards plots for the energy consumption objective.

The loss plots reflect some peaks that are shared between actor and critic. This shows
that, when the value predicted by the critic is not accurate, the policy chosen by the actor
is affected since it cannot correctly predict the advantage of the selected actions. Never-
theless, in this execution the actor managed to recover quickly thanks to the properties of
the PPO algorithm. At the same time, it is clear that the fluctuations in the policy have
affected the rewards, especially during the first quarter of the execution.

After training, the Energy scheduler manages to define a policy that is almost deterministic
with an energy consumption of around 23743 J, shown in figure 4.14, . This is not, in fact,
the optimal configuration for this problem, as will be exposed later. It should also be
noted that no better policy was found after several attempts at training the agent with
these settings. Still, this value is not far from the lowest achievable energy consumption,
especially when compared to the results obtained by the most appropriate heuristic.

This heuristic assigns the job with the least requested cores to the node with the highest
available memory bandwidth, resulting in the configuration shown in figure 4.13 and an
energy consumption of around 32090 J. In figure 4.13, the jobs up to J12 are scheduled on
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the nodes in order, filling all the cores in N0 up to N3. While these jobs execute, the rest
arrive and are forced to wait. J0 finishes first, freeing N0, and the C profile jobs in the
queue (J14 and J15, with only two requested cores each) are immediately scheduled. The
rest of the A jobs finish in submit order as they execute the same number of instructions
and smaller nodes have a higher clock rate. This way, J13, J16 and J17 are scheduled
as N1 and N2 are freed since the heuristic is not capable of waiting until more suitable
resources become available.

Figure 4.13: Experiment 2 - Configuration obtained by the best heuristic (smallest -
high_mem_bw) for the energy consumption objective.

Figure 4.14: Experiment 2 - Configuration obtained by the Energy scheduler for the energy
consumption objective.

But consumption can be reduced without needing to wait. In this situation, the Energy
scheduler (figure 4.14) assigns the medium-intensity B jobs to the fastest nodes and dis-
tributes the high-intensity C jobs in two different nodes, also the fastest available, so as
to reduce memory contention. Scheduling J15 and J16 on the same node when both make
considerable use of memory does not seem optimal, however. J13 on N1 would have been a
better choice due to its low memory access requirements and shorter requested time, which
would have reduced the execution time of J15.
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Since the wait action has not been enabled and the jobs assigned to N3 never finish in time
to allocate one of the B or C jobs, it remains to be tested whether this allocation scheme
would be more advantageous. Two reasons explaining why this could be the case are the
following:

• In general, nodes with a higher bandwidth are more appropriate for scheduling jobs
with a high memory access volume, as long as the node is not overcrowded.

• In this particular scenario only four heavier tasks have to be distributed among four
nodes, so memory contention could be palliated by avoiding assignments to the same
node.

Consequently, the experiment was repeated enabling the use of the wait action, but no
better configuration was found throughout several executions. It is speculated that the
delays introduced by waiting might increase static energy consumption more than it is
reduced by redistributing the heavy jobs.

Removing Energy-Related Features

The same experiment has been carried out after removing the energy estimate and power
consumption specifications of the resources from the features considered by the agent for
decision-making (table 3.1). No significant difference was observed and the agent showed
convergence patterns similar to the original version throughout several executions, but a
better scheduling configuration was found.

The corresponding plots of the evolution of the losses and rewards in this execution are
shown in figure 4.15. The reward plot clearly reflects how the agent converges to a policy
that results in an energy consumption of around 23000 J, slightly lower than the one
obtained when considering the energy-related features in the observation. Figure 4.17, in
the next subsection, is representative of the schedules obtained by this policy.

Figure 4.15: Experiment 2 - Loss and rewards plots for the energy consumption objective
without considering energy-related features.

