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Abstract

The computational capacity needs by both companies and research groups all
over the world has increased greatly in the last years. These necessities are
due to the increasing amount of data to analyse, training of machine learning
models, high performance scientific applications and many other types of jobs
that are too costly for the infrastructure of these groups. This means that
data centers are getting more and more jobs, and thus need more and more
resources to accommodate all of them. The scheduling of all of these tasks in
the heterogeneous resources of a data center is too complex computationally
to be performed optimally, as it is an NP-Complete problem. For this reason,
task scheduling is still performed by heuristic algorithms. However, these
algorithms are beginning to fall short for managing the great heterogeneity
of both jobs and resources efficiently. This fact, together with the desire of
being able to have a method that is adaptable to different objectives such
as minimizing energy consumption or job slowdown, opens the door to the
idea of using a machine learning approach. The objective of this work is
to design and implement an intelligent agent that is able to make use of
all the available information from both jobs and resources to take the best
scheduling decisions depending on the selected objective.

Keywords: Deep Reinforcement Learning, Task scheduling, Heterogeneous
data centers, RLScheduler, Artificial intelligence, Machine Learning.
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Resumen

Las necesidades tanto de las empresas como de los grupos de investigacién de
todo el mundo en cuanto a capacidad de computo ha crecido enormemente
en los ultimos anos. Estas necesidades se deben a la creciente cantidad de
datos que analizar, entrenamientos de algoritmos de inteligencia artificial,
aplicaciones cientificas de computacion de altas prestaciones y muchos otros
tipos de trabajos que son demasiado costosos para la infraestructura de mu-
chos de estos grupos. Esto hace que los data centers cada vez reciban mas
y mas trabajos, y necesiten a su vez mas y mas recursos para dar cabida
a todos ellos. La planificacién de esta gran cantidad de trabajos en los re-
cursos tan heterogéneos de un data center es una tarea computacionalmente
demasiado compleja como para ser realizada de forma 6ptima, ya que es un
problema NP-Completo. Debido a esto, hasta ahora esta planificacion ha
sido realizada mediante el uso de algoritmos heuristicos. Sin embargo, es-
tos algoritmos comienzan a quedarse cortos a la hora de manejar de forma
eficiente la gran heterogeneidad tanto de los trabajos como de los recursos.
Esto, junto a la necesidad de tener un método que sea capaz de adaptarse
a distintos objetivos como pueden ser minimizar el consumo de energia o
el slowdown de los trabajos, abre las puertas a tratar de usar un enfoque
basado en aprendizaje automatico. El objetivo de este trabajo es disenar e
implementar un agente inteligente que sepa aprovechar toda la informacion
disponible tanto de los trabajos como de los recursos para hacer una planifi-
cacion lo més eficiente posible en funcién del objetivo seleccionado.

Palabras clave: Aprendizaje Reforzado Profundo, Planificacién de tareas,

Datacenter heterogéneo, RLScheduler, Inteligencia artificial, Aprendizaje au-
tomatico.
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Chapter 1

Introduction

In this chapter, the main concepts to understand the basis of this work as
well as its motivation will be explained. Moreover, the main objectives of
the project will be listed. Finally, the structure of the document will be
summarised.

1.1 Task Scheduling in Data Centers

Task scheduling is the process by which tasks are assigned a set of compu-
tational resources to be executed. At an operative system level, these tasks
can be for example threads or processes, and the resources are the processors
and cores of the system. This is the case for a single computer. However,
by connecting several computers together this can be made as complex as
desired. This is how data centers came into being.

By grouping several processors together with a shared memory, a compute
node is obtained. Then, several nodes can be interconnected to form a cluster
and be able to share information between them. Finally, the clusters can
also be connected by creating an interconnection network among them [37].
This results in a data center, which will have a greater or lesser complexity
depending on the number of clusters and the heterogeneity of the resources
that make them up [16].



Nowadays, data centers are formed by hundreds or thousands of very varied
computing resources. There can be nodes with regular processors, others
with a higher amount of memory for processes that may need it, hardware
accelerators like GPUs, etc. These great amount of resources is necessary to
be able to allocate the equally great number of tasks arriving every day to
be executed in the data center [6].

This area has a great research interest and in general, due to the complexity
of the real systems where testing would be too costly, simulators are used to
model these systems and test the proposed algorithms.

Moreover, the scheduling necessities of the data center may vary over time.
At a certain moment it might be preferred to minimize the energy consump-
tion, while at a different one it might be to maximize resource utilization or
minimize the job slowdown. This high variability, together with the com-
plexity of the environment, creates the need for some sort of more advanced
scheduler with respect to the heuristic algorithms that are currently used [7].

This more advanced scheduler should be able to consider all the information
available in order to make the best possible scheduling decisions, and select
which job should be executed first, and in which resource it should be exe-
cuted. This is precisely where artificial intelligence, and machine learning in
particular, comes into play.

1.2 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning that allows
for models to be learnt with no prior information by the method of trial
and error. This paradigm is based on the interactions between an agent and
the environment. In the context of this project, the goal is to design an
intelligent scheduler which will be the agent. The agent will interact with a
simple simulator of a data center, the environment. By taking actions and
then receiving feedback for those actions, the agent must learn progressively
which actions are better than others for a certain state of the environment.

This method, RL, together with the use of Deep Neural Networks to model
the agent, leads to Deep Reinforcement Learning. This technique is already
being used by several research groups around the world, trying to create an



intelligent scheduler that can replace the current heuristic schedulers. Some
of these projects will be summarized in Section 2.3.

One of the most remarkable works is RLScheduler [47], which presents fairly
good results with the major disadvantage of simulating an homogeneous data
center. In spite of the good results, this approach has the main drawback
of not being quite realistic nowadays, and the fact that the change from an
homogeneous system to an heterogeneous one results in a huge increase in
complexity.

1.3 Objectives

According to these observations, the conclusion is that the study of task
scheduling algorithms for heterogeneous data centers is a new field of re-
search for which it is necessary to develop new tools. In this respect, the
design and implementation of a simulator that allows researchers to test
their task schedulers based on RL is essential. This simulator must allow
for the representation of a real data center, that even if simplified must be
enough to model the heterogeneity of current systems.

RLScheduler is both a simulator and an intelligent scheduler, although for
the much simpler homogeneous systems. The aim of this project is to expand
the capabilities of RLScheduler, both in terms of simulating and scheduling.
Removing the disadvantage of homogeneity will give rise to an intelligent
heterogeneous scheduler that should perform more efficiently than state-of-
the-art algorithms. This goal can be divided in three main objectives:

e Adaptation for modelling heterogeneous resources: RLScheduler works
with the assumption that all the resources are equal. To make the
simulation more realistic, a new way of modelling the distinct resources
must be implemented. The new platform must be able to define the
hardware in three levels: the whole data center, the nodes that form
it, and the processors of which they are composed.

e Design and implementation of an intelligent agent: on the new envi-
ronment, the original agent from RLScheduler is not capable of making
a correct scheduling, as it has no way of selecting the proper resources.



Thus, a new intelligent agent that can select a particular job to be
scheduled in a particular resource must be designed.

e Fuvaluation to ensure the increase in efficiency: once implemented,
there must be a testing phase to check that this new agent actually
represents an improvement with respect to classic heuristic algorithms.
The comparison should be done for different objectives to see if the
method is generalisable for different purposes.

1.4 Methodology & Work plan

For achieving the described objectives, the following steps must be followed:

o Study of task scheduling techniques in data centers: first of all, it is
necessary to get familiarised with the state-of-the-art scheduling algo-
rithms. Knowing how this it is currently done allows to recognise the
problems of the process, which is the starting point before proposing a
solution.

e Study of the relevant machine learning techniques: knowing the tech-
nique of Deep Reinforcement Learning and how it is implemented is
crucial for being able to apply it to a new problem like is task schedul-
ing in heterogeneous data centers.

e Analysis of RLScheduler: before doing modifications on the program,
an in-depth analysis must be done to identify exactly which parts need
to be changed and which changes need to be made.

e Adding heterogeneity to RLScheduler: the first change must be to model
the different resources with their different attributes, to make a distinc-
tion between them.

e Design and implementation of the agent: then an agent that is able to
schedule jobs and allocate them resources in the new platform must be
created.

o Testing the agents on the new system: the results of the agent should
be tested for different scheduling objectives and compared to those of
classic algorithms.



