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Abstract. Smale’s 17th Problem asks: “Can a zero of n complex polynomial

equations in n unknowns be found approximately, on the average, in poly-
nomial time with a uniform algorithm?”. We give a positive answer to this
question. Namely, we describe a uniform probabilistic algorithm that com-

putes an approximate zero of systems of polynomial equations f : Cn
−→ Cn,

performing a number of arithmetic operations which is polynomial in the size
of the input, on the average.

1. Introduction

In the series of papers [SS93a, SS93b, SS93c, SS94, SS96], Shub and Smale de-
fined and studied in depth a homotopy method for solving systems of polynomial
equations. Some articles preceding this new treatment were [Kan49, Sma86, Ren87,
Kim89, Shu93]. Other authors have also treated this approach in [Mal94, Yak95,
Ded97, BCSS98, Ded01, Ded06, MR02] and more recently in [Shu08, BS08]. In a
previous paper [BP08], the authors furthered the program initiated in the series
[SS93a] to [SS94], describing an algorithm that computes projective approximate
zeros of systems of polynomial equations in polynomial running time, with bounded
(small) probability of failure.

In this paper, we give an updated version of some of the concepts introduced in
[BP08], and we develop two important extensions of the results therein.

On one hand, we describe a procedure that, instead of assuming a small prob-
ability of error, finds an approximate zero of systems of polynomial equations, on
the average, in polynomial time (cf. Theorem 1.10). This improvement is made in
order to answer explicitly the question posted by Smale in his 17th problem.

On the other hand, we extend the result to the computation of affine solutions
of systems of polynomial equations. This new result requires us to understand the
probability distribution of the norm of the affine solutions of polynomial systems
of equations (Theorem 1.9 below).

These results may be summarized as follows.

Theorem 1.1 (Main). There exists a uniform probabilistic algorithm that computes
an approximate zero - both projective and affine - of systems of polynomial equations
(with probability of success 1). The average number of arithmetic operations of this
algorithm is polynomial in the size of the input.
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More specifically, the kind of algorithm that we obtain belongs to the class Av-

erage ZPP (for Zero error probability, Probabilistic, Average Polynomial Time),
or equivalently Average Las Vegas. At the end of this Introduction we have
added an Appendix where we clarify the terminology.

In this paper, c denotes a positive constant.

1.1. Background. Let n ∈ N be a positive integer. Let (d) = (d1, . . . , dn) ∈ N
n be

a list of positive degrees, and let H(d) be the space of all systems f = [f1, . . . , fn] :
C

n −→ C
n of n polynomial equations and n unknowns, of respective degrees

bounded by d1, . . . , dn. Observe that H(d) is also equivalent to the space of all

systems of homogeneous polynomial equations f : C
n+1 −→ C

n of degrees di. In-
deed, for each system in the unknownsX1, . . . ,Xn, we can consider its homogeneous
counterpart, adding a new unknown X0 to homogenize all the monomials of each
equation to the same degree di. The set of projective zeros of f = [f1, . . . , fn] ∈ H(d)

is

VIP (f) = {x ∈ IPn(C) : fi(x) = 0, 1 ≤ i ≤ n} ⊆ IPn(C),

where the fi are seen as polynomial homogeneous mappings fi : C
n+1 −→ C.

Observe that this set is naturally contained in the complex n-dimensional projective
space IPn(C). Namely, a point x ∈ C

n+1 is a zero of fi, 1 ≤ i ≤ n, if and only if
λx ∈ C

n+1 is a zero of fi, where 0 6= λ ∈ C is any complex number. On the other
hand, we may consider the set of affine solutions of an element f ∈ H(d),

VC(f) = {x ∈ C
n : fi(x) = 0, 1 ≤ i ≤ n} ⊆ C

n,

where the fi are seen as polynomial mappings fi : C
n −→ C. Let ϕ0 be the

standard embedding of C
n into IPn(C),

(1.1)
ϕ0 : C

n −→ IPn(C) \ {x0 = 0}.
(x1, . . . , xn) 7→ (1 : x1 : . . . : xn)

Then, we may write VC(f) = ϕ−1
0 (VIP (f)). Namely,

x ∈ VC(f) =⇒ ϕ0(x) ∈ VIP (f),

z = (z0 : · · · : zn) ∈ VIP (f), z0 6= 0 =⇒ ϕ−1
0 (z) ∈ VC(f).

We denote by d = max{di : 1 ≤ i ≤ n} the maximum of the degrees, and by
D = d1 · · · dn the Bézout number associated with the list (d). From now on, we
assume that d ≥ 2. We denote by N +1 the complex dimension of H(d) as a vector
space. We may consider N as the size of the input of our target systems. We
summarize here the notation.

n Number of equations
(d) = (d1, . . . , dn) List of degrees

d max{d1, . . . , dn}
H(d) Space of systems of equations associated with (d)
N + 1 Complex dimension of H(d)

D Bezóut number=d1 · · · dn

As in [SS93a], we consider H(d) equipped with the Bombieri-Weyl Hermitian
product 〈·, ·〉∆ and the associated Hermitian structure (see Section 2 for a precise
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definition). We denote by S(d) the sphere in H(d) for this Hermitian product, with
the inherited Riemannian structure. We will also consider the incidence variety W ,

W = {(f, ζ) ∈ H(d) × IPn(C) : f 6= 0, ζ ∈ VIP (f)}.
As pointed out in [BCSS98], W is a differentiable manifold of complex dimension
N + 1.

The projective Newton operator was initially described in [Shu93], and studied
in depth in the series of papers by Shub and Smale. Let f ∈ H(d) be seen as a

system of homogeneous polynomial equations and let z ∈ C
n+1. Let d̂f(z) be the

tangent mapping of f at z, considering f as a map from C
n+1 to C

n, and let z⊥

be the Hermitian complement of z in C
n+1. Assume that d̂f(z) |z⊥ is a bijective

mapping. Then, we define

N̂f (z) = z −
(
d̂f(z) |z⊥

)−1

f(z) ∈ IPn(C).

We denote by N̂
(k)
f (z) = N̂f ◦ k· · · ◦ N̂f (z) the projective point obtained after k

applications of N̂f , starting at z. Assume that z ∈ IPn(C) is such that N̂
(k)
f (z) is

defined for every k ≥ 0, and that there exists a point ζ ∈ VIP (f) such that

dT

(
N̂

(k)
f (z), ζ

)
≤ 1

22k−1
dT (z, ζ), ∀k ≥ 0,

where dT is the tangent of the Riemannian distance in IPn(C). Then, we say that
z is a projective approximate zero of f , with associated (true) zero ζ. Note that
using z as a starting point for projective Newton’s operator, we may quickly obtain
an approximation as close as wanted to ζ. Hence, a major objective is the efficient
computation of projective approximate zeros.

In [SS93a], Shub & Smale studied the behavior of the projective Newton operator
in terms of a normalized condition number of polynomial systems. For f ∈ H(d)

and z ∈ IPn(C), they defined a quantity µnorm(f, z) (see equation (3.1) for a precise
definition) that satisfies the following property.

Proposition 1.2 (Shub & Smale). Let (f, ζ) ∈W , and let z ∈ IPn(C) be such that

dT (z, ζ) ≤ 3 −
√

7

d3/2µnorm(f, ζ)
.

Then, z is a projective approximate zero of f with associated zero ζ.