However, a different conclusion might have been reached had the power specifications of
the nodes not depended as heavily on their frequency: static and dynamic power are
formally defined as Ps = V · I and Pd = 0.5 · CL · V 2 · F respectively, but in this case the
approximation introduced in section 4.1 was used. Still, it is true that frequency has a
considerable impact on power consumption, since V ∝ F . It remains to be seen whether
there would be any considerable difference if the power estimates were to be modelled in
a more realistic manner.
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EDP Objective

Similar results were observed when optimizing the EDP objective. After multiple execu-
tions, the agent managed to converge to a rather stable policy. The evolution of the actor
and critic losses and the rewards during the corresponding training execution can be found
in figure 4.16.

Figure 4.16: Experiment 2 - Loss and reward plots for the EDP objective.

It should be noted that the hyperparameters were altered slightly in an attempt to ease
convergence after observing the patterns found in previous executions. In particular, the
resulting plots were obtained when reducing the actor learning rate to 0.0005 and increasing
the number of trajectories to ten. It is theorized that providing the Energy scheduler
with more training data and reducing the step size is appropriate when the magnitude of
the loss function is greater. Nevertheless, the aforementioned plots illustrate that, overall,
convergence is harder to achieve for EDP than for energy consumption owing to an increase
in variance, regardless of these modifications. At the same time, it is not certain that the
chosen hyperparameters have in fact aided with convergence, since randomness plays an
important role in this process as well.

The evolution of the rewards shows that a better policy is attained only in the last few
simulations. The fact that the policy is not maintained throughout a greater number of
simulations does not imply that the result is not stable, as will be shown when comparing
the EDP obtained at test time in figure 4.19.

A representative configuration obtained by the resulting policy is shown in figure 4.17.
This schedule results in an energy consumption of around 23000 J and an EDP of approx-
imately 2260000 J·s, which are the same as the values obtained when minimizing energy
consumption without considering energy-related features in the previous subsection. The
best heuristic remains the same when changing the objective from energy consumption to
EDP, resulting in an EDP of around 5071504 J·s.

Figure 4.17 shows that in these cases the Energy scheduler reduces time and energy con-
sumption by assigning the heaviest jobs to the two fastest nodes, one to each of them so
as to avoid memory contention. The two B jobs have been allocated to the same node,
the fastest available, but only occupying half of the available cores. This configuration was
mostly forced because no other nodes were available at the time, but it is nevertheless a
better choice than assigning J13 instead of J16 to N1, as was the case in the configuration
found when optimizing the energy consumption objective.

Comparison

The trained models for the energy consumption and EDP objectives, as well as the sim-
plified model that does not consider energy-related features in the observation, have been
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Figure 4.17: Experiment 2 - Configuration obtained by the Energy scheduler for the EDP
objective.

tested for one hundred simulations with the same workload and platform used for training.
In practice, a different test workload should be used, but these validation experiments are
meant to analyze the capability of the agent to learn and investigate its behaviour when
overfitting a simple, human-comprehensible example. Figures 4.18 and 4.19 plot the re-
sulting energy consumption and EDP respectively, including the corresponding values for
the best heuristic and the four others introduced in section 4.1. Table 4.11 summarizes
the percentage reductions in both metrics for the minimum, maximum and average values
obtained in all of the presented cases, as compared to the results provided by the best
heuristic.

A considerable reduction in energy consumption (around 27%), and EDP especially (around
53%), is achieved by employing the Energy scheduler. The policy obtained when optimiz-
ing for energy consumption with energy-related features performs slightly worse than the
other two, and the negligible standard deviation points to the policy being almost deter-
ministic. This in turn seems to be an indicator of strong overfitting. The policies obtained
in the two other cases have overfitted as well, but not as drastically.

There is no significant difference between the results obtained by these last two policies,
other than a slight increase in standard deviation when no energy-related features are
considered. This increase persevered upon incrementing the number of test simulations
and was consistent across several executions, but repeating the tests with another model
could lead to a different conclusion. This scenario has not been tested since the models
trained with this setting seldom reach the solution shown in figure 4.17.