1.5 Document structure

This paper is composed of 6 chapters, including the current Chapter 1 as
Introduction.

e Chapter 2: the basic concepts for understanding the rest of the docu-
ment are introduced.

e Chapter 3: RLScheduler is analyzed to get an in-depth knowledge be-
fore planning a redesign to simulate heterogeneous systems.

e Chapter 4: the changes made to the simulator are described. Two new
intelligent agents are designed for task scheduling in the new environ-
ment.

e Chapter 5: the experiments conducted for checking whether the agents
implemented in Chapter 3 are successful are detailed. To check this
success, their results are compared to those of classic algorithms.

e Chapter 6: to complete the work, the final conclusions are presented,
together with some possible future lines of work in relation to this one.



Chapter 2

Background

In this chapter, the concepts considered the most relevant in order to un-
derstand the rest of the paper will be introduced and explained. The main
topics are the scheduling algorithms that are being used in real environments
nowadays, and some notions about artificial intelligence. Also some works
related to this project will be summarized.

2.1 State-of-the-art scheduling algorithms

In the context of a data center, task scheduling is the process carried out by a
Workload Manager [32]. The Workload Manager is the software responsible
for choosing one of the jobs currently waiting in the job queue, and send
it to be executed in a set of the resources of the data center. What makes
this such a complex process is the fact that the workload manager needs to
consider several different factors, while also being able to take a decision in
real time.

In the first place, the job queue can receive hundreds of jobs at a given time,
each of them with a wide range of different attributes. The standardized way
of defining these attributes is the Standard Workload Format (SWF) [13],
which indicates several properties of the jobs (e.g., the maximum run time,
the amount of memory, or the number of processors requested).



Secondly, the available resources must be also taken into account. In the
context of a homogeneous data center this might not be relevant, as sending
a given job to any of the resources will produce the same result. However,
this is not the case for most modern data centers, which are heterogeneous
[27] and composed of many different types of hardware, as well as pieces of
the same hardware with different specifications. Thus, creating a difference
between scheduling a certain job in one resource or another depending on
their characteristics.

Moreover, the objectives might vary over time. These can range from makespan
minimization, i.e., the time elapsed from the start of the job to its end; to
energy consumption, i.e., minimizing the energy used by the data center to
execute the jobs. Each of these objectives would correspond to a different
scheduling, and this is not manageable by classic algorithms.

Clearly, it is not feasible to compute all the possible outcomes of scheduling
each of the jobs in the job queue to each of the resources, for all the possible
states that the environment might take, in order to choose the best combi-
nation. This is one example of an NP-Complete problem [43]. To be more
precise, it is a particular case of a Generalized assignment problem [36].

Task scheduling being an NP-Complete problem means that it cannot be
solved in polynomial time. In fact, no algorithm has been found that can solve
this kind of problems faster than in superpolynomial [19] time. However,
it is possible to find near-optimal solutions using other methods such as
approzimation [45] or heuristic [30] algorithms.

Heuristic algorithms, in particular, are the ones currently being used for tak-
ing the decisions in the process of task scheduling. They are characterised
by sacrificing optimally for speed [4], which is a necessary compromise con-
sidering that the optimal solution for these problems would take years to be
computed.

The heuristics used are rather simple ones. In most cases nowadays, two
algorithms are used: First In, First Out (FIFO) [40, 31] and BackFill [21].
In some situations where slowdown is to be minimized, Shortest Job First
(SJF) might also be used [40, 31].

e FIFO algorithm schedules the jobs in the same order as they arrived
to the job queue, so it considers only the submission time to do the



scheduling.

e BackFill algorithm is a variant of FIFO. Its advantage lies in being able
to recognise the jobs from the job queue that can be processed without
interfering with the one at the head of the queue. For a job to be moved
forward, it must be able to finish before the time that the actual first
one is expected to start. This way, small jobs are not unnecessarily
slowed down, and they do not take resources away from the big ones
either.

e SJF algorithm, in contrast, considers the running time of the jobs to
schedule the shortest one each time.

Even though in theory this approach is good for not having short jobs waiting
unnecessarily for longer jobs to finish, it might not be very precise. This
is because the running time of a job is just an upper estimation, but not
necessarily the real time that the job will take [28]. Not only that, but it can
also lead to starvation [41]. If short jobs keep arriving during an extended
period of time, longer jobs will have to wait indefinitely.

There are more complex heuristic algorithms that consider several attributes
of each job in order to compute a score, which is then used to sort and priori-
tize them. Examples of these are WFP3, UNICEP [42] or F1 [9]. Nonetheless,
even these more sophisticated algorithms are not able no produce such good
results in all cases. F'1, for instance, is capable of minimizing average bounded
slowdown, but might not be the best option for other objectives.

For all these reasons, a machine-learning based solution can prove to be very
powerful. The system can be trained to take into account not just a few
but all the relevant attributes from both the jobs and the nodes, in order
to find the best scheduling decision at each time step. Not only that, but
machine learning has already shown its adaptability to different scenarios [3],
in contrast with the classic algorithms’ invariable approach. This is done by
changing the job scheduling policies at any time according to the arriving
jobs. Classic algorithms are incapable of anything remotely similar to this.



2.2 Machine learning

Apart from the simulation aspect, this project has an important part of
machine learning. The main algorithms used related to this topic are Deep
Reinforcement Learning and k-means. These will be summarized in this
section, that may be skipped if the reader has previous knowledge about the
subject.

2.2.1 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) arises from idea of using Deep Neural
Networks (DNN) to tackle Reinforcement Learning (RL) problems.

Deep Neural Networks

Deep Neural Networks differ from regular Artificial Neural Networks [5] in
that they have several hidden layers instead of a single one, as shown in
Figure 2.1.

./ ) Input . \u Hidden O Output

Figure 2.1: Artificial Neural Networks vs Deep Neural Networks !

IFigure from Sheraz Aslam et al. “Deep Learning Based Techniques to Enhance the
Performance of Microgrids: A Review”. In: Nov. 2019. pO1: 10.1109/FIT47737.2019.
00031



Artificial Neural Networks are universal function approzimators [10]. In their
most basic form, they have a layered structured formed by three layers of
fully-connected artificial neurons (dense layers). The input layer receives
external data which is passed to each neuron in the hidden layer. A neuron
is defined by a weight and a bias w;;, b;; € R. After getting an input vector
of size m, each neuron produces its output as:

z:Zwi*mi—Fbi (2.1)
i=1

Then, an activation function [35] is applied to the output of the whole layer,
in order to decide if each one of the neurons should be activated or not
according to some threshold. The vector of outputs, which will have the
same size as the number of neurons of the layer, is then finally passed to
the output layer. The output layer repeats the aforementioned process and
returns an output of the desired size, which will depend on the problem.

When instead of using a single hidden layer, several of them are put to-
gether, that is called a Deep Neural Network. These work in the same way
as explained before, but can create more complex models. This makes it
possible to solve more complex problems, thus why they have been used in
this project.

The model of a neural network is defined by the weights of its neurons and the
connections between them. This means that for a neural network to behave as
expected, it must be trained beforehand to adapt its initial random weights
to ones that produce the desired result. The training process is based on
two phases, forwarding and backpropagation, which are repeated a number
of times, called training epochs.

e Forwarding [17]: The neural network takes an input and process it
layer by layer as mentioned before. The output of each layer serves as
input for the next one. Finally, the output layer returns a vector of size
equal to its number of neurons.

e Backpropagation [33]: Once the forwarding step has been done, the
result is compared to the expected value for the current input. Applying
the loss function, it is possible to see how far from the correct result
the network was. An example of a simple loss function could be the
difference between the expected result and the actual result. Once the
loss value has been computed, the gradient descent [18] algorithm is

10



applied backwards to each layer: from the last hidden layer up to the
first one. This process alters the weights of each neuron depending on
their relevance for obtaining the output result. With this method, each
training epoch manages to reduce the loss of the network, thus getting
more precise results. For these changes to be progressive and avoid
continuous big changes, the learning rate « is used: a small value that
reduces the loss by a constant resulting in smaller steps.

Reinforcement Learning

Reinforcement Learning (RL), is a machine learning technique, where one or
more agents interact with an environment through actions, trying to maxi-
mize a cumulative reward [38]. This process is repeated several times, until
a certain objective is completed. Figure 2.2 illustrates what happens at each
step.

3. Reward
2. Take action
Y 'L
‘ Agent ‘ ‘ Environment ‘
| 1. Observe T

Figure 2.2: Interactions between the agent and the environment in Reinforce-
ment Learning

For each time step ¢, the agent observes the current state (s;) of the environ-
ment. With this information, that will be encoded in some data structure
depending on the problem (normally an array), the agent must select an
action (a;) to take. In Deep Reinforcement Learning, (DLR), this selection
is performed by a Deep Neural Network. The DNN gets the observation as
input, and outputs an score (or probability) of taking each possible action.

