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Abstract

We give a complete description of the linear isometries between spaces of vector-
valued bounded continuous functions defined on some natural families of topological
spaces which can be neither compact nor locally compact. A similar study is carried
out for spaces of vector-valued bounded uniformly continuous functions.
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1 Introduction

The aim of this paper is the study, in some natural contexts, of linear isometries
between spaces of bounded continuous functions. A classical result in this
theory is the following: if X and Y are compact and Hausdorff and T : C(X) →
C(Y ) is a surjective linear isometry, then there exist a homeomorphism φ
from Y onto X and a ∈ C(Y ) with |a(y)| = 1 for every y ∈ Y such that
(Tf)(y) = a(y)f(φ(y)) for every f ∈ C(X) and every y ∈ Y .

The above theorem has some vector-valued counterparts, and has been broadly
studied. In particular, for compact X and Y , if E is a Banach space satisfying
a special condition (namely, having trivial centralizer), then every linear isom-
etry from C(X, E) onto C(Y, E) is a strong Banach-Stone map (see definition
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in Section 2), that is, in that case we can obtain a description of the map. This
result can be extended to maps defined between spaces of continuous functions
vanishing at infinity on locally compact spaces (see for instance [6]; see also
[14] for recent results concerning local isometries, and [15] for related results).
In general, results in this direction always include some kind of compactness
of the topological spaces among the hypotheses.

Notice that if no conditions on compactness are required, then for spaces
of bounded continuous functions Cb(X) and Cb(Y ), a linear isometry T :
Cb(X) → Cb(Y ) always leads to a homeomorphism between βX and βY (the
Stone-Čech compactifications of X and Y ), as elements in Cb(X) and Cb(Y )
can be extended to elements in C(βX) and C(βY ). Consequently, no direct
link between X and Y can be given, and the natural context to study such
isometries is that of compact spaces.

In this paper, we will see that the behaviour in the vector-valued case is
essentially different, and in many important cases X and Y must be home-
omorphic (see Theorem 3.2). Also, when E and F are infinite-dimensional,
we show that the natural framework to carry out the study of linear isome-
tries between spaces of bounded continuous functions Cb(X, E) and Cb(Y, F )
is not that of compact spaces, but one containing a wider family of sets, as
it is that of realcompact spaces (see Remark in Section 3). In our approach,
we will take advantage of our study of biseparating maps in previous papers
([1,2]) to describe such isometries (see also [3,12] for related results in the
(locally) compact case). Similar techniques can be used to study linear isome-
tries between spaces of bounded uniformly continuous functions, providing in
this case a special description of them (some papers dealing with the case of
scalar-valued uniformy continuous functions have appeared recently, [4,9,11]).

We want to mention also that the only results related to isometries between
spaces Cb(X, E) and Cb(Y, F ) (for X and Y not locally compact) which seem
to have made its way in the literature so far are contained in [5], where the
author gives a representation of such isometries in the case when X and Y are
complete metric spaces and E = F is a Hilbert space. This situation will be a
particular case of our Context 3 (see next section).

For a systematic account on isometries between spaces of continuous functions
and related topics, the reader is referred for instance to [13] and the new book
[8].
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2 Definitions and notation

Throughout the paper K will be the field of real or complex numbers. E and
F will be K-Banach spaces.

For a completely regular space X, Cb(X, E) denotes the space of E-valued
bounded continuous functions on X. When E = K, Cb(X) := Cb(X, K).

On the other hand, if X is also a complete metric space, Cu
b (X, E) denotes the

space of uniformly continuous bounded functions defined on X, taking values
in E. Also in this case Cu

b (X) := Cu
b (X, K).

Both Cb(X, E) and Cu
b (X,E) are endowed with the sup norm.

Also, if e ∈ E, then ê denotes the constant function from X to E taking the
value e.

The contexts. Our results will be valid (with the same proof) for different
kinds of spaces. For this reason we first consider several situations to work in.

From now on we will assume that we are in one of the following four contexts.
All definitions, results and comments given in this paper apply to these four
contexts unless otherwise stated.