Percentage reduction w.r.t. Energy consumption EDP
Best heuristic Min Avg Max Min Avg Max

Energy consumption objective 26.02 26.01 26.00 48.60 48.59 48.57
EDP objective 28.46 28.25 24.71 55.62 55.24 49.22
No energy-related features 28.45 28.10 23.22 55.61 54.96 42.28

Table 4.11: Experiment 2 - Percentage reductions in energy consumption or EDP obtained
by the Energy scheduler with respect to the best heuristic.
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Figure 4.18: Experiment 2 - Energy consumption comparison.

Figure 4.19: Experiment 2 - EDP comparison.

Discussion

The Energy scheduler struggled to find the closest to optimal configuration for this problem,
which was only achieved when factoring execution time into the equation by optimizing
for the EDP objective (even though both EDP and power consumption were lower for this
solution), or when removing the power specifications and energy estimate from the features
used for decision-making. A hypothesis is that, when optimizing energy consumption
exclusively, the agent is led to give priority to B jobs since they present lower energy
estimates for the currently available nodes. When optimizing EDP, on the other hand,
the agent focuses on minimizing execution time together with energy consumption, which
leads to a better global solution as both metrics are correlated.

At the same time, this experiment has showcased the potential of employing machine
learning techniques to reduce energy consumption and EDP through job scheduling, as
both metrics have improved considerably when comparing the results offered by the Energy
scheduler to the configurations produced by a variety of heuristic algorithms, including
the most suitable one for this particular problem. Nevertheless, the true value of such
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an approach resides in producing an agent capable of generalizing well for a variety of
workloads, and not just overfitting a simple example.

4.3 Experimental Results

This section tests the Energy scheduler against larger synthetic workloads and platforms
with a greater capacity. In particular, the abilities of the scheduler to scale and generalize
are evaluated in two separate examples. In both cases, SWA has been enabled in hopes of
obtaining more robust models upon increasing the scale of the scheduling problem.

4.3.1 Experiment 3

This experiment analyzes the behaviour of the Energy scheduler after scaling Experiment
2 by a factor of ten. In this case the generalization capacity of the scheduler will not be
evaluated, since it will be trained and tested on the same, predictable workload. Instead,
this experiment attempts to analyze the convergence patterns and behaviour of the Energy
scheduler for a larger, more complex instance of the scheduling problem.

Configuration

The configuration for this experiment is the same as the one shown in tables 4.7, 4.8 and
4.9 for Experiment 2 in the previous section, but with ten copies of each node for the
platform and ten copies of each job in the workload, resulting in the trace shown in table
4.12. These modifications scale the problem up to a total of 1040 cores and 180 jobs. The
interval between job arrivals has been reduced to ten milliseconds so as to increase the
load on the cluster, but this measure does not have much of an effect since scaling the
workload and platform by the same factor in reality increases the capacity of the platform
more than it increments the load, as each node contributes with multiple cores.

The training hyperparameters have been adapted as shown in table 4.13. In each simu-
lation, five random trajectories of up to ninety jobs are sampled from the workload and
scheduled with the same policy before training the actor and critic networks based on the
collected data.

Time 0.00-1.39 1.40-1.59 1.60-1.79
Job ID J0-J139 J140-J159 J160-J179
Profile A C B

Table 4.12: Experiment 3 - Workload.

Simulations 100
Trajectories 5
Trajectory length 90
Minibatch size 32
Epochs 50
SWA Yes

Seed 1024
ϵ 0.1
γ 0.99
λ 0.95
Actor lr 0.001
Critic lr 0.001

Table 4.13: Experiment 3 - Training hyper-
parameters.

Energy Consumption Objective

The scheduler has first been trained to minimize energy consumption. Not as many training
executions as in the previous experiments have been carried out, as each of them may easily
last for eight hours on the employed workstation, depending on the chosen trajectory and
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minibatch hyperparameters. A variety of sampling and training strategies have been tried
regardless.

The plots shown in figure 4.20 represent the evolution of the loss and reward functions
throughout the most promising training execution, using the hyperparameters presented
in table 4.13.

Figure 4.20: Experiment 3 - Loss and reward plots for the energy consumption objective.