Once the agent has decided, it executes the action over the environment.
This alters the environment into a new state (syy1). As feedback of how
good the action was, the environment returns a reward (r;). This reward
will depend on the objective to achieve, and might be difficult to calculate in
some cases. This occurs when it is unknown how good the actions taken have
been towards achieving the final objective before getting the final result.

11



For each step the agent takes, it collects one of this rewards. Once the agent
is done, the rewards are processed by means of the discounted cumulative
sum (Equation 2.2).

R=> +'r (2.2)
t=0

where 7 is the reward at step ¢, and v € [0, 1) is the discount-rate. A value
of v closer to one gives more relevance to the last actions taken, while a value
close to zero gives more relevance to the ones from the first steps.

In order to calculate the loss of the network, the difference between this cu-
mulative reward and the ezpected reward for the training is taken. This value
indicates how off the agent has been, and is finally used in the backpropaga-
tion step using the gradient descent algorithm as explained in the previous
section.

Combining DNNs with RL

As previously mentioned, DNNs are used in DRL as the agent for selecting
the actions. The advantage of DNNs with respect to other methods is that
they are able to learn in a model-free environment [39]. In contrast to a
model-based one, in model-free environments the transitions between states
are unknown, as well as the reward for a certain action. The agent has no
previous information of how the environment will react to an action, needing
to focus on the exploration. This is precisely where DNNs are more powerful,
being capable of creating a model starting from a really limited knowledge.

Actor-Critic

Actor-Critic algorithms [20] represent a dual approach to model the agent
in RL problems. An actor-critic agent is composed of two structures: the
actor selects an action to be applied on the environment; the critic estimates
a value for the current environment state and criticizes the action taken by
the actor according to it.

12



The actor and the critic are modeled by means of two DNNs. At each time
step, they both take an observation as input. The output of the actor is
the action to take, selected from a probability distribution among the scores
of taking each action (computed by the DNN). Meanwhile, the output of
the critic’s DNN is a single value that represents the expected value for the
current state.

The purpose of the critic’s value is to strengthen or weaken the tendency of
the actor to choose certain actions. As both of them begin with no knowledge
of the environment, the actor and the critic become progressively better at
their task in parallel. The actor gets better at selecting actions and the critic
gets better at rating observations.

This process is done by an optimizer [12] whose goal is to minimize the loss
function. The value of this loss function is computed at the end of an epoch,
using the rewards and the critic values gotten at each time step, and then
used for training both the actor and critic network.

2.2.2 K-means clustering

K-means clustering [23] is an algorithm that allows to group similar data
together from data sets with values of any dimension. It is specially useful
when working with high-dimensional data, as it becomes increasingly difficult
to use graphical representations. The algorithm not only classifies each one of
the input vectors in one of the &k clusters, but also computes their centroids.
Centroids are the most representative points for each cluster.

" ..Random Initialization ‘*, E-Step '#_ E-Step "* E-Step Y Final Clustering
~ b & o " 2

Q” e . oS .

o L& & LA

e .

o ‘? ‘ . M-Step & * M-Step & * M-Step : ,. ,
o Ly e U o CJ ; C w )
) i ) @ *; o - °

Figure 2.3: Clustering process over several steps using k-means algorithm 2

’Figure from Jake VanderPlas. Python data science handbook: Essential tools for
working with data. ” O’Reilly Media, Inc.”, 2016. Chap. 5.11
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This algorithm’s complexity is NP-Hard, so in practice heuristic algorithms
are used. These are able to find local optimum solutions efficiently, although
not able to guarantee the optimal solution. The most used one, naive k-
means, begins with k£ randomly selected centroids, and iteratively tries to
refine them until reaching a (local) minimum. The operator to minimize is
the sum of squared Euclidean distances (d) between each point in the cluster
() and its centroid (c;). Formally,

k
%Z Z d(:v(i),cj)2 (2.3)

=1 2 ec;

2.3 Related work

With the rise in High-Performance computing and cloud computing in the
last years the scheduling complexity has augmented. But the scheduling
algorithms used for the increasingly large workloads have not kept up with
the changes. This combined with the tendency to apply machine learning to
new fields, has led to many groups around the world to focus on this problem.

One of the first projects that, motivated by advancements in DRL tried to
present a solution was DeepRM [25]. In this work, the scheduling problem is
modelled as a learning problem. This way, scheduling is no longer performed
in a deterministic way as with heuristic algorithms, but by more adaptable
means.

DeepRM was in turn an inspiration for HDeepRM [2, 3]. HDeepRM, now
renamed to IRMaSim [1], emerges as a tool to develop and test reinforcement
learning algorithms on a simulator of a customisable heterogeneous data
center. In its second iteration, an intelligent agent is created that is able
to select an optimal policy for a certain workload given an optimization
objective.

Another interesting project is Decima [24], by researchers from the MIT,
focuses in jobs with interdependencies represented as directed acyclic graphs
(DAGs) [48]. They recognise the problem of using simple heuristic algorithms
to solve the complex problem of scheduling batch jobs. The proposed solution
uses RL and ANNs to learn optimal scheduling policies given an objective,
such as job completion time. Besides reinforcement learning, they created
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methods for working with their DAG representation of jobs.

Other projects focus on the energy consumption aspect. This is also quite
relevant as the powering all the computation nodes has a huge cost. Exam-
ples of projects with an special focus on energy efficiency are ExpREsS [26]
or Concurrent Application Bias Scheduling for Energy Efficiency of Hetero-
geneous Multi-Core platforms [34].

Even though all this works are remarkable, the main focus for the rest of the
project will be on RLScheduler [47]. RLScheduler is an automated HPC
batch job scheduler for homogeneous clusters. Its main problem is that
homogeneous system are not realistic nowadays. In the following sections,
RLScheduler will be described in depth and a way to adapt it to heteroge-
neous environments will be proposed and tested.
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Chapter 3

Analyzing RLScheduler

In this chapter, RLScheduler’s characteristics will be detailed, with an special
focus on its greatest shortcomings. This will serve as a preliminary step to
understand the improvements that will be proposed in the next chapter.

3.1 Overview

RLScheduler [47] is an automated HPC batch job scheduler that uses re-
inforcement learning. Heuristic priority functions have been highly studied
and discussed by experts trying to find an optimal one for job scheduling.
However, all of them have the same drawback: they are hardly adaptable to
changes. Considering how variable the conditions in a data center are, where
jobs’ characteristics, optimization objectives or system settings can vary over
time; having an adaptive solution is crucial. RLScheduler claims to be this
solution.

RLScheduler is built in such a way that it does not have or need any previous
expert knowledge. Using reinforcement learning techniques, it is able to infer
the optimal scheduling by itself. As inputs, the system only needs to take
the job traces to schedule, and an optimization objective among the defined
ones, e.g. slowdown, bounded slowdown or average waiting time.

For being able to learn the scheduling, RLScheduler uses two reinforcement
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learning algorithms, actor-critic and proximal policy optimization.

3.2 RLScheduler functionality

Once RLScheduler was selected as basis for the project, it needed to be
analyzed in order to understand how it worked and then modify it. Apart
from the paper [47] where it showed promising results, the code was available
as open-access software [11] both in zenodo and GitHub. This made it quite
simple to clone the project and work on it.

RLScheduler is a command line application, so it is run by passing all the
parameters for the training through a command. In the first place, all the
operations and structures are defined and then the training itself starts. The
training is done by selecting a workload trace, and simulating its execution
a high enough number of times. Seeing how well or bad the results are, the
agent must encourage some actions and discourage others.

The training is divided in epochs. After each epoch, the results obtained are
processed and used to update the weights of the DNN. The number of epochs
must be enough for the network to converge, being 100 a reasonable value.

Each one of the epochs consists of several trajectories. In each trajectory,
a random subset of the whole trace is selected. This subset of jobs is then
simulated using the intelligent agent for scheduling. During this process, the
agent gets an observation and chooses an action according to it, performing
a step. If the selected job can be scheduled right away, it is. Otherwise,
it is necessary to wait until enough resources are freed or a shorter job ar-
rives. After the job is scheduled, the agent receives a reward and the next
observation, with which it repeats these steps.

Once all the jobs have finished and the job queue is empty, the trajectory
ends. Then the final results for the trajectory are computed. This calcula-
tions depend on the objective that is being optimized, and provide a general
vision of how good the scheduling have been.

The reason for using several trajectories per epoch instead of a single one is

to reduce the impact of outliers. As sets of jobs are selected randomly, some
traces might be really easy to schedule (e.g. many short, time-spaced jobs).
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Meanwhile, if most of the jobs are concentrated in a short period of time,
slowdowns will happen and it might be unavoidable to get a bad result.