• Context 1. E and F are infinite-dimensional. X and Y are realcompact.
A(X, E) = Cb(X, E), A(Y, F ) = Cb(Y, F ).

• Context 2. E and F are infinite-dimensional. X and Y are completely
regular, and all points of X and Y are Gδ-points. A(X,E) = Cb(X,E),
A(Y, F ) = Cb(Y, F ).

• Context 3. X and Y are completely regular and first countable. A(X,E) =
Cb(X, E), A(Y, F ) = Cb(Y, F ).

• Context 4. X and Y are complete metric spaces. A(X, E) = Cu
b (X, E),

A(Y, F ) = Cu
b (Y, F ).

This means that when we refer to spaces X, Y , A(X, E), A(Y, F ), we assume
that all of them are included at the same time in one of the above four contexts.
A(X, K) will have the natural meanings, that is, A(X, K) = Cb(X, K) in
Contexts 1–3, and A(X, K) = Cu

b (X, K) in Context 4. A similar comment
applies to A(Y, K).

We next adapt Lemma 3.1 from [1] and give the following result.

Lemma 2.1 Let α, β ∈ R satisfy 0 < α < β. Suppose that f : X → [0, +∞)
belongs to A(X, K), and that the sets U := {x ∈ X : f(x) ≤ α} and V :=
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{x ∈ X : f(x) ≥ β} are both nonempty. Then there exists g ∈ A(X, K) such
that 0 ≤ g ≤ 1, g ≡ 0 on U , and g ≡ 1 on V .

Given f ∈ A(X, E), we define the cozero set of f as

c(f) := {x ∈ X : f(x) 6= 0}.

Definition 2.1 A map T : A(X, E) → A(Y, F ) is said to be separating if it is
additive and c(Tf)∩c(Tg) = ∅ whenever f, g ∈ A(X, E) satisfy c(f)∩c(g) = ∅.
Besides T is said to be biseparating if it is bijective and both T and T−1 are
separating.

As for the spaces of linear functions, L(E, F ) and I(E, F ) stand for the space
of continuous linear maps from E to F and the set of all linear isometries
from E onto F , respectively. We consider that both L(E, F ) and its subset
I(E, F ) are endowed with the strong operator topology, that is, the coarsest
topology such that the mappings S ↪→ Se are continuous for every e ∈ E (see
for instance [7]).

Definition 2.2 A surjective linear isometry T : A(X,E) → A(Y, F ) is said to
be a strong Banach-Stone map if there exist a continuous map J : Y → I(E, F )
and a surjective homeomorphism φ : Y → X such that for every f ∈ A(X, E)
and y ∈ Y , (Tf)(y) = (Jy)(f(φ(y)). In Context 4, a strong Banach-Stone
map T : Cu

b (X, E) → Cu
b (Y, F ) is said to be uniform if both φ and φ−1 are

uniformly continuous.

Multipliers and centralizer. For a Banach space B, we denote by ExtB the
set of extreme points of the closed unit ball of its dual B′.

Definition 2.3 Given a Banach space B, a continuous linear operator T :
B → B is said to be a multiplier if every p ∈ ExtB is an eigenvector for the
transposed operator T ′, i.e. if there is a function aT : ExtB → K such that
p ◦ T = aT (p)p for every p ∈ ExtB.

Definition 2.4 Let B be a Banach space. Given two multipliers T, S : B →
B, we say that S is an adjoint for T if aS = aT , that is, if aS coincides with
aT when K = R, and with the complex conjugate of aT when K = C.

The centralizer of B is the set of those multipliers T : B → B for which an
adjoint exists.

When it exists, the adjoint operator for T , which must be unique, will be
denoted by T ∗. On the other hand, the centralizer of B will be denoted by
Z(B) (notice that when K = R, the centralizer of B consists of the set of all
multipliers of B).
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Given h ∈ A(X, K), we define the operator Mh : A(X, E) → A(X, E) as
Mh(f) := hf for each f ∈ A(X, E).