Now we briefly describe the Homotopic Deformation procedure (hd for short), a
procedure that attempts to find projective approximate zeros of systems developed
by Shub & Smale (see [SS93a, SS96] and mainly [SS94]).

Let f ∈ S(d) be a target system, and let g ∈ S(d) be another system that has
a known solution ζ0 ∈ IPn(C). Consider the segment {ft = tf + (1 − t)g, t ∈
[0, 1]} joining g and f . Under some regularity hypothesis (see Proposition 3.1),
the Implicit Function Theorem defines a differentiable curve {(ft, ζt), t ∈ [0, 1]} ⊆
H(d) × IPn(C), such that ft(ζt) = 0, ∀t ∈ [0, 1]. This curve will be denoted by
Γ(f, g, ζ0).

The hd is a procedure that constructs a polygonal path that closely follows
Γ(f, g, ζ0). This path has initial vertex (g, ζ0) and final vertex (f, z1), for some
z1 ∈ IPn(C). The output of the algorithm is z1 ∈ IPn(C). The polygonal path
is constructed by “homotopy steps” (path following methods) each of which is
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an application of the projective Newton operator, with an appropriate step size
selection.

In [SS94], Shub & Smale proved the existence of optimal initial pairs that guar-
antee a good performance of this algorithm, but their existential proof does not
give any hint on how to compute these pairs (a full discussion of these aspects with
historical comments may be read in detail in [BP06]). The lack of hints on how to
find these initial pairs leads both to Shub & Smale’s Conjecture (as in [SS94]) and
to the problem mentioned in the title of this paper,

Smale’s 17th Problem:

Can a zero of n complex polynomial equations in n unknowns be found approxi-
mately, on the average, in polynomial time with a uniform algorithm?

Here, the term “uniform” emphasizes the fact that the algorithm demanded
by Smale must be described explicitly (see the discussion in the Appendix to the
Introduction), and “average” is used in the sense of the Bombieri-Weyl product.
That is, in our notation, “average on S(d)”. Smale also wrote:

Certainly finding zeros of polynomials and polynomial systems is one of the old-
est and most central problems of mathematics. Our problem asks if, under some
conditions specified in the problem, it can be solved systematically by computers.

1.2. Statement of the main outcomes. The formal statement of our main re-
sults requires the introduction of some precise terminology. We also recall some
concepts and results from our previous paper [BP08].

1.2.1. Projective solutions. An important quantity helps to control the number of
homotopy steps used in hd algorithms, and, hence the complexity of the algorithm.
For a pair f, g ∈ S(d) and a solution ζ ∈ V (g), we define

µnorm(f, g, ζ) = sup
(h,z)∈Γ(f,g,ζ)

[µnorm(h, z)].

Definition 1.3. We say that (g, ζ) is an efficient initial pair if

Ef∈S(d)
[µnorm(f, g, ζ)2−β ] ≤ 105n5N2d3/2 log2 D.

where β = 1
log2 D .

Note that the dependence on ε of this concept (appearing in our previous paper
[BP08]) has disappeared. The following result follows from the arguments of Shub
and Smale in [SS94] (see Section 3.3 for a proof).

Theorem 1.4. Assume that (g, ζ0) is an efficient initial pair. Then, the average
number of projective Newton steps performed by Shub & Smale’s Homotopy with
initial pair (g, ζ0) is less than or equal to

cn5N2d3 log2 D.

Hence, the average number of arithmetic operations is less than or equal to

cn6N3d3 log2 d log2 D.
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Thus, the knowledge of an efficient initial pair yields an algorithm based on
hd that finds a projective approximate zero of systems of polynomial equations in
polynomial time, on the average. However, up to this moment such an initial pair
is not explicitly known. In [BP08], the authors described a simple probabilistic
method to find these pairs. To this end, the authors defined and analyzed the
behavior of the quantity

(1.2) Aε(g, ζ) = Probf∈S(d)
[µnorm(f, g, ζ) > ε−1].

where (g, ζ) ∈W , and ε > 0 is some positive real number.

Definition 1.5. Let G ⊆ W be a subset with a probability measure. We say that
G is a strong questor set for initial pairs if for every ε > 0,

EG [Aε] ≤ 104n5N2d3/2ε2,

where E means expectation.

The importance of Definition 1.5 relies on the following theorem, that will be
obtained as a consequence of a lemma from Probability Theory (see subsection
3.4.1).

Theorem 1.6. Let G ⊆ H(d) × IPn(C) be a strong questor set for initial pairs.
Then,

E((g,ζ),f)∈G×S(d)
[µnorm(f, g, ζ)2−β ] ≤ 2 · 104n5N2d3/2 log2 D,

where β = 1
log2 D .

Fubini’s Theorem and Markov’s Inequality immediately yield the following corol-
lary.

Corollary 1.7 (Existence of good initial pairs). Let σ ∈ (0, 1). Then, there exists
a measurable set Cσ ⊆ G such that

(1.3) Prob(g,ζ)∈G [(g, ζ) ∈ Cσ] ≥ 1 − σ,

and such that for every (g, ζ) ∈ Cσ,

Ef∈S(d)
[µnorm(f, g, ζ)2−β ] ≤ 2 · 104n5N2d3/2 log2 D

σ
.

In particular, with probability of at least 4/5, a randomly chosen pair (g, ζ) ∈ G(d)

is an efficient initial pair.

This result means the following: if we are able to find a computationally tractable
strong questor set, then we can probabilistically find an efficient initial pair (g, ζ).
Hence, we obtain an algorithm that finds a projective zero of systems, on the
average, in polynomial running time. A similar idea (i.e. the usage of a set that
contains good initial points for iterative algorithms) has been recently developed in
[HSS01], for the case of univariate polynomial solving.

In [BP08], the authors explicitly described a family of systems G(d) associated
with the list of degrees (d), such that one can easily choose at random a point
(g, ζ) ∈ G(d). This rather technical family will be described with detail in Subsection
3.5. The main result in [BP08] may be written as follows (see [BP08, Proposition
36]):
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Theorem 1.8. The family G(d) is a strong questor set for initial pairs. Namely,
for every ε > 0:

EG(d)
[Aε] ≤ 104n5N2d3/2ε2.

Hence, we have an explicit and efficient description of a strong questor set, for
each list of degrees (d). This theorem simply means that we can easily compute
an efficient initial pair, using a probabilistic method. Hence, from Corollary 1.7,
we can compute a projective approximate zero of a system of equations, on the
average, in polynomial running time. This is the projective version of our Main
Theorem (Theorem 1.1).

1.2.2. Affine solutions. Usually, we are interested in the search of affine (not projec-
tive) approximate zeros of systems. We recall some properties of the affine Newton
operator. Let f ∈ H(d), f : C

n −→ C
n, and let z ∈ C

n be such that the differential
matrix df(z) ∈ Mn(C) is of maximal rank. The affine Newton operator of f at z
is:

Nf (z) = z − (df(z))−1f(z) ∈ C
n.

We denote byN
(k)
f (z) = Nf◦

k· · ·◦Nf (z) the affine point obtained after k applications
of Nf to z, if it exists. Assume there exists a true zero ζ ∈ C

n of f such that for

every positive integer k ∈ N, the vector N
(k)
f (z) is defined and

‖N (k)
f (z) − ζ‖ ≤ 1

22k−1
‖z − ζ‖.