To counter these situations, several trajectories are performed, and at the
end the mean values of all of them are the ones used for the training. The

complete training process just detailed is shown in Figure 3.1.
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Figure 3.1: The process of training a scheduler across several epochs with
several trajectories each.

RLScheduler’s machine learning approach is more adaptable to different sce-
narios as it can potentially take all the information from the environment
into account. Instead of relaying only in one or a few of the job attributes,
the scheduler is able to learn which are the important ones among all of
them. In fact, it learns how important each one is to deliver the best results.

RLScheduler implements a Gym environment. The Gym library [8] provides
an interface for implementing environments on which to develop and compare
reinforcement learning algorithms. The environment is divided in two main
parts: an observation space and an action space. The observation space
defines the shape of each observation, which is the information passed to the
agent (DNN) to select one of the actions from the action space.
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3.2.1 Observations in RLScheduler

At each time step, the intelligent agent in RLScheduler receives an observa-
tion, which is a representation of the current state of the environment. In its
current release version (v0.1), the way of representing the environment is by
means of a vector that contains the concatenated attributes of all the jobs in
the job queue. This is all the information available to the agent for making
a decision.

The size of an observation in RLScheduler is equal to |JobQueue| * |Job].
Here, |JobQueue| is a constant set to 128, a value that is adopted in very
used workload managers like Slurm [46]. If the actual job queue is smaller
than this value, the rest of the vector is filled with zero values to represent
empty jobs. In case of being bigger, an slice with the first arrived jobs is
taken. |Job| is the size of a job, or the number of attributes that represent
it, which can be seen in Table 3.1.

Field Name Notation Description

Wait Time w;j Time (in seconds) spent by the job in the job queue
Run Time T Estimated run time (in seconds) for the job
Requested Processors n; Number of processors requested for the job
Requested Memory m; Memory (in MB) requested for the job

User Id Uj Id of the user that sent the job

Group Id 9j Group of the user that sent the job

Executable Id e; Id of the job in the platform

Can Schedule Now ¢ Boolean indicating whether there are enough

resources to schedule the job at the moment

Table 3.1: Description of job attributes used in RLScheduler v0.1

Once created, the observation of 128 jobs is passed to the agent. In order to
calculate a score for each one of the jobs, the agent feeds the attributes of
job to a fully connected DNN. The DNN then outputs an score s;, for each
one of the jobs, representing how good of an action would executing the job
Ji be in the current timestamp.

As mentioned earlier, some of the jobs in the observation might be empty
jobs. These appear because the observation must have a fixed size, but they
should never be chosen to be executed. Thus, after getting the scores, a mask

is applied to avoid these jobs from being selected.

With this mask applied, a softmax function is used to transform the scores
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into a vector of probabilities p;,. Each p;, value indicates the probability that
the corresponding job will be selected for scheduling. The actual selection is
done using a categorical distribution [29] while training the agent to encour-
age the exploration, and using a maxz function during testing to get the best
action.

This whole process from getting an observation from the job queue to the
getting the vector of probabilities is represented in Figure 3.2.
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Figure 3.2: The process of selecting an action in RLScheduler

3.2.2 Actions in RLScheduler

The second part of the environment is the action space which, as seen above,
is made up of all the possible actions that can be selected at a given time
step. This is the set of jobs currently in the job queue. However, so far it
has not been mentioned where the selected job is going to be executed.

RLScheduler models a homogeneous system. This means that there is a
number of resources defined, but the resources are not differentiated in any
way. When a job j is selected, n; processors are marked as used. This means
that no other job can be assigned to those same processors until after r;
seconds. But knowing to which processors in particular the job is assigned,
does not really matter.

This process is similar to what happens in actual workload managers like
Slurm. Resources are managed as a queue, and when a job is to be executed,
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it is sent to the first node from the queue. At most, it might have to be the
first resource that meets a series of requirements (e.g. available memory).
Anyways, in no case there exists a process to decide which node would be
better to execute the job in.

Even though this is how it is actually done nowadays, the intuition says that
it must be possible to do it better. Real systems are heterogeneous, and
executing a job in one compute node or another should make a difference.
This is what is going to be addressed in the next chapter. With all the
information gathered so far, a redesign of RLScheduler will be proposed.
This redesign will allow to model an heterogeneous system, and train an
agent that is not just able to pick the next best job to schedule, but also the
best compute node where to execute it.

3.3 How RLScheduler can be improved

RLScheduler has a major drawback. The scheduler assumes an homogeneous
system. Its model has no support whatsoever for heterogeneous environ-
ments. It is possible to specify the number of processors of the system, but
that is all the information regarding the resources. When a job is scheduled,
the number of free processors of the system is reduced by the number of
requested processors of the job. There are no differences between scheduling
a certain job into one processor or another as they are not actually defined
per se.

RLScheduler does show interesting results in the domain of homogeneous
scheduling. However, this case is not quite realistic nowadays, specially when
focusing on data centers and more so for cloud providers. The most modern
data centers can have thousand of compute nodes, and many of them with
different characteristics.

A complete solution to the problem should be able to take into account not

only job attributes but also resource attributes, and plan efficiently according
to both. This is precisely what this project aims to achieve.
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Chapter 4

Heterogenizing RLScheduler:
Design & Implementation

In this chapter, the redesign for converting RLScheduler in an heterogeneous
intelligent scheduler will be detailed. Firstly, the modifications performed
for simulating an heterogeneous environment will be explained. These will
be followed by the proposal of two architectures for modelling the scheduler
agent that is able to select the best possible job-node pair at each time step.

4.1 Defining the system resources

As seen in the previous section, RLScheduler in its original release did not
model system resources in any way. When scheduled, jobs where only allo-
cated a number of resources that could not be used by any other job until the
current one finished. Resources were not defined further than as a number or
differentiated in any way. Figure 4.1 represents the class diagram to visualize
how little information was being used.

When aiming to model an heterogeneous system, a difference must be made
between the resources. In the same way that jobs have attributes that char-
acterize them, resources can have them too. These can range greatly from
computational power to energy consumption and many more. The ones used
must provide with adequate information for the goal to optimize. If the
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Figure 4.1: Model of a Cluster in RLScheduler v0.1

objective were to minimize energy consumption, for instance, it would be
necessary to know how much each of the nodes uses. For this project, the
focus is on a small set of these attributes, as RLScheduler is not capable
of simulating aspects like resource contention, memory bandwidth or energy
consumption.

Since these aspects would have no impact on simulation, there is no need to
adapt the program for them. However, there are others that can be included
without the need of a more complex simulator. To introduce heterogeneity
with these constraints, the machines are differentiated in two ways: size and
speed.

In the homogeneous version, a cluster was formed by machines, which was
just enough to define it. From now on, the concept of machine will be
substituted by the more precise concept of node. Nodes can have different
sizes regarding the number of processors they are composed of. Moreover,
a difference will be made depending on whether these processors are free or
not. With respect to speed, nodes can be faster than others according to
their clock rate or frequency. This value is the same for all the processors of
a node and marks how fast a program is executed in said processors.

These changes mean that some of the nodes in the cluster can execute more
jobs at the same time than others, and some nodes can execute jobs faster
than others. Also, that big jobs will necessarily need to be allocated nodes
with a great number of processors. Both of these aspects will need to be taken
into account in order for the agent to make the best possible scheduling.

The new model of a Cluster can be seen in Figure 4.2. Apart from the new

structure mentioned so far, some other attributes have been included as they
were convenient for the simulation process. The minimum and mazimum
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frequency among the nodes of the cluster, for instance, was required for
value normalization during the observation process. The relative frequency
of a node is used to calculate easily how long a processor from that node
will take to execute a job, compared to how long one with the minimum
frequency would take. At a processor level, the running job finish time is
used to know which processors become free at each time step.

HeterogeneousNode
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+ min_frec : float 1.% |+ isfree : bool
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Figure 4.2: Model of a Cluster in the heterogeneous version of RLScheduler

Besides these, the Cluster now has an Fvent Queue, which is a slight mod-
ification of Python’s Priority Queue [15]. An Event Queue is composed of
timestamps of all the events that are expected to happen in the platform.
These can be of two types: job arrivals, when a job enters the job queue and
waits to be scheduled, or job execution finishes. They are used when during
simulation, none of the jobs in the job queue can be allocated due to a lack
of resources. In these cases, the current time is advanced up to the time
indicated by the first timestamp in the queue. Then, the platform can free
resources if any job has just finished or process the arrival of a new job. This
is with the hope of now having enough free resources or a job small enough
to be able to schedule it.

The reason for using a queue is that the timestamps need to be ordered so

that the lowest one is always taken and no time is wasted by waiting more
than necessary to decide the next action. As the content of the queue are
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timestamps, clearly two of them with the same value represent the exact
same moment in time. Thus, the change with respect to the original Priority
Queue implementation has been simply to avoid repetitions by checking than
a value is not already in the queue at insertion time. This way, the problem
of trying to advance the time to an already passed moment is avoided.