The policy loss plot does not appear to converge, as no clear progress can be observed.
Despite this fact, the scale of the y-axis is considerably small when compared to the plots
obtained during other training executions (not shown in this document) and thus the
resulting model is the one that has been chosen for evaluation. The value loss plot follows
a similar pattern, although in this case the peak at simulation nineteen makes the rest seem
less significant. The dips in the reward can be explained by the fact that only fragments
of the complete workload are being scheduled in each simulation, and these may or may
not have contained heavy jobs.

As expected, scaling the problem has made the training process considerably more diffi-
cult and time-consuming. Subsampling the workload and simulating shorter trajectories
reduces training time, but introduces variance as the sampled workload fragments may not
be well-balanced. Stochastic weight averaging may have also affected the evolution of the
policy loss, despite the reduced number of epochs during which models are retrieved.

EDP Objective

Afterwards, the Energy scheduler has been trained for the EDP objective, obtaining the
loss and reward plots shown in figure 4.21. These are similar to the ones presented in the
previous subsection, so the same reasoning applies.

Figure 4.21: Experiment 3 - Loss and reward plots for the EDP objective.

In this case, the model seems to have converged around ten simulations from the end
of the execution before finally diverging again. An early stopping mechanism could be
implemented to stop training after the loss has stayed stable over a specified number of
iterations. However, adding this feature would not be straightforward as each simulation
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is an independent execution of the simulator, meaning that data would have to be shared
over a file.

Comparison

Figures 4.22 and 4.23 show the resulting energy consumption and EDP when applying the
trained scheduler, for both objectives, to the complete workload throughout one hundred
test simulations. These values are compared to the results obtained by the heuristics
mentioned in section 4.1. Table 4.14 shows the percentage reductions with respect to the
best heuristic (smallest - high_mem) in both metrics for the minimum, maximum and
average values obtained by the Energy scheduler during testing. As the Energy scheduler
is not the best-performing solution in this case, it has also been compared against the
baseline offered by the uninformed random heuristic in table 4.15. The results obtained
by the best heuristic have also been included in this table for reference.

Figure 4.22: Experiment 3 - Energy consumption comparison.

Figure 4.23: Experiment 3 - EDP comparison.

The models obtained for both objectives behave in a similar manner regardless of the
evaluated metric. The slight improvements offered by the agent trained to minimize EDP
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Percentage reduction w.r.t. Energy consumption EDP
Best heuristic Min Avg Max Min Avg Max

Energy consumption objective 3.37 -19.52 -61.58 3.21 -90.49 -286.22
EDP objective 3.46 -16.87 -59.99 3.33 -79.63 -285.67

Table 4.14: Experiment 3 - Percentage reductions in energy consumption or EDP obtained
by the Energy scheduler with respect to the best heuristic.

Percentage reduction w.r.t. Energy consumption EDP
Random heuristic Min Avg Max Min Avg Max

Energy consumption objective 40.18 26.01 -0.03 71.52 43.96 -13.62
EDP objective 40.23 27.65 0.96 71.56 47.16 -13.46
Best heuristic 38.09 70.58

Table 4.15: Experiment 3 - Percentage reductions in energy consumption or EDP obtained
by the Energy scheduler and the best heuristic with respect to the random heuristic.

cannot be clearly attributed to the chosen objective, although it would be a reasonable
hypothesis since execution time and energy consumption seem to be correlated in this
problem. This can be deduced by comparing figures 4.22 and 4.23, especially the bars
corresponding to the heuristics, and by noticing that the height differences are accentuated
proportionally when multiplying energy by execution time.

Regarding energy consumption (figure 4.22), the Energy scheduler is not capable of con-
sistently reducing this metric and instead fluctuates in a range between the best and worst
values obtained by several heuristics, even though it is capable of beating the best heuristic
by a small margin in the minima observed at test time. On average, the two tested models
perform about 18% worse than the most appropriate heuristic and around 27% better than
a random, uninformed scheduling policy for this particular scenario, but at times they fail
and make no difference with respect to the latter.

These maxima are even more pronounced when comparing EDP in figure 4.23. The value
obtained in these cases is 13% greater than the one produced by an uninformed policy.
However, it should be taken into account that the tested models are probably suboptimal,
as they did not completely converge during training. Even under these circumstances, the
Energy scheduler manages to reduce EDP by around 46% on average with respect to an in
appropriate heuristic, and by 3% with respect to the best heuristic in the observed minima.