Then, we say that z is an affine approximate zero of f , with associated zero ζ.
As we have seen, the affine solutions of f are related to some of its projective

solutions via the standard embedding ϕ0 of equation (1.1). This suggests that,
in order to find an affine approximate zero of f , we may first find a projective
approximate zero z ∈ IPn(C) of f , with associated zero ζ ∈ IPn(C), and then we
may consider the affine point ϕ−1

0 (z) ∈ C
n, if it exists. An initial drawback is

that ϕ−1
0 (z) may not be an affine approximate zero associated with ϕ−1

0 (ζ). In
Proposition 4.5 below we will prove that that this process can be done, if we are
able to state an upper bound for the quantity ‖ϕ−1

0 (ζ)‖.
Hence, the probability distribution of the norm of the affine solutions of systems

in H(d) turns out to be an essential ingredient for the analysis of the complexity
of finding affine approximate zeros. We prove the following result (Corollary 4.9 of
Section 4).

Theorem 1.9. Let δ > 0. Then, the probability that a randomly chosen system
f ∈ S(d) has an affine solution ζ ∈ C

n with ‖ζ‖ > δ is at most

D√
πn

δ
.

Now we describe an algorithm that finds affine approximate zeros of systems.
For every (g, ζ) ∈ H(d) × IPn(C), we define the following procedure (which will be
called Affine Homotopic Deformation, ahd for short).

Algorithm: ahd

Input: f ∈ S(d).
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PART ONE
Apply Shub & Smale’s hd to the segment [g, f ], starting at the initial pair (g, ζ).

Let z ∈ IPn(C) be the output of this procedure.

PART TWO
For i from 1 to ∞ do

• Let zi = N̂
(i)
f (z) ∈ IPn(C), where N̂f is the projective Newton operator

associated with f .
• Check (using Smale’s α-Theorem [Ded06]) if the affine point ϕ−1

0 (zi) ∈ C
n

is an affine approximate zero of f . In this case, halt.

Output: an affine approximate zero of f .

The proof of the following result relies on Theorem 1.9.

Theorem 1.10. Let (g, ζ) ∈ W be an efficient initial pair. Then, the average
number of arithmetic operations performed by ahd is less than or equal to

cn6N3d3 log2 d(log2 D).

From Theorem 1.10, the knowledge of an efficient initial pair (g, ζ) yields an
algorithm that finds an affine approximate zero of systems of polynomial equations,
on the average, in polynomial running time. Finally, Corollary 1.7 and Theorem
1.8 above allow us to find (g, ζ), using a simple probabilistic procedure. This is the
affine version of our Main Theorem (Theorem 1.1).

This paper is structured as follows. In Section 2 we describe in some detail the
notations, concepts and previous results related to our main results. In Section 3
we recall the main results which lead to the resolution of the projective case and
we describe in detail the construction of the strong questor set G(d). We will also
prove Theorem 1.6. Section 4 is devoted to proving theorems 1.9 and 1.10.

1.3. Appendix to the Introduction. At this point we must clarify what the
terms uniform algorithm and Average ZPP mean. For a precise discussion we
direct the reader to [BCSS98] and references therein. Non–uniform algorithms have
been known in theoretical computer science literature for a long time. A classical
definition of a non–uniform complexity class in the boolean setting is Nick Pip-
penger’s NC classes. In the continuous setting, we have the notions of NCR classes
in [CMP95, MP98] or [BCSS98, Chpt. 18] and the references therein. Roughly
speaking, a non-uniform algorithm is a sequence of circuits CN such that for ev-
ery N , the circuit solves instances of length N . Non–uniform upper complexity
bounds are sometimes useful (and give hints) to achieve lower complexity bounds
and uniform efficient algorithms. However, they stay at a theoretical level, since
non–uniform algorithms are not implementable. Non–uniform lower complexity
bounds are also essential to understand the troubles with complexity in many limit
problems.

On the other hand, there are several definitions of what a uniform algorithm
is. In the boolean setting, the Turing machine model of complexity seems to be
the natural one. As S. Cook observed in [Coo85], NC classes also accept differ-
ent forms of “uniformity”. In the continuous setting the work by Blum, Shub and
Smale [BSS89] established a context that defines what a uniform algorithm should
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be. Roughly speaking, a uniform algorithm is an algorithm that has a finite ma-
chine that performs the required computations. In terms of circuit (non–uniform)
complexity classes, the machine contains a procedure that implicitly generates the
sequence of circuits (cf. for example [CMP92]).

Another simplified description is that a uniform algorithm is something that
you may implement as a single program in any standard programming language,
whereas non–uniform algorithms require an implementation for each input length
(and hence an infinite number of “programs”).

Uniform algorithms can be deterministic or non-deterministic. This distinction
leads to the classical P 6= NP question of Cook’s Conjecture in the boolean setting
and the two problems concerning Hilbert Nullstellensatz (complex) and 4−Feasible
(real) in the continuous setting (cf. [Koi96] or [BCSS98] and the references therein).

A particularly useful class of non-deterministic, uniform algorithms are proba-
bilistic algorithms. A probabilistic algorithm is a uniform algorithm that starts its
computations by randomly guessing an instance from an appropriate class of data
associated with the given input length. When the probability that the guessed in-
stance leads to an error is bounded (usually by a constant smaller than 1/2), they
are called “bounded error probability algorithms”. If that probability is equal to 0
they are called “zero error probability algorithms”.

Note that the running time (number of arithmetic operations) of a probabilistic
algorithm may depend on the initially-guessed instance. Thus, we must fix a way
of measuring the time of the algorithm on a given input. There are two widely
accepted ways of doing so. The time of the algorithm for a given input is defined
as

• the worst-case time among all choices of initial guesses, or
• the average of the time among all choices of initial guesses.

In this paper, we use the second of these two options. Namely, for every polynomial
system f ∈ S(d), we have

t(f) = E(g,ζ)∈G(d)
[♯ Arithmetic ops. of hd with input f and guess (g, ζ)].

With this terminology, when the running time of a zero error probability algo-
rithm is bounded by a polynomial in the input length, the problem is said to be
in the class ZPP (Zero error probability, Probabilistic, Polynomial time). For
bounded error probability algorithms (measuring the running time as the worst
case instead of average among guesses), the term is BPP. Note that, in the Turing
setting, ZPP ⊆ BPP (cf. for example [DK00, Chapter 8]). As an example, the
primality tests in [SS77, SS78] or [Mil76, Rab80] are BPP, but not ZPP.

Usually the complexity classes as ZPP or BPP are used for decisional problems
(problems with YES/NO answer). It is common to use the term Las Vegas for
the non-decisional version of ZPP.

The algorithm described in the introduction of this paper can be written as

Input: a polynomial system f (normalized such that its norm equals to 1).

Let (d) be the list of degrees of the polynomials in f . Guess at random (g, ζ) ∈
G(d).
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Compute the polygonal path of the Homotopy Deformation in [g,f] (described
in [SS94]).

Output: a projective approximate zero of f (if desired, apply ahd above to obtain
an affine approximate zero of f).

Note that for some input systems, the algorithm may run forever, and no output
will be obtained.

Then, Theorem 1.6 (using Theorem 3.2 below) reads: the average running time of
this algorithm is bounded by a polynomial in the size of the input. More specifically,
there is a constant c such that for every multiindex (d),

Ef∈S(d)
[t(f)] ≤ N c.

Moreover, note that Theorem 1.6 also implies that for every input system f ∈ S(d)

(outside of some zero measure set), the probability that a random choice of (g, ζ) ∈
G(d) leads to an approximate zero of f is exactly equal to 1.