Once the new Heterogeneous Cluster has been defined as just seen, the En-
wironment must be adapted as well. Scheduling a job to be executed is no
longer enough, now is has also become necessary to decide in which node it
will be executed. The reason behind selecting a node and not a processor,
which is where a job is really going to be executed, is that some jobs might
request several processors to be executed in parallel. However, the agent
takes a single decision, so the problem is simplified by considering each node
as a whole and assuring that the node has enough free processors, instead of
selecting n; independent processors.

The main limitation of this decision is that there cannot be any job in the
workload that requests more processors than the bigger node has. Other-
wise, that job will never be executed. This can be solved by defining at least
one node with enough processors, or by limiting the number of processors
that a job can request up to a certain maximum. Otherwise, apart from a
redesign of the agent, a more complex simulator would be needed. For re-
producing the communication between nodes it would be necessary to model
the interconnection network between them, which is out of the scope of this
project. It is possible to simulate independent tasks or parallel tasks with
shared memory, but not parallel tasks with distributed memory.

4.2 The new Environment

In Section 3.2.1 and Section 3.2.2, the observation space and action space
that formed RLScheduler’s Environment were described. After the Cluster,
these, and the whole Environment with them, have been modified to model
a heterogeneous architecture. In this section, the changes made to each of
them will be detailed.

25



4.2.1 Observations in Heterogeneous RLScheduler

As seen, the observation is the information of the current state of the envi-
ronment available to the agent for deciding the next action to select. The
information of the jobs no longer describes the environment fully, for the
agent to have access to a more complete picture, observations must include
the state of the cluster as well.

The observation of the cluster is defined as the information of the nodes it
is composed of. This results in a second observation of size NumNodes X
NodeFeatures. NumNodes is a constant defined in the HPCSimPickJob-
sHeterog.py file and indicates the number of nodes that compose the cluster.
NodeFeatures is another constant defined in the same file, specifying the
number of attributes that are being considered for each node when creating
an observation. The attributes that are currently being considered for nodes
are their total number of nodes, the number of free nodes at the moment
of the observation, and the clock rate to be able to differentiate slower and
faster nodes.

Moreover, observations have also been updated in the sense that some of the
attributes from jobs have been removed. The reason is that they were mostly
unused in the workload definition files, so all of them had the same values and
were not providing any information. This has been the case for the Requested
Memory, User Id, Group Id and Fxecutable Id. With this simplification, the
input size of the network, and therefore its complexity, is reduced.

Finally, an attribute that has been kept but with a slight change of meaning
is Can Schedule Now. Originally, it indicated whether there were enough
machines available in the cluster for that job at the moment. However, jobs
are no longer going to be executed in the cluster in general, but in a certain
node. Thus, this attribute is not associated with a job anymore, but with
a job-node pair. Its value is given by ¢, = n; > fp,, and will be used to
prevent the agent from selecting invalid actions, i.e., choosing a job to be
scheduled in a node that does not have enough resources for it.

The updated set of attributes for the observations with the described changes
is shown in Table 4.1. Even though the observations now have one less
attribute than before, the information they contain is more relevant and
includes the aspect of heterogeneity.
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Field Name Notation Description

# Requested Processors n; Number of processors requested for the job
Requested Time T; Amount of time requested for the job

Wait Time W Amount of time spent by the job in the job queue
Total Processors tpn Number of processors in the node

Free Processors fon Free processors in the node

Clock Rate fn CPU frequency of the node processors

Can Be Scheduled Cin Whether j can be scheduled in n

Table 4.1: Description of job, node and job-node attributes
4.2.2 Actions in Heterogeneous RLScheduler

Regarding the actions, the action space must change accordingly with the
new selections that the agent can take. Formerly, the decision consisted in
which job to execute, which makes an action space of dimension the size of
the job queue. Action a; corresponded to executing the job at index ¢ in the
job queue.

In the new environment, each action must define which job has been selected
to be scheduled and also the node allocated to it. This translates into a
new bidimensional (although just conceptually) action space, where one di-
mension consists of all the jobs in the job queue and the second dimension
consists of all the nodes in the cluster.

Here, the action a; ; corresponds to executing the i job from the job queue
in the j node from the cluster. This increases the size of the action space
quite significantly, from |JobQueue| to |JobQueue| x NumNodes. However,
this bidimensionality is necessary for the purpose of this work. Not only that,
but the increase in the number of parameters is inevitable when modelling
heterogeneous architectures [6].

4.3 New agents architectures

With new observations and actions already defined for the agent, the only
missing part is now the agent itself. Two different architectures are proposed
to try to achieve better results than with the current heuristic algorithms.
Each one of the designs approaches the problem of bidimensionality in a
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different way, while maintaining the general working structure of the original
RLScheduler, which was an actor-critic agent. Besides, each one of the agents
has some differences on how they take the observations input, and output
the selected action, so these differences will also be highlighted.

4.3.1 Double Network Agent architecture

The first proposed architecture is the Double Network Agent. This name
comes from the fact that the actor part of the agent is composed of two
DNNSs, as opposed to the original implementation. The complete process of
selecting an action in a given time step is represented in Figure 4.3.
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Figure 4.3: The process of selecting an action using the Double Agent in a
Cluster with 4 nodes.

In the first place, the observation of the job queue is created (1). The jobs
that are currently waiting to be executed are the ones considered. For each
one of them, four attributes are selected: the waiting time, the requested
time, the requested number of processors and a boolean indicating whether
the job can be scheduled at the moment. This creates a matrix of size 128 x 4.
In case of there being fewer than 128 jobs in the queue, the corresponding
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rows of the matrix are filled with zeros, as explained in Section 3.2.1. This
matrix will be called the jobs observation.

The next step is to let the agent select the job to be executed, among those
in the observation. This decision is performed by the first DNN of the two
conforming the agent. The input layer of this network has dimension 4, which
is just the number of attributes of each one of the jobs in the observation.
Then it has three fully-connected hidden layers of 32, 16 and 8 neurons each,
with ReLLU as their activation function. Finally, the output layer is of size
1. This is because the idea of this network is just to provide a single score
value for each one of the jobs.

In practice, this process is done for all the jobs at the same time by inputting
the whole jobs observation matrix. Thus, the input for each neuron is not
a scalar value but a vector of 128 values, representing the characteristic
associated to that neuron for all the jobs. As the input is not a single job
but all the 128 jobs, the actual output is not a single score but a vector of
128 scores, one for each of the inputted jobs (2).

These scores are not yet the actual output as they need to be processed to
avoid picking an invalid job. This is done by applying a mask that hides those
zero-valued jobs that were added to match the fixed size of the observation.
The ones with ¢; = 0, i.e., those than cannot be executed at the moment, are
also hidden by the mask (3). This way, any job that the agent may choose is
assured to be able to be scheduled without waiting for resources to get free.

Once only the scores for valid jobs are left, the whole vector is applied a
softmax function. This transforms the scores by normalizing them into val-
ues in [0,1] and that add up to 1, or a probability distribution. From this
probability distribution is from where a job is finally selected (4). A higher
probability should indicate that, according to its attributes, that job should
be scheduled earlier than the others.

After the job has been selected, the agent must know decide which is the
best node in which to schedule it. For this, the cluster needs to be observed
first, creating the nodes observation (5). This observation is analogous to
the one of the jobs. It has as many rows as nodes in the cluster, and three
columns that are the relevant attributes of each node. These attributes are
the number of processors, the number of processors that are currently free
and the clock rate.
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With these attributes and the ones from the selected job, the agent must
know decide which pair would result in a higher efficiency. To be able to
evaluate both the job and the node together, their attributes are combined.
As the job has already been decided, its four attributes are combined to
the three attributes of each one of the nodes (6). This results in a merged
observation with as many rows as nodes, as the selection now must be one of
the nodes. In this case the columns are 4+ 3. The four previously mentioned
attributes of the job, and the three of the nodes.

This combined observation is used as input for the second network of the
agent, which has the exact same structure as the previous one with the sole
difference of the input and output dimensions, that are now NumNodes x 7
and NumNodes, respectively.

The process used to obtain the probability distribution of the nodes and
then the selected node is also the same as for the previous step. The only
remarkable difference is the mask applied to the scores vector (7), which
now hides the nodes that have fewer free processors than the requested by
the job. Just as before, this eliminates the possibility of the agent choosing
a node that is currently busy or does not have enough processors to execute
that job.