Overall, the Energy scheduler does not stand out when compared to the other heuristics
shown in figures 4.22 and 4.23, but instead occupies a middle ground. This indicates that
the agent has not overfitted the proposed problem. Similarly, the instability in the results
can be attributed to a failure to reach convergence during training.

Discussion

Despite the promising results found in Experiment 2, training the Energy scheduler for
a scaled-up version of this example has resulted in a dissimilar conclusion. The agent
has not been capable of consistently producing schedules that reduce energy consumption,
although on average it has offered better performance than an inappropriate heuristic.
Three out of five heuristics, however, have beaten the Energy scheduler.

Nevertheless, it should be taken into account that the load on the cluster has been reduced
with respect to Experiment 2, and at the same time the number of jobs and resources
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has increased. In such a situation, an intelligent scheduler has trouble investigating the
solution space since there are many more available configurations to choose from, whereas
the most appropriate heuristics thrive as their policies can be applied with few restrictions.
In addition, this particular problem could be solved by following a simple heuristic strategy,
but this would most often not be the case in a real context.

Overall, it can be said that the new scheduler has been capable of offering reasonable
performance on a larger, more complex version of the scheduling problem, but adjustments
should be made to the training hyperparameters, or even the actor and critic models, so
as to reach convergence in a more stable manner.

4.3.2 Experiment 4

This last experiment has been designed with the objective of determining how well the
Energy scheduler is capable of adapting to different workloads. To this end, the scheduler
has been trained on a generic workload and then tested on both a memory-intensive and
a computation-intensive workload. For brevity, only the results obtained for the energy
consumption objective are presented, since the behaviour of the scheduler for the EDP
objective was found to be similar.

Seeing the increase in training time derived from increasing the size of the platform and
workload in Experiment 3, this experiment has been reduced to a modest scale so as to
better focus on analyzing the ability of the scheduler to generalize.

Configuration

The target platform is composed of thirty instances of Node 0 and four instances of Node
3, following the descriptions given in table 4.7. In this way, multiple jobs may be assigned
to the same 48-core node or distributed among several faster, 8-core nodes.

Two workloads containing one hundred jobs each have been defined using the job pro-
files introduced in table 4.16: a memory-intensive workload using A1, B1 and C1; and a
computation-intensive workload using A2, B2 and C2. In each workload, jobs arrive in
one-second intervals in a random order. A separate mixed workload of four hundred jobs
combining all six profiles has been used to train the scheduler, using the hyperparameters
gathered in table 4.17.

Profile A1 B1 C1 A2 B2 C2
Req. cores 8 8 8 8 8 8
Req. ops (×1010) 2.75 6.25 12.5 5.5 8.25 12.5
Req. time (s) 9.2 20.8 41.7 18.4 27.5 41.7
Mem. vol. (MB/s) 105 106 108 1 1 1

Table 4.16: Experiment 4 - Job profiles.

Simulations 100
Trajectories 3
Trajectory length 50
Minibatch size 25
Epochs 50
SWA Yes

Seed 4321
ϵ 0.1
γ 0.99
λ 0.95
Actor lr 0.001
Critic lr 0.001

Table 4.17: Experiment 4 - Training hyperparameters.
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Energy Consumption Objective

The Energy scheduler has only been trained to optimize the energy consumption objective.
The evolution of the rewards and the policy and value losses during the most promising
training execution are shown in figure 4.24.

Figure 4.24: Experiment 4 - Loss and reward plots for the energy consumption objective.

Only the critic seems to have converged to an adequate degree, according to the value loss
plot. The policy loss and the rewards, on the other hand, show a slight improvement over
time, but still oscillate considerably at the end of the training execution.

As in Experiment 3, it remains to be tested whether increasing the number of simulations,
or altering the training hyperparameters, would enable the agent to converge to a more
stable policy. These alterations would lead to an increase in training time and thus have
not been evaluated in this work.