Thus, our algorithm differs from a usual ZPP (or Las Vegas) algorithm in that
the polynomial running time is not the worst-case but average case, and zero-
measure sets can be omitted. In the language of Theoretical Computer Science, the
running time t(N) is not defined as the maximum of the running times for inputs
of length N , but as the average of these running times. Hence, we say that our
algorithm is Average ZPP, or Average Las Vegas. It is not deterministic (as
in probabilistic primality tests cited above) although it is certainly uniform. Thus,
it gives an affirmative answer to Smale’s 17th Problem.

The result as stated asks the algorithm to be able to choose random real numbers
with the normal distribution (which leads to random choice of points in spheres).

2. Notions and notations

Recall that we have fixed a positive integer number n ∈ N that will be the number
of equations in our target systems. For every positive integer number l ∈ N, we fix
some ordering in the set

El = {α = (α0, . . . , αn) ∈ N
n+1 : α0 + · · · + αn = l}.

Then, we define Hl =
∏

α∈El
C. Observe that the vector space Hl may be under-

stood in two different ways:

• as the space of homogeneous polynomial mappings C
n+1 −→ C of degree

l. In fact, for (aα)α∈El
∈ Hl, we may consider the mapping

C
n+1 −→ C

(x0, . . . , xn) 7→ ∑
α=(α0,...,αn)∈El

aαx
α0
0 · · ·xαn

n .

• as the space of polynomial mappings C
n −→ C of degree at most l. In fact,

for (aα)α∈El
∈ Hl, we may consider the mapping

C
n −→ C

(x1, . . . , xn) 7→ ∑
α=(α0,...,αn)∈El

aαx
α1
1 · · ·xαn

n .
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Now, let (d) = (d1, . . . , dn) ∈ N
n be a list of positive integers. We consider the

vector space of systems

H(d) =

n∏

i=1

Hdi
.

As, H(d) may be understood as the set of homogeneous polynomial mappings

C
n+1 −→ C

n of respective degrees given by the list (d1, . . . , dn), or as the set of (not
necessarily homogeneous) polynomial mappings C

n −→ C
n of degrees bounded by

the same list.
We may denote by f, g, . . . the elements in H(d). We denote by N+1 the complex

dimension of H(d). Namely,

N + 1 = dim(H(d)) = dim(Hd1
) + · · · + dim(Hdn

) =

(
n+ d1

n

)
+ · · · +

(
n+ dn

n

)
.

An element f = [f1, . . . , fn] ∈ H(d) is usually given as the list of coefficients of
f1, . . . , fn. Hence, N + 1 may be seen as the size of the input. As said in the
introduction, we denote by d = max{di : 1 ≤ i ≤ n} the maximum of the degrees,
and by D = d1 · · · dn ≤ dn the Bézout number associated with the list (d). From
now on, we assume that d ≥ 2.

We consider H(d) equipped with the Bombieri-Weyl Hermitian product 〈·, ·〉∆.
We denote by ∆ the diagonal matrix given by

∆ = Diag

((
di

α

)−1/2
)

1≤i≤m
α∈Edi

,

where
(
di

α

)
is the multinomial coefficient. Namely,

(
di

α

)
=

di!

α0! · · ·αn!
∈ N.

Then,

〈f, g〉∆ = 〈∆f,∆g〉2, ∀f, g ∈ Hm
(d),

where 〈·, ·〉 is the usual Hermitian product in H(d). The main property of the
Bombieri-Weyl Hermitian product is its unitary invariance (see for example [BCSS98,
Teor. 1, pag 218]): for every unitary matrix U ∈ Un+1, and for every pair of ele-
ments f, g ∈ H(d), we have

(2.1) 〈f, g〉∆ = 〈f ◦ U, g ◦ U〉∆.

For any element f ∈ H(d), we may consider the derivative of f as a linear map.

This concept changes if we see f as a map with domain in C
n+1 or C

n. Hence, if we
consider f : C

n+1 −→ C
n as a homogeneous polynomial mapping, then we denote

by d̂f(x) the derivative of f at x, where x ∈ C
n+1 is a point. On the other hand, if

we consider f : C
n −→ C

n as a (possibly not homogeneous) polynomial mapping,
then we denote by df(x) the derivative of f at x, where x ∈ C

n is a point.
For every ζ ∈ IPn(C), let Vζ be the set of systems that have a projective zero at

ζ. Namely,

Vζ = {f ∈ H(d) : ζ ∈ VIP (f)} ⊆ H(d).
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Let e0 = (1 : 0 : · · · : 0) ∈ IPn(C) be a point that we can fix as a “north pole”. We
will use the following subspaces of H(d):

Le0
= {g = [g1, . . . , gn] ∈ H(d) : gi = Xdi−1

0

n∑

j=1

aijXj , 1 ≤ i ≤ n} ⊆ Ve0
,

L⊥
e0

= {g ∈ Ve0
: 〈g, f〉∆ = 0, ∀f ∈ Le0

} ⊆ Ve0
.

Namely, Le0
is the set of homogeneous systems that have a zero at e0 and are linear

in the variables X1, . . . ,Xn. The set L⊥
e0

may be seen as the set of homogeneous
systems of order 2 at e0.

For an element f ∈ H(d) and a point x ∈ C
n+1, let Txf be the restriction of the

tangent mapping d̂f(x) to the Hermitian complement of x. Namely,

Txf = (d̂f(x)) |x⊥ .

We will also use the mapping

ψe0
: Le0

−→ Mn(C),
g 7→ ∆(d)−1/2Te0

g

where ∆(d)−1/2 is given by the formula

∆(d)−1/2 = Diag(d
−1/2
1 , . . . , d−1/2

n ) ∈ Mn(R).

Observe that ψe0
is a linear isometry (see for example [BCSS98, Lemma 17, page

235]).
We consider IPn(C) equipped with the canonical Riemannian metric. The Rie-

mannian distance between two points x, y ∈ IPn(C) will be denoted by dR(x, y).
As in [BCSS98], we will frequently use the so-called “tangent distance” dT (x, y)
defined as:

dT (x, y) = tan dR(x, y) =

√
‖x‖2‖y‖2

|〈x, y〉|2 − 1,

where some affine representatives of x and y have been chosen. The tangent distance
dT is not quite a distance, as it does not satisfy the triangle inequality. But if x
and y are near (in terms of dR), then dT (x, y) is a good approximation of dR(x, y).

2.1. Some Geometric Integration Theory. The Coarea Formula is a classic
integral formula which generalizes Fubini’s Theorem. The most general version we
know is Federer’s Coarea Formula (cf. [Fed69]), but for our purposes a smooth
version as used in [BCSS98, SS93b] or [How] suffices.

Definition 2.1. Let X and Y be Riemannian manifolds, and let F : X −→ Y
be a C1 surjective map. Let k = dim(Y ) be the real dimension of Y . For every
point x ∈ X such that the differential DF (x) is surjective, let vx

1 , . . . , v
x
k be an

orthonormal basis of Ker(DF (x))⊥. Then, we define the Normal Jacobian of F at
x, NJxF , as the volume in the tangent space TF (x)Y of the parallelepiped spanned
by DF (x)(vx

1 ), . . . ,DF (x)(vx
k). In the case that DF (x) is not surjective, we define

NJxF = 0.