3 Main results

We first state a proposition which will be crucial to prove the main result of the
paper. It is not the first time that the relation ”linear isometry-biseparating
map” is used to prove Banach-Stone theorems between spaces of vector-valued
continuous functions defined on (locally) compact spaces (see for instance [12],
where the case of E and F strictly convex or with strictly convex dual is
covered; see also [3] for related results).

Proposition 3.1 Suppose that Z(E) and Z(F ) are one-dimensional. If T :
A(X, E) → A(Y, F ) is a surjective linear isometry, then T is biseparating.

Finally we state our main result.

Theorem 3.2 Suppose that Z(E) and Z(F ) are one-dimensional. If T : A(X,E) →
A(Y, F ) is a surjective linear isometry, then it is a strong Banach-Stone map.
If we are in Context 4, it is also uniform.

Remark. Suppose that X and Y are any completely regular spaces (not neces-
sarily included in Contexts 1–4), and E and F are infinite-dimensional Banach
spaces. It is easy to see that the proof of Proposition 3.1 (see next section) is
also valid to show that if T : Cb(X, E) → Cb(Y, F ) is a surjective linear isome-
try, then it is a biseparating map. According to [2, Theorem 3.4], we have that
the realcompactifications of X and Y are homeomorphic. We conclude that
the natural setting to study such isometries for infinite-dimensional E and F
is that where X and Y are realcompact.

Consequently Theorem 3.2 cannot be stated in general if we assume that our
spaces are not included in Contexts 1–4. Example 1 below shows that even
if X satisfies to be included in one of our contexts and Y is included in a
different one, then the theorem is no longer valid. As for Example 2, we see
that in Context 2, the fact that E and F are infinite-dimensional is essential
to get the description given in Theorem 3.2. Finally, in Example 3, we see that
in Context 4, the requirement of completeness of X and Y is necessary to get
the homeomorphism φ given in Theorem 3.2.

• Example 1. Take X = W (ω1) := {σ : σ < ω1}, where ω1 denotes the first
uncountable ordinal ([10, 5.12]), and let Y be its Stone-Čech compactifica-
tion, which coincides with its realcompactification. It is clear that X is first
countable and completely regular (but not realcompact). Suppose E = l2,
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which satisfies that Z(E) is one-dimensional. Since E is realcompact ([10,
8.2]), every f ∈ Cb(X,E) can be extended to a map f ′ ∈ Cb(Y,E).

• Example 2. Take X = N and Y = N ∪ {σ}, where σ ∈ βN \ N. Clearly
each f ∈ Cb(X) admits a continuous extension f ′ : Y → K. We have that
X and Y are not homeomorphic (see [10, 4M]).

• Example 3. Take X = (0, 1), Y = [0, 1], and E any Banach space. It is easy
to see that each f ∈ Cu

b (X, E) can be extended to a map f ′ ∈ Cu
b (Y, E).

In the three examples above, the operator sending each f into its extension f ′

turns out to be a surjective linear isometry which is not a strong Banach-Stone
map.

4 Proofs

With a proof similar to that of [6, Proposition 4.7 (i)], we have the following
result.

Lemma 4.1 For each h ∈ A(X, K), the operator Mh belongs to Z(A(X, E)).

Notice that when K = C, given p ∈ ExtA(X,E), its real part Rep belongs
to ExtA(X,E)R

(where A(X, E)R is A(X, E) viewed as a real space). Next,
considering the real and imaginary parts of h, Reh and Imh, we have that
(Rep)◦MRe h = aMReh

(Rep)Rep and (Rep)◦MIm h = aMImh
(Rep)Rep. Taking

into account that p(f) = Rep(f) − iRep(if) for every f ∈ A(X,E), it is
straightforward to see that aMh

(p) = aMReh
(Rep) + iaMImh

(Rep). We deduce
that the adjoint for Mh is Mh.

Next we are going to see that the converse of Lemma 4.1 is also true when
Z(E) is trivial (i. e., one-dimensional). Previously we will state the following
lemma, whose proof is easy.

Lemma 4.2 Let r, s ∈ (0, 1] satisfy s > 1− r/100. Let α, β ∈ K be such that
α/β ∈ (−∞, 0). If |α| , |β| > r/3, then either |s− α| > 1 or |s− β| > 1.

