CÁLCULO INTEGRAL

(1º de los Grados en Matemáticas y en Física, Universidad de Cantabria) RECUPERACIÓN DEL EXAMEN FINAL, 6 DE SEPTIEMBRE DE 2016

Examen de teoría.

Las cuestiones C_1 y C_2 sirven para recuperar la nota del primer parcial. Las cuestiones C_3 y C_4 sirven para recuperar la nota del segundo parcial.

RESPONDER DE FORMA RAZONADA A LAS SIGUIENTES CUESTIONES

- C_1) Decir si son ciertas las afirmaciones
 - a) Todo camino de clase \mathscr{C}^1 a trozos es también una suma de caminos de clase \mathscr{C}^1 .
 - b) Toda suma de caminos de clase \mathscr{C}^1 es también un camino de clase \mathscr{C}^1 a trozos.
 - c) Todo camino es suma de caminos de clase \mathscr{C}^1 a trozos.
- C_2) Sean R un cuadrado contenido en \mathbb{R}^2 y $h:[0,1] \longrightarrow R$ una función continua. A partir de los resultados dados en el curso, ¿qué podemos decir sobre la integrabilidad Riemann de una función acotada $f:R \longrightarrow \mathbb{R}$ que sea continua en todos los puntos de R excepto en los de
 - (a) la circunferencia inscrita en R;
 - (b) los cuatro lados de R;
 - (c) los puntos de la imagen h([0,1])?

(Responder por separado a cada uno de los tres casos.)

- C_3) Suponemos que tenemos una superficie Σ y una parametrización suya $\Phi: D \longrightarrow \mathbb{R}^3$. Para cada una de estas hipótesis, decir si se puede asegurar que Σ es orientable:
 - A) D es una región simple y Φ es inyectiva y regular en todos los puntos de D, incluidos los de ∂D .
 - B) Además de lo anterior, los parámetros coinciden con las coordenadas y, z.
- C_4) Sea Σ^+ una superficie contenida en \mathbb{R}^3 y dotada de una orientación; y sea $\mathbf{F}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ un campo vectorial de clase \mathscr{C}^1 . Dar una fórmula que permita convertir $\iint_{\Sigma^+} \mathbf{F} \cdot d\mathbf{S}$ en una integral de un campo escalar sobre Σ .
- C_5) Explicar por qué la fórmula de Stokes puede considerarse una generalización de la fórmula de Green-Riemann.

CÁLCULO INTEGRAL

$(1^{\underline{o}}$ de los Grados en Matemáticas y en Física, Universidad de Cantabria)

RECUPERACIÓN DEL EXAMEN FINAL, 6 DE SEPTIEMBRE DE 2016

Examen de problemas.

El problema P_1 sirve para recuperar la nota del primer parcial.

El problema P_3 sirve para recuperar la nota del segundo parcial.

Entregar cada problema por separado

- ${\bf P_1}$) Sea D la región de \mathbb{R}^2 encerrada por la parábola $y=4-x^2$ y el eje X. Elegir una orientación para ∂D y calcular $\int_{\partial D^+} x^2 y^2 \, dx + x^3 y \, dy$.
- $\mathbf{P_2}$) Sea Σ la superficie en \mathbb{R}^3 definida por

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, z \le 0\},\$$

con la orientación de las normales hacia afuera de la esfera. Se
a \boldsymbol{F} el campo en \mathbb{R}^3 definido por

$$F(x, y, z) = i + j + (z - xy)k.$$

Calcular $\iint_{\Sigma^+} \mathbf{F} \cdot d\mathbf{S}$.

 P_3) Sea W la región de \mathbb{R}^3 definida por las desigualdades

$$2z^2 - x^2 < y^2$$
, $z^2 - x^2 > y^2 - 1$, $y > 0$.

Calcular $\iiint_W (y^2 + 1) dV$.

P₄) Sea $W = \{(x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} \le z \le 2 - x^2 - y^2\}$ y consideremos en ∂W la orientación de las normales hacia adentro. Sea F el campo en \mathbb{R}^3 definido por

$$\mathbf{F}(x, y, z) = -x\mathbf{i} + z^3\mathbf{j} + y^3\mathbf{k}.$$

Calcular $\iint_{\partial W^+} \mathbf{F} \cdot d\mathbf{S}$.