Theorem 2.2 (Coarea Formula). Let X,Y be two Riemannian manifolds of re-
spective dimensions k1 ≥ k2. Let F : X −→ Y be a C1 surjective map, such that
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dF (x) is surjective for almost all x ∈ X. Let ψ : X −→ R be an integrable mapping.
Then,

(2.2)

∫

X

ψ dX =

∫

y∈Y

∫

x∈F−1(y)

ψ(x)
1

NJxF
d(F−1(y)) dY,

where NJxF is the normal jacobian of F at x.

Observe that the integral on the right-hand side of equation (2.2) may be inter-
preted as follows: from Sard’s Theorem, for every y ∈ Y except for a zero measure
set, y is a regular value of F . Then, F−1(y) is a differentiable manifold of dimension
k1−k2, and it inherits from X a structure of Riemannian manifold. Thus, it makes
sense to integrate functions on F−1(y).

The following Proposition is easy to prove (see for example [BCSS98]).

Proposition 2.3. Let X,Y be two Riemannian manifolds, and let F : X −→ Y
be a C1 map. Let x1, x2 ∈ X be two points. Assume that there exist isometries
ϕX : X −→ X and ϕY : Y −→ Y such that ϕX(x1) = x2, and

F ◦ ϕX = ϕY ◦ F.
Then,

NJx1
F = NJx2

F.

Moreover, if F is bijective and G = F−1 : Y −→ X, then

NJxF =
1

NJF (x)G
, x ∈ X.

3. Smale’s 17th Problem: projective solutions.

3.1. The projective Newton operator. The normalized condition number of
[SS93a] is defined as follows. For f ∈ H(d) and z ∈ IPn(C),

(3.1) µnorm(f, z) = ‖f‖∆‖(Tzf)−1Diag(‖z‖di−1d12
i )‖2,

and µnorm(f, z) = +∞ if Tzf is not onto. Also, µnorm(f, z) = µnorm(λf, ηz) for
every λ, η ∈ C \ {0} (i.e. µnorm depends only on the projective class of f and z).
The following set plays a crucial role in the study of projective Newton operator:

Σ′ = {(f, ζ) ∈W : det(Tzf) = 0},
where W is the incidence variety defined in the Introduction. Observe that Σ′

(usually called the Discriminant variety) consists of the set of pairs (f, ζ) ∈W such
that ζ is a singular solution of f . Let π1 : W −→ H(d) \ {0} be the projection
onto the first coordinate. Then, the set of critical points of π1 is exactly Σ′ (cf.
[BCSS98], [SS93b]).

3.2. NHD in the space of systems. Let f, g ∈ S(d) be two polynomial systems,
f 6= ±g, and let ζ ∈ IPn(C) be a solution of g. Let [g, f ] be the segment joining g
and f . Namely,

[g, f ] = {tf + (1 − t)g, t ∈ [0, 1]} ⊆ H(d).

We also use the notation (g, h) to represent the corresponding “open interval”.
Namely, [g, f ] = {tf + (1 − t)g, t ∈ (0, 1)} ⊆ H(d). The following result is a
consequence of the Implicit Function Theorem (cf. for example [BCSS98]).
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Proposition 3.1. Let (f, g, ζ0) ∈ H(d)×W be such that ‖f‖∆ = ‖g‖∆ = 1, f 6= ±g.
Let Γ(f, g, ζ0) be the connected component of π−1

1 ([g, f ]) ⊆W that contains the point
(g, ζ0). If Γ(f, g, ζ0) ∩ Σ′ = ∅, then it is a smooth curve. Moreover, for each h ∈
[g, f ], there exists a unique solution ζ ′0 ∈ VIP (h) of h such that (h, ζ ′0) ∈ Γ(f, g, ζ0).

Proof. Let p = π1 |Γ(f,g,ζ0): Γ(f, g, ζ0) −→ [g, f ] be the restriction of π1 to Γ(f, g, ζ0).
Note that both Γ(f, g, ζ0) and [g, f ] are Haursdoff, compact and path-wise con-
nected. Thus, the image of p is a closed interval inside [g, f ], and the Implicit
Function Theorem applied to π1 implies that p is surjective. Now, p is obviously
proper and we conclude that it is a covering map (see for example [Ho75]) and a
global homeomorphism. The proposition immediately follows. �

In the hypothesis of Proposition 3.1, let ζ = (π1 |Γ(f,g,ζ0))
−1(f) be the (unique)

solution of f that belongs to Γ(f, g, ζ0). The following result is one of the main
outcomes of the series of papers due to Shub and Smale (cf. [SS94, Prop. 7.2]).

Theorem 3.2 (Shub & Smale). Let 0 ≤ ν ≤ 1 and (g, ζ0) ∈W . Let f ∈ S(d)\{±g}.
Then,

k ≤ c(µnorm(f, g, ζ0))
2−νD2νd3/2

steps of projective Newton operator, starting from (g, ζ0), are sufficient to produce
an approximate zero z of f . Moreover, the (true) projective zero associated with z
is ζ and

(3.2) dT (z, ζ)) ≤ 3 −
√

7

2d3/2µnorm(f, ζ)
.

3.3. Proof of Theorem 1.4. Let (g, ζ0) be an efficient initial pair, and let β =
1

log2 D . From Definition 1.3,

Ef∈S(d)
[µnorm(f, g, ζ)2−β ] ≤ 105n5N2d3/2 log2 D.

From Theorem 3.2, taking ν = β so that D2ν is a universal constant, we conclude
that the average number of steps of the hd with initial pair (g, ζ0) is at most

cd3/2Ef∈S(d)
[µnorm(f, g, ζ0))

2−β ] ≤ cn5N2d3 log2 D,
as wanted.

3.4. Further properties of strong questor sets. In this subsection we will
prove Theorem 1.6. We will use a well-known fact from probability theory (for a
proof see for example [BP07b, Lemma 43]).

Lemma 3.3. Let ξ be a positive real valued random variable such that for every
positive real number t > 0

Prob[ξ > t] < ct−α,

where Prob[·] holds for Probability, and c > 0, α > 1 are some positive constants.
Then,

E[ξ] ≤ c
1
α

α

α− 1
.

Lemma 3.4. Let X,Y be two probability spaces and let X × Y be endowed with
the product probability measure. Let ξ : X × Y −→ [0,∞) be a positive real random
variable and let

T : X × (0,∞) −→ [0, 1]
(x, ε) 7→ Proby∈Y [ξ(x, y) > ε−1]
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Assume that for every ε > 0 we have

Ex∈X [T (x, ε)] ≤ Kε2,

for some K ≥ 1 independent of ε. Then, for every 0 < β < 2,

EX×Y [ξ2−β ] ≤ 2K

β

Proof. Let t > 0. Fubini’s Theorem yields

Prob(x,y)∈X×Y [ξ(x, y)2−β > t] =

∫

x∈X

Proby∈Y [ξ(x, y)2−β > t]dX =

∫

x∈X

T (x, t
−1
2−β )dX ≤ Kt

−2
2−β .

From Lemma 3.3, we conclude that

E(x,y)∈X×Y [ξ(x, y)2−β ] ≤ K
2−β

2
2

β
≤ 2K

β
.