With these two networks, a job-node pair is selected (8). This information is
then passed to the simulator to carry out the corresponding planning action.
This performs a step action, which results in a new state of the environment.
What this implies was explained in Section 3.2. Basically, a reward will be
obtained together with a new observation representing the new state of the
environment. This is used by the agent again to select the next job-node
pair, and so on until the last job is processed.

Backpropagation of the error

As explained in Section 2.2.1, the error in a certain step is calculated as
the difference between the result obtained by the network and the expected
result. The main problem of this Double Network approach is having two
error terms, one for each network. A first approach can be to just use each
error to train its respective network. However, another way of seeing the
issue is that both networks are working towards a common objective, so they
should not be trained independently.
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Moreover, if an action produces a bad result, is complicated to know what
failed. It might be the first network who took a bad decision, making it
impossible for the second one to produce a good result. It might also be the
opposite, a bad decision of the second network masking a good selection of
the job. Or it might have just been a failure in general and both performed
badly.

This makes it quite difficult to know whether to incentivize or penalize each
network of the agent after a certain decision. Or even if it makes more sense
to train each network independently or to combine the errors adding them,
for example, so they both learn at the same time. To be able to know for
sure which one is the best option, both of these approaches will be tested
during the evaluation phase.

4.3.2 Square Network Agent architecture

The second architecture is the Squared Network Agent. The name of this
one comes from the fact that jobs and nodes are no longer evaluated in
two separate steps. Rather, all the possible combinations between them are
obtained, so each job is paired with each node. Thus, the term Squared stems
from this bidimensionality. The data flow from this model can be visualized
in Figure 4.4.
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Cluster with 2 nodes.
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Contrary to the previous case, when the agent observes the environment,
both the jobs observation and the nodes observation are computed in the
same step (1). The main difference is that instead of making a decision on
each one separately, there is a single selection that includes the job and the
node.

As in this case the desired output for the network is directly a job-node pair,
the input must contain information about both of them. This is why the
two observations are combined in a single one that pairs every job with each
node (2). This way, the best combination of a job with a node, according to
their attributes, can be selected.

This combined observation is a matrix of size (128« NumNodes) x (JobF eatures+
NodeFeatures). Here, 128 x NumNodes represents all the possible pairings

of a job with a node, and JobFeatures 4+ NodeFeatures is the total number

of attributes that define each of these pairs. The attributes used are those
described in Table 4.1.

After the combined observation is ready, the selection process is analogous
to the one seen earlier. The whole matrix is fed as input to the DNN which
has the same structure as before (3), only varying the input and output size.

The output of this network is a column vector with an score for each job-node
pair. Then, the scores are applied a mask to remove the values corresponding
to blank jobs or those that request more processors than the node’s free ones
(4). Just as before, this is done to avoid invalid choices and selections that
would result in a wait.

Finally, the values are normalized using the softmax function and the action
is chosen from the generated probability distribution (5). From the obtained
action, a; € [0..128 x NumNodes — 1], it is necessary to extract the corre-
sponding job and node. The index of the job in the job queue is i//128, where
// is the floor division. For the node, the operation is i mod NumNodes.

The rest of the process after this point is the same as described in the pre-
vious section and in the first description of the program, also for the back-
propagation step. Even though the dimension of the decision has increased
significantly, the general structure has remained. There is not a second net-
work like in the previous case or anything that would make the training more
complex. Thus, this problem that would arise with the Double Agent is not
a concern.
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Reducing complexity with k-means

An issue that does appear, though, is the increasing complexity caused by
having a single observation with all the possible combinations of a job with
a node. For the Double Agent, in a cluster with 16 nodes, the total number
of elements of both observations would be 128 x4+ 16 % 7 = 624. Meanwhile,
with the Squared Agent the size of the only observation is 128167 = 14336.
Doubling the number of nodes in the cluster results in 736 and 28672 elements
respectively.

This difference has a clear impact in the performance of the Squared Agent,
which is significantly slower than the Double. Moreover, it greatly harms
scalability, as increasing the number of nodes would cause the agent to be-
come too inefficient. This is a really big problem in this context, where
clusters tend to have not twenty or thirty nodes, but hundreds or thousands
of them.

The solution to this problem lies in reducing the dimension of the input
observation somehow. The size of the job queue is a constant already used in
other schedulers and kept for consistency with RLScheduler, and the number
of attributes is already a rather small value so there is not much room for a
reduction. The only variable left is the number of nodes.

Originally, it made sense to provide the network with information about
every single node so it could select the ideal one. However, it is arguable
whether every single value is needed, or if on the contrary it is possible to
group similar ones together.

The idea is that if at a certain moment there are several nodes with the same
characteristics in the cluster, it does not really matter in which one of those
the job is executed. The proposal is to group the n nodes of the cluster
in k clusters of similar nodes using the k-means algorithm. This is in line
with the architecture of real data centers, where nodes are usually divided
in groups also named clusters. Within each group, all nodes have the same
characteristics, whether they are regular processors, GPUs, etc.

Figure 4.5 illustrates a simple case of the use of k-means. From a cluster of 4
nodes, the similarity between them is calculated. In this case, for simplicity,
those with the same number of processors are grouped together (1). Then,
the combined observation is constructed by combining each one of the jobs
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with each one of the clusters, instead of the nodes (2).

Jobs Observation
Job Queune .
- - g Input layer
..-"-‘ L Merzed Observations
Kl S Y
"r'.‘ _<'<_-< . -i"’
| : s T ) 3}
] -
- ~ o
T K3
- 2 jlﬂsa -
Lo (2) = o
AL - | <]
e — - | . |- |
- Jacy e *
. B | 25 — R e |
Just e e |~
w ! P |~ LA
Jacy e
7 =
<
Modes Observation A ~Lf
| —
- - I
Grouped Nodes ‘ e _,-:;ﬁjk
. Juscr AN
L, 5
1 Tis
M {na,ni} 128 x NumClusters x 7

_’,n?_.-‘

]
02 m {.n’l- ’ ns} i

-
Th R,

-
114k

Figure 4.5: The process of reducing the size of a 4-nodes observation by
grouping them in 2 clusters.

The values of each cluster for the observation are calculated as the mean
value of all the nodes that are in that cluster, for each attribute. Thus, the
shape is the same and the values summarize those of the nodes inside of it.

Apart from this change, the rest of the process is just the same that appears
in Figure 4.4. For the mask, as there are no individual nodes to check if a
job can be executed in them, the boolean use represents whether the job can
be executed in any of the nodes of a given cluster. This ensures that once a
job-cluster pair is selected, the job will be able to be immediately scheduled
in at least one of the nodes of that cluster.

The final step after the selection has been made is to choose a specific node
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for scheduling the job. This is done by simply checking which are the nodes
belonging to that cluster, and allocating the first one that has enough free
processors. This selection does not need any further considerations, as the
assumption is that nodes in the same cluster are similar enough to make a
difference.

By grouping the nodes in a fixed number of clusters, the size of the obser-
vation becomes a constant. Thus, it is possible to increase the number of
nodes in the platform without raising the complexity of the agent’s DNN.
The number of clusters would depend on the architecture of the data center
that is being simulated, and could be easily changed in case of an expansion
by retraining the agent. However, as this situation is not quite common, it
is considered a constant.
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Chapter 5

Experiments & Evaluation

In this chapter, the experiments conducted for testing the efficiency of the
architectures proposed in Chapter 4 are detailed. The results are compared
with those of classic heuristic algorithms in order to check if any improve-
ment has been achieved, and will be calculated according to three scheduling
objectives: slowdown, average bounded slowdown and average waiting time.

5.1 Methodology and setup

In the previous chapter, two architectures for an intelligent scheduler agent
were designed. Apart from the basic design, for each one of them some
modifications have been thought in order to solve the theoretical problems
of each implementation. In order to find out which one is the actual best
design, not only the two basic agents will be tested but also their different
variants.

For the results to be comparable, all the methods will be tested under the
same conditions. These conditions depend mainly on the workload to sched-
ule, the cluster in which to schedule it, and the objective to optimize. Thus,
each architecture will be executed for each one of the objectives using the
same workload and the same cluster definition. All the variables to consider
during experimentation are the following:
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o Workloads: they are generated from models defined in the Parallel
Workloads Archive [14], which is a standard in the field of high-performance
computing. In particular, the main one used for this project will be
Lublin, 1999/2003 [22]. The job trace used is composed of 10000 jobs,
ordered by their submit time. The jobs are quite varied, as they can
request from a few seconds of run time up to several days. Regarding
the number of requested processors, the values go from 1 to 256. How-
ever, this had to be constrained to a maximum of 64 due to limitations
explained at the end of Section 4.1.

e (luster: the one defined for the experiments needs to meet certain
characteristics. The most important one, for obvious reasons, is that is
must be heterogeneous. Thus, it must have several nodes with different
number of processors and frequency. Secondly, the number of nodes
should not be too low nor too high. A low number would not show
the real capabilities of the program, while one too high would make
the scheduling trivial. In the experiments, 20 nodes with different
attributes will be used.

o Scheduling objectives: the selected ones are average bounded slowdown,
average waiting time and slowdown. The goal of the agent is to min-
imize these values in each execution. The definitions of each one of
them are the following:

— Slowdown (SLD): ratio between the total time of a job in the
system, from its submission to the end of the execution, and its
requested time. This penalizes more the high waiting times for
short jobs.