Comparison

The results provided by the Energy scheduler for the memory-intensive and computation-
intensive workloads over one hundred test iterations have been compared to the energy con-
sumption produced by three of the heuristics introduced in section 4.1: first - high_gflops,
first - high_cores and first - high_mem_bw. Conceptually, the first heuristic should be
appropriate for computation-intensive workloads, since these kinds of resources should be
capable of completing tasks faster. The second heuristic tended to perform well overall in
similar experiments (not shown in this document), so it has been included as well. Finally,
the third heuristic should be able to reduce energy consumption in the presence of memory
contention, assigning jobs to the nodes with the highest currently available bandwidth.

Figure 4.25 illustrates the differences in energy consumption for each of the two workloads,
and table 4.18 summarizes the percentage reductions obtained by the Energy scheduler
with respect to the three tested heuristics. The minimum, average and maximum values
observed at test time have been considered.

Percentage reduction High_gflops High_cores High_mem_bw
in energy consumption Min Avg Max Min Avg Max Min Avg Max
Memory workload 12.66 -1.31 -12.87 15.32 1.77 -9.43 21.98 9.50 -0.83
Computation workload 23.36 4.02 -0.35 2.28 -22.37 -27.95 23.36 4.02 -0.35

Table 4.18: Experiment 4 - Percentage reductions in energy consumption obtained by the
Energy scheduler with respect to the three tested heuristics for both workloads.

Unexpectedly, high_gflops is the best-performing heuristic for the memory-intensive work-
load. High_mem_bw, on the contrary, has achieved the worst performance in this case.
A possible explanation could be the caveat mentioned in section 4.2.1: this heuristic es-
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Figure 4.25: Experiment 4 - Energy consumption comparison for the memory-intensive
(left) and computation-intensive (right) workloads.

timates the currently available bandwidth as the sum of the requested bandwidths of the
jobs currently running on the target node. High_cores offers an intermediate solution.

When compared to these three heuristics for the same workload, the Energy scheduler is
closest to high_gflops on average, as can be seen in table 4.18. Occasionally, it produces
considerably better scheduling configurations that result in a reduction of around 12% with
respect to this heuristic, but also others that perform even slightly worse (around 1%) than
high_mem_bw.

As for the computation-intensive workload, in this case high_gflops and high_mem_bw
produce similar configurations with the same energy consumption, and it is high_cores
that manages to offer a considerable reduction with respect to these heuristics, of around
22%. Employing the Energy scheduler, on the other hand, provides a reduction of only
around 4% on average with respect to the worst heuristics, even if it occasionally manages
to reduce consumption in 2% with respect to high_cores. In the worst case scenario, it
behaves similarly to the other two heuristics.

Discussion

For this particular problem, the high_cores heuristic would have been the best choice due
to its well-rounded performance. The results obtained by the Energy scheduler, on the
other hand, have not been very impressive. Nevertheless, it should be taken into account
that the tested model had not converged completely, was trained on trajectories of half
the test-time length, and still was able to produce reasonable results for both workloads
on average.

Even if the Energy scheduler was not the best-performing workload manager in all sce-
narios, its behaviour did not vary as much as that of the high_gflops and high_cores
heuristics across different workloads. For example, high_gflops offered the best solution
for the memory-intensive workload, but did not perform well on the computation-intensive
workload. On the contrary, the Energy scheduler was capable of generalizing and adapting
to both workloads to a certain extent.

The final conclusion is not very different from the one reached in Experiment 3: ideally,
the training hyperparameters, or the actor and critic models, should be adjusted in order
to improve convergence and hopefully bring the results obtained by the Energy scheduler
closer to the observed minima, while at the same time avoiding overfitting.
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Chapter 5

Conclusion and Future Work

This chapter provides a summary of the project and closes this document by exposing the
key points of the conclusions extracted during the evaluation process. Finally, it suggests
a series of possible improvements and additions as candidates for future investigation in
this line of work.