�

3.4.1. Proof of Theorem 1.6. Apply Lemma 3.4 withX = G, Y = S(d) and ξ((g, ζ), f) =
µnorm(f, g, ζ). �

3.5. The family of good initial pairs. Now we recall the description of the
strong questor set for initial pairs found in [BP08]. Let

Y = [0, 1] ×B1(L⊥
e0

) ×B1(Mn×(n+1)(C)) ⊆ R × C
N+1,

where B1(L⊥
e0

) is the closed ball of radius one in L⊥
e0

for the canonical Hermit-

ian metric and B1(Mn×(n+1)(C)) is the closed ball of radius one in the space of
n × (n + 1) complex matrices for the standard Frobenius norm. We assume that
Y is endowed with the product of the respective Riemannian structures and the
corresponding measures and probabilities.

Let τ ∈ R be the real number given by

τ =

√
n2 + n

N
,

and let us fix any (a.e. continuous) mapping φ : Mn×(n+1)(C) −→ Un+1 such that
for every matrix M ∈ Mn×(n+1)(C) of maximal rank, φ associates a unitary matrix
φ(M) ∈ Un+1 satisfying Mφ(M)e0 = 0. In other words, φ(M) transforms e0 into a
vector in the kernel Ker(M) of M . Our statements below are independent of the
chosen mapping φ that satisfies this property. There are several different ways to
define this mapping φ, using simple procedures from Linear Algebra. Observe that
the first column of the matrix Mφ(M) is zero. Namely,

Mφ(M) = (0 C),

where C ∈ Mn(C) is a square matrix. As no confusion is possible, we also denote
by Mφ(M) the matrix C.

Then, we consider the associated system

ψ−1
e0

(Mφ(M)) ∈ Le0
⊆ H(d),

where ψe0
is as defined in Section 2.
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Then, we define a mapping G(d) : Y −→ Ve0
as follows. For every (t, h,M) ∈ Y ,

let

G(d)(t, h,M) =
(
1 − τ2t

1
n2+n

)1/2 ∆−1h

||h||2
+ τt

1
2n2+2nψ−1

e0

(
Mφ(M)

||M ||F

)
∈ Ve0

.

Finally, we define the set G(d) ⊆W as

G(d) = {(g, e0) ∈W : ∃y ∈ Y,G(d)(y) = g}.
Namely, G(d) is the set of pairs (g, ζ) ∈ H(d) × IPn(C) such that ζ = e0 and g is in
the image of Y under G(d). The probability distribution in G(d) is the one inherited
from Y by G(d). Namely, in order to choose a random point in G(d) we choose a
random point y ∈ Y and we consider the pair (G(d)(y), e0) ∈ G(d).

As said in the introduction, the main result in [BP08] is Theorem 1.8 and in
that paper the authors use it to describe an algorithm that computes a projec-
tive approximate zero of systems f ∈ H(d) in polynomial time, assuming a small
probability of failure.

4. Smale’s 17th Problem: affine solutions.

Now we turn to the case of affine solutions of systems of polynomial equations.
Our space of inputs is again H(d) (or the sphere S(d)), and we look for affine ap-
proximate zeros (points in C

n) of our systems.

4.1. From projective to affine approximate zeros. In this section, we will
show how to obtain an affine approximate zero of f from the information contained
in a projective approximate zero of f . We start with the following result, which is
a consequence of the γ and µ theories of Shub & Smale (cf. for example [Sma86,
SS93a, Ded06]).

Proposition 4.1. With the notations above, let ζ = (ζ0 : · · · : ζn) ∈ IPn(C) be a
projective zero of f , such that ζ0 6= 0, and let z = (z0 : · · · : zn) ∈ IPn(C) be a
projective point such that z0 6= 0. Assume that

‖ϕ−1
0 (z) − ϕ−1

0 (ζ)‖ ≤ 3 −
√

7

d3/2µnorm(f, ζ)
.

Then, ϕ−1
0 (z) is an affine approximate zero of f , with associated zero ϕ−1

0 (ζ).

Proof. From [Sma86, Th C], it suffices to prove that

‖ϕ−1
0 (z) − ϕ−1

0 (ζ)‖ ≤ 3 −
√

7

2γ(f, ϕ−1
0 (ζ))

,

where γ(f, ϕ−1
0 (ζ)) is the quantity defined in [Sma86]. Now, from [SS93a, Prop. 3

of Section I.3 and Th. 2 of Section I.4] we know that

(4.1) γ(f, ϕ−1
0 (ζ)) ≤ d3/2

2
µnorm(f, ζ),

and the proposition follows. Note that the notation in [SS93b] is slightly different,
as µnorm is denoted µproj. See also [BP07a, Prop. 3.4] for a proof of equation (4.1).

�

Lemma 4.2. Let v, w ∈ C
n be two complex vectors. Then,

‖v − w‖2 ≤ (1 + ‖v‖2)(1 + ‖w‖2) − |1 + 〈v, w〉|2.
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Proof. Let R and I be the respective real and imaginary parts of 〈v, w〉. On one
hand, we have

‖v − w‖2 = 〈v − w, v − w〉 = ‖v‖2 + ‖w‖2 − 2R.

On the other hand,

(1 + ‖v‖2)(1 + ‖w‖2) − |1 + 〈v, w〉|2 = (1 + ‖v‖2)(1 + ‖w‖2) − |1 +R+
√
−1I|2 =

(1+‖v‖2)(1+‖w‖2)−(1+R)2−I2 = 1+‖v‖2+‖w‖2+‖v‖2 ‖w‖2−1−2R−(R2+I2) =

‖v‖2 + ‖w‖2 − 2R+ ‖v‖2 ‖w‖2 − |〈v, w〉|2

Hence,

(1 + ‖v‖2)(1 + ‖w‖2)− |1 + 〈v, w〉|2 = ‖v−w‖2 + ‖v‖2 ‖w‖2 − |〈v, w〉|2 ≥ ‖v−w‖2,

as wanted. �

Lemma 4.3. Let ζ = (ζ0 : · · · : ζn), z = (z0 : · · · : zn) ∈ IPn(C) be two projective
points, such that ζ0, z0 6= 0. Then,

‖ϕ−1
0 (z) − ϕ−1

0 (ζ)‖ ≤ (1 + ‖ϕ−1
0 (ζ)‖ ‖ϕ−1

0 (z)‖) dT (z, ζ).

Proof. We denote v = ϕ−1
0 (ζ), w = ϕ−1

0 (z). Then, the point (1, v) ∈ C
n+1 is a

representative of ζ and the point (1, w) ∈ C
n+1 is a representative of z. Hence,

‖v − w‖2

dT (z, ζ)2
=

‖v − w‖2

‖(1,v)‖2‖(1,w)‖2

|〈(1,v),(1,w)〉|2 − 1
=

‖v − w‖2

‖(1, v)‖2‖(1, w)‖2 − |〈(1, v), (1, w)〉|2 |〈(1, v), (1, w)〉|2 =

‖v − w‖2

(1 + ‖v‖2)(1 + ‖w‖2) − |1 + 〈v, w〉|2 |1 + 〈v, w〉|2.

From Lemma 4.2, we conclude that

‖v − w‖2

dT (z, ζ)2
≤ |1 + 〈v, w〉|2.

Thus,

‖v − w‖
dT (z, ζ)

≤ |1 + 〈v, w〉| ≤ 1 + |〈v, w〉| ≤ 1 + ‖v‖‖w‖,

as wanted. �

Lemma 4.4. Let ζ = (ζ0 : · · · : ζn) and z = (z0 : · · · : zn) be two projective points
such that ζ0 6= 0, and let ε ≥ 0 be such that dT (z, ζ) ≤ ε. Moreover, assume that

(4.2) dR(ζ, e0) + ε <
π

2
.