— Average bounded slowdown (BSLD): variant of the previous one
that levels the execution times of the shortest jobs to avoid too
large differences in similar jobs.

— Average waiting time (AVGW): average time interval between the
submission of a job and its execution.

e Heuristic algorithms: to be comparable to the agents they must be able
to select a job and a node as well. Thus, one algorithm will be used
for choosing each. The policies used are summarised in Table 5.1. The
notation used in the figures of these chapters will be ab, where a is the
letter corresponding to the job policy and b is the one corresponding
to the node policy. For instance, using algorithm sb means taking the
smallest job at each time step and scheduling it in the biggest node.
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Hyperparameters: these are the values used to control the training
process of the agents. The ones used in RLScheduler will be kept
as they had already been tested and found as the best ones for this
program. The most relevant ones are the learning rate o, with values of
0.0003 and 0.001 for the actor and the critic, respectively; and gamma
v equal to 0.99. The meaning of these parameters was described in
Section 2.2.1.

Seed: to ensure the equivalence of all the experiments the random seed
will be fixed. This way, the same distribution of jobs will be chosen
for scheduling during training every time. For testing, a fixed seed will
also be used but a different one, so that the agents are always tested on
unseen sets of jobs. The values used will be 2604 and 500, respectively.

Job Selection Policies

Random r Random job from the job queue is selected

FCFS f Job with lowest submit time is selected

SJF s Job with lowest requested run time is selected

Smallest 1 Job with lowest requested number of processors is selected
Node Selection Policies

Random r Random node is selected

Biggest node b Node with highest number of processors is selected

Fastest node f Node with highest frequency is selected

Table 5.1: Heuristic job and node selection policies used for comparing.

Experiments details

All the experiments will follow the same pattern. The agents will be trained
during 100 epochs, and 20 trajectories per epoch (see 3.2). All of them
will be trained on the same workload traces, ensured by the fixed random
seed, and for the same objective, average bounded slowdown. Each trajectory
will consists on scheduling 256 consecutive jobs extracted randomly from the
complete workload. The cluster designed has 20 nodes, each one of them
being a combination of 4, 8, 16, 32 or 64 processors, running at 2, 2.5, 3 or
3.5 GHz.

Then for the testing, the trained agents will have to schedule traces of 1024
jobs from the same workload, but generated with a different seed. They will
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be tested for the same objective that they were trained for, and compared
with the results of heuristic algorithms mentioned before. Each experiment
is repeated 20 times to avoid obtaining wrong conclusions due to outliers.

The experiments will be conducted in two different systems. For the training
of the agents, the Triton cluster from the ATC Group at Universidad of
Cantabria will be used. Triton has six compute nodes, each of them formed
by two processors Intel Xeon Silver 4114 CPU @ 2.20GHz and 64GB of RAM
memory. FEach processor has 10 physical dual cores with a shared L3 chache
of 13.75KB. Then, the testing will be carried out in a commercial laptop. In
particular, an MSI GF62 8RE-063XES with 6 physical dual cores i7-8750H
with hyperthreading and a variable clock rate between 2.20 and 4.10GHz.
This computer has 16GB of RAM memory and runs Ubuntu 20.04.2 LTS
natively as operative system.

5.2 Double Agent experiments

The first set of experiments will focus on the Double Agent. In particular, the
first one must ensure whether the different variants are learning correctly. As
discussed in Section 4.3.1, it was not clear which was the best way to combine
the losses of both networks for them to learn in parallel. Two approaches
are tested: using the sum of both values and their mean. The other option
was to use the losses separately. This is also tested in this first experiment,
whose results can be observed in Figure 5.1. The goal of this experiment is
to discard any agent that is not working properly due to its configuration.

This figure shows the results per epoch of the three agents: the double agent
joining the losses of the networks by adding (ADD), the one joining them
by doing the mean (MEAN), and the one using the losses separately (SEP).
The values are the average results of the 20 trajectories performed during
each epoch. As the three agents use the same seed, in the first epoch they
all get the same result.

Once they start learning and thus taking different actions, the results become
different. Around the third epoch, for example, the MEAN Agent does some
bad choices and gets an BSLD of 78.4, meanwhile the other two have similar
results to the first epoch. Nonetheless, as the epochs pass both the MEAN
and the SEP Agent learn progressively and the improvement at the end is
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Learning curves for the Double Agent variants
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Figure 5.1: Evolution of the epoch results during training for each variant of
the Double Agent optimizing Bounded Slowdown.

clear, when they are getting consistently values between 5 and 10. On the
contrary, the ADD Agent seems to just be taking random actions and thus
having highly variable results.

As the ADD Agent does not seem to be learning anything, it is discarded
and the rest of the tests and the comparison with the heuristic algorithms
will only be performed for the other two.

One relevant detail from the training is that these Agents take around 45
minutes. However, this amount of time is for 100 epochs, and as seen in
Figure 5.1 the results do not improve much after the first 60, so half an hour
would probably be enough. Moreover, the training phase is only done once
and the Agent can be used until the scheduling needs change, so this amount
of time is quite reasonable.
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5.2.1 MEAN Double Agent

Once checked that the Agent is able to learn, it is time to perform the testing
to see how optimal the results are. The Agent must schedule 20 different job
traces, that will also be scheduled by the heuristic algorithms described in
the the first section of this chapter. The boxplot shown in Figure 5.2 serves
to visualize the results of each scheduler across the 20 executions.

Comparison of results for the MEAN Double Agent
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Figure 5.2: Comparison between the results of heuristic scheduling algo-
rithms and the MEAN Double Agent when minimizing average bounded
slowdown.

The results from the Double Agent (DA) are the ones at the far right. Even
though it is not among the worst selection policies, and the values are more
similar to the best ones, it still not as good as the best one. Something that
can be concluded from this data is that job selections have a much greater
impact on the performance than resource selections. Choosing a random job,
or the first submitted job, results in a high bounded slowdown irrespective
of the node selection.

As the literature states, SJF minimizes the slowdown and the MEAN Double
Agent is not capable of producing a better result.
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5.2.2 SEP Double Agent

The next step is to check whether the SEP Double Agent can compete with
the SJF, or if its results are similar to the previous one. Even though Figure
5.1 showed that the learning results were quite similar, they both learnt in
different ways. Thus, it is to be expected that each one of them has been
trained to take different actions which might produce a different result for
the experiment.

However, the results in Figure 5.3 show that this does not seem to be the
case. When minimizing average bounded slowdown, SJF maintains the place
as the best policy. The conclusion from the previous experiment apply to
this one as well. And even if both agents are not taking the same actions,
they are equally sub-optimal when compared to state-of-the-art algorithms.
This is the case for the three objectives tested, as the results were similar for
all of them.

Comparison of results for the SEP Double Agent
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Figure 5.3: Comparison between the results of heuristic scheduling algo-
rithms and the SEP Double Agent when minimizing average bounded slow-
down.
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5.3 Squared Agent experiments

As the Double Agent has not been able to produce good enough results, now
the focus is on testing the Squared Agent (SA). The structure of this sec-
tion will be the same as the previous one. As this Agent does not have any
variants, the results for the three objectives will be shown. Then, they will
be compared with the results when applying k-means to reduce dimension-
ality. This is to know whether the loss of information leads to a decrease of
performance.

First, for checking that the learning process is correct for all the objectives,
the training results are checked. They can be observed in Figure 5.4, with
the values normalised so they can all be plotted at the same time, as each
objective had values at different scales.

Learning curves for the Sqguared Agent variants
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Figure 5.4: Evolution of the epoch normalized results during the training of
the Squared Agent for each objective and while applying clustering.

The important aspect here is that the tendency is upwards for all of them,
so they are progressively improving their results after the training epochs.
In the figure, BSLD, SLD and AVGW represent the results of the Agent
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for each one of the objectives, and CLST is when clustering is applied. In
particular, it was tested for BSLD.

The training in this case was much more time consuming. In average, the
Agents needed almost 12 hours to perform the 100 training epochs. Although
as mentioned earlier, this process just needs to be done once, and it could be
reduced by nearly half as the networks converge around epoch 60. Further-
more, the training of the agents could be parallelized in one or more GPUs,
reducing the training time up to two orders of magnitude per GPU.