5.1 Conclusion

This work has achieved all the proposed objectives, finally resulting in the development of
an intelligent scheduler for heterogeneous HPC systems that focuses on reducing energy
consumption or EDP. As a novelty, the implemented workload manager makes use of the
power consumption specifications of the resources of a cluster for decision-making.

This new scheduler leverages the Proximal Policy Optimization algorithm and the capa-
bilities offered by self-normalizing neural networks and stochastic weight averaging. As
an additional, optional feature, the scheduler may choose to wait until resources are freed
instead of scheduling a job as soon as it is possible. Discovering, investigating and under-
standing these techniques has been one of the main challenges of this work.

The resulting scheduler has been validated and evaluated using the IRMaSim cluster sim-
ulation framework with a series of synthetic experiments that explore various aspects of
the implementation. In all cases, the new scheduler has been compared against the re-
sults provided by multiple heuristic algorithms. The main findings can be summarized as
follows:

• No difference was reported when comparing the developed workload manager with
an analogous version that did not consider power consumption features for decision-
making. This has been attributed to the fact that the employed power consumption
model was too simple and strongly depended on processor frequency, a parameter
already employed by most schedulers.

• Allowing the scheduler to wait unlocks more advantageous scheduling configurations,
but makes convergence harder to achieve. When the training hyperparameters are
adjusted to solve this issue, the scheduling agent tends to stagnate on suboptimal
solutions. Moreover, a robust mechanism that prevents the scheduler from waiting
indefinitely has yet to be found.

• Certain heuristic algorithms are capable of reducing energy consumption, even in the
presence of memory contention, but relying on a single heuristic is most often not
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appropriate in a realistic scenario where the characteristics of submitted jobs vary
over time. On the other hand, an intelligent workload manager may not offer the
best solution for each particular case, but it provides a more robust and adaptable
approach to job scheduling. However, these models can be hard to train.

Despite the various difficulties faced during the development and evaluation of the newly
developed intelligent workload manager, the observed results show potential regarding the
possibilities of energy-focused job scheduling based on deep reinforcement learning. Much
work is still left to do in this area, but resolving the discovered issues could be a first step
towards developing a robust and efficient workload manager capable of reducing energy
consumption and EDP in real HPC systems.

5.2 Future Work

The previous section signaled various areas of improvement in the proposed implementa-
tion. Nevertheless, the development of solutions to the identified issues is outside of the
scope of this project and shall therefore be left as possible future work for the Computer
Architecture and Technology group of the University of Cantabria. The following research
paths are proposed:

• The level of detail of the employed energy consumption model should be increased.
Firstly, a more precise resource power consumption estimate that does not depend
exclusively on processor frequency could be defined so as to better leverage the ca-
pabilities of an energy-oriented scheduler. Secondly, the IRMaSim simulator should
be adapted to consider factors such as the reduction in consumption that takes place
during the execution of memory access instructions or Dynamic Voltage and Fre-
quency Scaling (DVFS), which reduces the running frequency of a processor when
possible so as to consume less energy.

• Job definitions could also be defined in a more complex manner in order to better
represent the characteristics of real applications. This would include defining a pat-
tern indicating peaks, flats or dips in energy consumption during the execution of a
job owing to the type of instructions it contains, especially accesses to memory, I/O
operations or network communications. Similar patterns could help predict memory
contention.

• The potential of allowing the scheduler to wait has been demonstrated, but several
issues arise during training. Measures should be taken so as to stabilize the learning
process and prevent the agent from waiting indefinitely, for example including a
reasonable penalty every time the agent chooses to wait instead of scheduling a new
job. Limiting the amount of total wait time in relation to the characteristics of the
workload would be another possible solution.

• The difficulties experienced during training for larger examples may have been a
consequence of the complexity of the employed deep neural networks. The intelligent
scheduler might therefore benefit from simplifying the actor and critic networks or
replacing them by a different type of model, such as a bayesian network.

• Due to execution time constraints, and because it has been hard to find real clus-
ter traces containing energy consumption information, this work has only evaluated
the proposed implementation by means of synthetic examples with particular fea-
tures. Further testing with realistic workloads would be required to determine how
the scheduler would operate in a real environment.
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