Then, z0 6= 0 and

‖ϕ−1
0 (z) − ϕ−1

0 (ζ)‖ ≤ 1 + ‖ϕ−1
0 (ζ)‖2

1 − ‖ϕ−1
0 (ζ)‖ε ε.
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Proof. Let βz = dR(z, e0) and βζ = dR(ζ, e0) be the respective Riemannian dis-
tances from z, ζ to e0. Observe that

βz ≤ βζ + dR(z, ζ) ≤ βz + dT (z, ζ) ≤ βz + ε.

Moreover,

‖ϕ−1
0 (z)‖ = tanβz, ‖ϕ−1

0 (ζ)‖ = tanβζ .

Now, tan is an increasing function in [0, π
2 ). From inequality (4.2), we conclude,

‖ϕ−1
0 (z)‖ ≤ tan(βζ + dR(z, ζ)) =

tanβζ + dT (z, ζ)

1 − tanβζdT (z, ζ)
≤ ‖ϕ−1

0 (ζ)‖ + ε

1 − ‖ϕ−1
0 (ζ)‖ε .

From Lemma 4.3, we conclude that

‖ϕ−1
0 (z) − ϕ−1

0 (ζ)‖ ≤
(

1 + ‖ϕ−1
0 (ζ)‖ ‖ϕ−1

0 (ζ)‖ + ε

1 − ‖ϕ−1
0 (ζ)‖ε

)
ε,

and the lemma follows. �

The following result yields a method to obtain an affine approximate zero of f
from a projective approximate zero of f , if some properties are satisfied.

Proposition 4.5. Let f ∈ H(d). Let ζ ∈ VIP (f) be a projective zero of f , ζ0 6=
0, and let z = (z0, . . . , zn) ∈ IPn(C) be a projective approximate zero of f with
associated zero ζ, such that

dT (z, ζ) ≤ 3 −
√

7

d3/2µnorm(f, ζ)
.

Let zk = N̂
(k)
f (z), where k ∈ N is such that

k ≥ log2 log2(4(1 + ‖ϕ−1
0 (ζ)‖2)).

Then,

‖ϕ−1
0 (zk) − ϕ−1

0 (ζ)‖ ≤ 3 −
√

7

d3/2µnorm(f, ζ)
.

In particular (from Proposition 4.1), ϕ−1
0 (zk) is an affine approximate zero of f

with associated zero ϕ−1
0 (ζ).

Proof. From the definition of projective approximate zero,

dT (zk, ζ) ≤ 1

22k−1
dT (z, ζ) ≤ 1

2(1 + ‖ϕ−1
0 (ζ)‖2)

3 −
√

7

d3/2µnorm(f, ζ)
.

The reader may check that we are under the hypotheses of Lemma 4.4. We conclude
that

‖ϕ−1
0 (zk) − ϕ−1

0 (ζ)‖ ≤ 1 + ‖ϕ−1
0 (ζ)‖2

1 − ‖ϕ−1
0 (ζ)‖ε ε,

where ε = 1
2(1+‖ϕ−1

0 (ζ)‖2)
3−

√
7

d3/2µnorm(f,ζ)
. The proposition easily follows. �
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4.2. The average size of affine solutions. Proposition 4.5 yields a way of ob-
taining an affine approximate zero ϕ−1

0 (y) of f from a projective approximate zero
of f with associated zero ζ. However, we need to control ‖ϕ−1

0 (ζ)‖ in order to
estimate the number of steps of the projective Newton operator necessary to guar-
antee that ϕ−1

0 (y) is really an affine approximate zero of f . Now we dedicate some
paragraphs to study the probability distribution of ‖ϕ−1

0 (ζ)‖ under our hypotheses.

Lemma 4.6. Let 1 − 2n ≤ α < 2. Then,

1

ν[IPn(C)]

∫

x∈IPn(C)

‖ϕ−1
0 (x)‖α dIPn(C) =

Γ
(
1 − α

2

)
Γ
(
n+ α

2

)

Γ(n)
,

where ν[IPn(C)] = πn/Γ(n+ 1) is the volume of the complex projective space.

Proof. In [BP07b, Lemma 21], the authors proved that

NJxϕ0 =
1

(1 + ‖x‖2)n+1
.

Then, from Theorem 2.2 we have
∫

x∈Cn

‖x‖α

(1 + ‖x‖2)n+1
dCn =

∫

z∈IPn(C)

‖ϕ−1
0 (z)‖αdIPn(C).

On the other hand, using polar coordinates,
∫

x∈Cn

‖x‖α

(1 + ‖x‖2)n+1
dCn =

2πn

Γ(n)

∫ ∞

0

t2n−1+α

(1 + t2)n+1
dt =

πn

Γ(n)

Γ
(
1 − α

2

)
Γ
(
n+ α

2

)

Γ(n+ 1)
.

The lemma follows, as

ν[IPn(C)] =
πn

Γ(n+ 1)
.

�

Theorem 4.7. Let 1 − 2n ≤ α < 2. Let Bα
(d) be the expected value of the norm

of the affine solutions of a random system of polynomial equations, powered to α.
Namely,

Bα
(d) =

1

ν∆[S(d)]

∫

f∈S(d)

1

D
∑

ζ∈VIP (f)

‖ϕ−1
0 (ζ)‖α dS(d).

Then,

Bα
(d) =

Γ
(
1 − α

2

)
Γ
(
n+ α

2

)

Γ(n)
.

Proof. Let

Iα
(d) =

∫

f∈S(d)

∑

ζ∈VIP (f)

‖ϕ−1
0 (ζ)‖α dS(d).

Observe that
Iα

(d) = ν∆[S(d)]DBα
(d),

(4.3) I0
(d) = ν∆[S(d)]D.

In fact, equality (4.3) is due to the fact that a generic system f ∈ H(d) has exactly D
projective solutions (cf. for example [BCSS98]). Let Ŵ = {(f, ζ) ∈ S(d) × IPn(C) :

ζ ∈ VIP (f)} be the incidence variety intersected with S(d) × IPn(C). Ŵ is a (real)

manifold of real dimension 2N + 1 (see for example [BP08]). Let p1 : Ŵ −→ S(d)
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and p2 : Ŵ −→ IPn(C) be the canonical projections. Then, from Theorem 2.2
applied to p1, we have that

Iα
(d) =

∫

(f,x)∈Ŵ

‖ϕ−1
0 (x)‖αNJ(f,x)p1 dŴ .

Moreover, from Theorem 2.2 applied to p2,∫

(f,x)∈Ŵ

‖ϕ−1
0 (x)‖αNJ(f,x)p1 dŴ =

∫

x∈IPn(C)

∫

f∈p−1
2 (x)

‖ϕ−1
0 (x)‖αNJ(f,x)p1

NJ(f,x)p2
dp−1

2 (x) dIPn(C).

where for x ∈ IPn(C), p−1
2 (x) ⊆ S(d)×{x} may be identified with the set of systems

that have x as a projective zero. We conclude,

(4.4) Iα
(d) =

∫

x∈IPn(C)

‖ϕ−1
0 (x)‖α

∫

f∈p−1
2 (x)

NJ(f,x)p1

NJ(f,x)p2
dp−1

2 (x) dIPn(C).