5.3.1 Minimizing SLD

The first objective to train this agent on has been slowdown. The rest of the
configuration of the experiments is the same as seen so far. The results of
this experiments appear in Figure 5.5. In general they are quite similar to
the previous experiments, with a greater impact of the job policies and SJF
being the best classic algorithm.

Comparison of results for the Squared Agent (SLD)
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Figure 5.5: Comparison between the results of heuristic scheduling algo-
rithms and the Squared Agent when minimizing slowdown.

The main difference is that in this case, the results obtained by the SA are
better than those of any of the other algorithms tested. Compared to the
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best heuristic algorithm, shortest job - random node, the SA is able to get
an average slowdown closer to 0. Even though in the best cases the results
of both are similar, the SA schedules the worst cases better, which reduces
the average.

This is a really promising result as it proves that an intelligent scheduler
can perform better in a heterogeneous cluster than the state-of-the-art algo-
rithms, at least for minimizing the slowdown for now.

5.3.2 Minimizing BSLD

Average bounded slowdown is just a variation of the regular slowdown with
more accurate results, so it is to be expected that the agent’s performance
remains the best in this case. Figure 5.6 shows exactly this. The values
are different than in the previous experiment, but the results are almost the
same.
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Figure 5.6: Comparison between the results of heuristic scheduling algo-
rithms and the Squared Agent when minimizing average bounded slowdown.

As BSLD reduces the differences between smaller jobs with respect to reg-
ular slowdown, the values in this case are closer together and the difference
between policies is smaller. Even so, it can be seen that the average result for
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the Squared Agent is lower than the average for the best classic algorithm.
Also, that the result in the worst case is just 20 seconds for the SA, the lowest
across all algorithms.

This experiment proves that the way of measuring the slowdown does not
affect the performance of this agent.

5.3.3 Minimizing AVGW

Finally, instead of measuring the slowdown, the goal of the agent is to mini-
mize the average waiting time for the 1024 jobs from the test trace, to check
that the agent still works for a different metric. Figure 5.7 shows the total
amount of time (in seconds) that the 1024 jobs spent waiting in the queue
for each scheduling policy.

Comparison of results for the Squared Agent (AVGW)
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Figure 5.7: Comparison between the results of heuristic scheduling algo-
rithms and the Squared Agent when minimizing average waiting time.

Even though the values are now higher due to how they are computed, the
results are quite similar in general to those of the previous experiments. The
best classic algorithm is now the one that selects the smallest job first, unlike
in the previous cases. However, the Squared Agent is still the one taking the
best actions to minimize the target objective. It has both the lowest median
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value, below 500 seconds of waiting time for 1024 jobs, and the lowest worst
cases for trajectories that are more difficult to schedule.

This proves that an intelligent agent is able to learn how to take scheduling
actions and obtain better results than classic scheduling algorithms. And
this can be done not for a single goal but to different ones, only constrained
by the capabilities of the simulator in which it is working.

But not only could the agent run in a simulator, it could act as an actual
scheduler in a real system. The main issue in this case is that a previous
trace of the jobs executed in the system would be needed for training the
agent beforehand.

5.3.4 Reducing complexity

As stated earlier, the main disadvantage of the Squared Agent architecture is
that an increase in the number of nodes causes the complexity of the model
to rise significantly. As this architecture has proved successful and a solution
had been anticipated, it is now worth to test it. This experiment must ensure
that using clustering for reducing the model’s complexity does not cause a
relevant loss of performance.

Comparison of results for the Squared Agent with clustering (BSLD)
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Figure 5.8: Comparison between the results of heuristic scheduling algo-
rithms and the Squared Agent with clustering when minimizing average
bounded slowdown.
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This experiment has been carried out for the objective of average bounded
slowdown and under the same conditions of all the others seen so far. In fact,
the only different with the one seen in Section 5.3.2 is that clustering is now
applied to group the 20 nodes in 10 clusters. This reduces the complexity of
the agent’s model by half.

This reduction does not have a very significant impact in terms of time, since
the lesser time that the agent needs for training is compensated with the
time that it takes to execute k-means each time. However, it does reduce the
memory usage caused by the observations by half, which was an important
limitation of the Squared model.

Figure 5.8 shows how this reduction has not had an impact on the perfor-
mance of the agent, as the results are almost identical to those from Figure
5.6. Thus, this method can be applied in cases where the combined obser-
vation has become too large, and many of the nodes have the same or very
similar characteristics.
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Chapter 6

Conclusions

In this final chapter, the objectives achieved are highlighted, specially the
implementation of an intelligent scheduler capable of overcoming the perfor-
mance of state-of-the-art algorithms. Lastly, some ideas for future work that
could be carried out using this project as the starting point are detailed.

6.1 Objectives Achieved

With the work presented in this paper, the objective of this investigation
has been achieved. This was to take RLScheduler, and transform it into an
heterogeneous simulator that allows for the testing of scheduling algorithms
based on Deep Reinforcement Learning. This can be an important tool for
researchers that might want to develop this research area further. In fact, it
has already proven its utility with the development of the agents, which was
a second objective of this work, and has opened up a new line of investigation
for the group of Architecture and Technology of Computers at University of
Cantabria.

In Section 1.3, three main objectives in particular were described for this

project. In this section, the result for each one of those objectives will be
summarised:

e Modelling of heterogeneous resources: with the changes made in Section
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4.1, RLScheduler can now simulate an heterogeneous data center. The
nodes that conform it can have a different number of processors each,
and a different frequency. These values will have an impact on the
simulation, and the performance of the jobs will vary depending on the
node where they are executed. Even though the number of attributes
of the nodes is still rather small compared to the real ones, it is a
much more realistic representation of a data center than the original
one. Furthermore, it would be fairly simple to add new attributes for
the agent to consider, so this new model is also much more expandable.
This addition of heterogeneity is in itself a great leap in quality in terms
of simulation of data centers.

Implementation of the intelligent agent: as the best architecture for
the agent was not clear from the beginning, two different ones were
designed and implemented in Section 4.3, the Double Agent and the
Squared Agent. Both of them meet the necessary requirement that is to
be able to select the best possible job-node pair among those available,
instead of selecting just a single job.

FEvaluation of the agents: to ensure the correct learning of the agents,
several experiments were conducted in Section 5. Then, a second set
of experiments has been used to compare the results of the agents with
those of classic scheduling algorithms. These experiments have proved
that the Double Agent cannot compete with those heuristic algorithms,
but the Squared Agent can. In fact, it has managed to get the best
performance among all the algorithms for the three objectives tested.
This means that the Squared Agent is able to do a better than the
state-of-the-art scheduling.

These results are really promising not only because of the results themselves,
but because of the possibilities that it opens up. With a more advanced
simulator, the Squared Agent could very easily be extended to optimize other
objectives like energy consumption, which would most probably result in an
even greater advantage with respect to classic algorithms.

This is just the first step in a new line of research for the group of Architecture
and Technology of Computers at University of Cantabria. There is still
further work to do on the topic, but the utility of using DRL for implementing
an intelligent scheduler has been proven, and the current implementation can
be used as the base for this future work.
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6.2 Future Work

In this last section, the main ideas to continue this work are highlighted.
These should be the first steps for creating a truly realistic intelligent sched-
uler using the Squared Agent as the basis.

e Migration of the agent: RLScheduler has been a good starting point be-
cause it already implemented an intelligent scheduler with good results.
Making the changes described in this document and then adapting the
agent to scheduled in the new environment was easier than if it had
been done directly in a more complex simulator. However, once that
the heterogeneous scheduler is working properly, it would be recom-
mendable to migrate it to a more complex and realistic simulator like
IRMaSim. This would allow to get more precise results and also to be
able to consider more information about the state of the data center in
the observations.

e Expansion of the observations: the new simulator mentioned in the
previous point should consider characteristics like memory, memory
bandwidth or energy consumption. For the agent to be able to consider
these for the scheduling, they should be included at the time of creating
the nodes observation. The added information would lead to a more
precise and efficient scheduling.

e Definition of new objectives: after the migration and the expansion,
possibilities for new measurements would be available. An example
would be the total energy consumption after an execution of the jobs
trace. Making the agent minimize this new metric, or others, should be
fairly simple and would make it a quite complete and realistic intelligent
heterogeneous scheduler.

e Acceleration of the training with GPUs: with some changes in the code,
the agent could be executed in one or more GPUs. This would allow
to parallelize the training of the networks, obtaining a great reduction
in the time it takes. This would be a major improvement, as training
time is currently quite costly.
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