Let x ∈ IPn(C) be a projective point and let U ∈ Un+1 be a unitary matrix such
that Ue0 = x. From equality (2.1), the mapping from p−1

2 (x) onto p−1
2 (e0) sending

each (f, x) to the pair (f ◦ U, e0) is an isometry. Moreover, from Proposition 2.3,
for every f ∈ p−1

2 (e0), we have that NJ(f,e0)pi = NJ(f◦U−1,x)pi, i = 1, 2. Hence,
from Theorem 2.2 we have that∫

f∈p−1
2 (x)

NJ(f,x)p1

NJ(f,x)p2
dp−1

2 (x) =

∫

f∈p−1
2 (e0)

NJ(f◦U−1,x)p1

NJ(f◦U−1,x)p2
dp−1

2 (e0) =

∫

f∈p−1
2 (e0)

NJ(f,e0)p1

NJ(f,e0)p2
dp−1

2 (e0),

and we conclude that the inner integral in equation (4.4) does not depend on the
choice of x ∈ IPn(C). Hence,

Iα
(d) =

(∫

f∈p−1
2 (e0)

NJ(f,e0)p1

NJ(f,e0)p2
dp−1

2 (e0)

) ∫

x∈IPn(C)

‖ϕ−1
0 (x)‖αdIPn(C).

First, assume that α = 0. Then, from equation (4.3),

ν∆[S(d)]D = I0
(d) = ν[IPn(C)]

∫

f∈p−1
2 (e0)

NJ(f,e0)p1

NJ(f,e0)p2
dp−1

2 (e0),

and we obtain that
∫

f∈p−1
2 (e0)

NJ(f,e0)p1

NJ(f,e0)p2
dp−1

2 (e0) =
ν∆[S(d)]D
ν[IPn(C)]

.

We conclude that

Iα
(d) =

ν∆[S(d)]D
ν[IPn(C)]

∫

x∈IPn(C)

‖ϕ−1
0 (x)‖αdIPn(C).

Hence,

Bα
(d) =

1

ν[IPn(C)]

∫

x∈IPn(C)

‖ϕ−1
0 (x)‖α dIPn(C).

The theorem follows from Lemma 4.6. �

An immediate consequence of Theorem 4.7 is the following result.
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Corollary 4.8. Let δ > 0. Let Pδ be the probability that a randomly chosen system
f ∈ S(d) has an affine solution ζ ∈ VC(f) with ‖ζ‖ > δ. Then,

Pδ ≤ DΓ
(
1 − α

2

)
Γ
(
n+ α

2

)

Γ(n)δα
.

Here, α ∈ [0, 2) is any positive real number.

Proof. Observe that

Ef∈S(d)

[
max

ζ∈VC(f)
‖ζ‖α

]
≤ 1

ν∆[S(d)]

∫

f∈S(d)

∑

ζ∈VIP (f)

‖ϕ−1
0 (ζ)‖α dS(d).

From Theorem 4.7, this last term equals

DΓ
(
1 − α

2

)
Γ
(
n+ α

2

)

Γ(n)
.

From Markov’s Inequality, for every positive real number δ > 0, we conclude,

Probf∈S(d)
[∃ζ ∈ VCn(f) : ‖ζ‖ ≥ δ] =

Probf∈S(d)
[∃ζ ∈ VCn(f) : ‖ζ‖α ≥ δα] ≤ DΓ

(
1 − α

2

)
Γ
(
n+ α

2

)

Γ(n)δα
.

�

Corollary 4.9. Let δ > 0. Let Pδ be the probability that a randomly chosen system
f ∈ S(d) has an affine solution ζ ∈ VC(f) with ‖ζ‖ > δ. Then,

Pδ ≤ D√
πn

δ
, δ > 0,

Pδ ≤ eD n

δ2
ln

(
δ2

n

)
, δ ≥ e

√
n.

Proof. This comes directly from Corollary 4.8, using that

Γ
(
n+ α

2

)

Γ(n)
≤ nα/2, α ∈ [1, 2)

(cf. for example [EGP00]). We also use that

Γ
(
1 − α

2

)
≤ 2

2 − α
, α ∈ [1, 2).

For the first inequality of the corollary, let α = 1. For the second one, let

α = 2
ln
(

δ2

n

)
− 1

ln
(

δ2

n

) .

�

Theorem 1.9 in the Introduction is a weak form of this Corollary 4.9. For the
purposes of numerical solving of systems of equations, the result as stated in the
Introduction suffices.
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4.3. Proof of Theorem 1.10. Let A1,A2 be the average number of arithmetic
operations of the first and the second part of the algorithm, respectively. Observe
that

Total average number of arith. ops = A1 + A2.

Moreover, from Theorem 1.4, we know that A1 ≤ cn6N3d3 log2 d log2 D. For A2,
let

Qi ≤ cnNi log2 d ≤ cN2i

be the number of arithmetic operations required to perform i loops of the algorithm.
Note that, depending on the method we use to perform the α-test, it may require
to compute some extra Newton steps. This may increase the total complexity by
at most a small constant factor. Let Ri be the probability that we reach the i-th
loop of the second part of the algorithm. Then,

A2 ≤
∞∑

i=1

RiQi ≤ cN2
∞∑

i=1

iRi.

Now, from Proposition 4.5, the set of systems that are solved in the i-th step of the

algorithm contains the set of systems f ∈ S(d) such that ‖ϕ−1
0 (ζ)‖2 ≤ 22i−2 − 1, for

every ζ ∈ VIP (f). Thus, from Theorem 1.9,

Ri ≤ min

{
1,

D√
πn

22i−1−2 − 1

}
≤ min

{
1,

6D√
πn

22i−1

}
, ∀i ≥ 2.

We conclude that

A2 ≤ cN2




⌈log2 log2 D⌉∑

i=1

i+ D√
πn

∞∑

i=1+⌈log2 log2 D⌉

i

22i−1



 ≤ cN2
√
n(2 + log2 log2 D)2.

Note that
N2

√
n(2 + log2 log2 D)2 ≤ cn6N3d3 log2 d log2 D,

for any choice of n and the list of degrees (d). Thus, A2 ≤ cA1 and the theorem
follows.

�
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22 CARLOS BELTRÁN AND LUIS MIGUEL PARDO

[CMP92] F. Cucker, J. L. Montaña, and L. M. Pardo, Time bounded computations over the reals,
Internat. J. Algebra Comput. 2 (1992), no. 4, 395–408.

[CMP95] , Models for parallel computation with real numbers, Number-theoretic and al-
gebraic methods in computer science (Moscow, 1993), World Sci. Publ., River Edge,
NJ, 1995, pp. 53–63.

[Coo85] Stephen A. Cook, A taxonomy of problems with fast parallel algorithms, Inform. and

Control 64 (1985), no. 1-3, 2–22.
[Ded97] J.P. Dedieu, Estimations for the separation number of a polynomial system, J. Symbolic

Comput. 24 (1997), no. 6, 683–693.

[Ded01] , Newton’s method and some complexity aspects of the zero-finding problem,
Foundations of computational mathematics (Oxford, 1999), London Math. Soc. Lecture
Note Ser., vol. 284, Cambridge Univ. Press, Cambridge, 2001, pp. 45–67.
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Depto. de Matemáticas, Estad́ıstica y Computación. Fac. de Ciencias. Avda. Los

Castros s/n. 39005 Santander, Spain.
E-mail address: beltranc@unican.es
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