Lemma 4.3 Suppose that Z(E) is one-dimensional. Given an operator T ∈
Z(A(X,E)), there exists h ∈ A(X, K) such that T = Mh.

Proof. Suppose that T ∈ Z(A(X, E)). Then there exists a map

aT : ExtA(X,E) → K

such that q ◦ T = aT (q)q for every q ∈ ExtA(X,E).
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For x ∈ X, define Tx : E → E as Txe := (T ê)(x) for each e ∈ E, that is,
Tx = ex ◦ T ◦ i, where ex : A(X, E) → E is the evaluation map at x, and
i : E → A(X, E) is the natural embedding.

Claim 1. If p ∈ ExtE and x0 ∈ X, then p ◦ ex0 ∈ ExtA(X,E).

Suppose that p ◦ ex0 = αp1 + (1 − α)p2, where p1, p2 are points in the closed
unit ball of the dual space A(X, E)′, and 0 < α < 1. We have to prove that
p1 = p2 = p ◦ ex0 .

Notice thatA(X, E) can be expressed as the direct sum of the closed subspaces
E1 := {ê : e ∈ E} and E2 := {f ∈ A(X,E) : f(x0) = 0}. It is easy to see that
if we define, for i = 1, 2, qi : E → K as qi(e) := pi(ê) for every e ∈ E, then q1

and q2 belong to the closed unit ball of E ′. Clearly we have that, for e ∈ E,

p(e) = (p ◦ ex0)(ê)

= αp1(ê) + (1− α)p2(ê)

= αq1(e) + (1− α)q2(e),

that is, p = αq1 +(1−α)q2. Next, since p ∈ ExtE, we deduce that q1 = q2 = p.
This implies that p1 = p2 = p ◦ ex0 in the subspace E1. Our next step will be
to prove that p1 = p2 = 0 in the subspace E2.

We clearly have that, in E2,

p2 = α0p1,

where α0 := α/(α − 1) < 0. Assume without less of generality that |α0| ≥ 1,
that is, 1− α ≤ α (otherwise we would work with p2 instead of p1). Suppose
that there exists f0 ∈ E2 with ‖f0‖ = 1 and r := p1(f0) > 0. Next take e ∈ E
with ‖e‖ = 1 and such that p(e) > 1 − r/100. By Lemma 2.1, we can find
g ∈ A(X, K), 0 ≤ g ≤ 1, such that g({x0}) = 1 and

g({x ∈ X : ‖f0(x)‖ ≥ r/100}) ≡ 0.

Suppose now that t := p1((1− g)e) ∈ K satisfies |t| > r/3. Then we have that
also |p2((1− g)e)| = |α0t| > r/3, and by Lemma 4.2, either

|p1(ge)| = |p(e)− t| > 1

or

|p2(ge)| = |p(e)− α0t| > 1,
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which is impossible because ‖ge‖ ≤ 1 and ‖pi‖ ≤ 1 (i = 1, 2).

Consequently |t| ≤ r/3 and |p1(ge)| ≥ 1− r/100− r/3. Next, multiplying by
a number of modulus one if necessary, we may assume that p1(ge) > 0. Thus,
‖f0 + ge‖ ≤ 1 + r/100 and

p1(f0 + ge) ≥ r + 1− r

100
− r

3
> 1 +

r

100
,

which contradicts the fact that ‖p1‖ ≤ 1.

As a consequence p1 = p2 = p ◦ ex0 , and p ◦ ex0 ∈ ExtA(X,E). The claim is
proved.

Claim 2. For x0 ∈ X, Tx0 belongs to Z(E).

By Claim 1, if p ∈ ExtE, then (p ◦ ex0) ◦ T = aT (p ◦ ex0)p ◦ ex0 , which gives us
that, for every f ∈ A(X, E),

p((Tf)(x0)) = aT (p ◦ ex0)p(f(x0)).

Consequently we have that, whenever p ∈ ExtE and e ∈ E,

p(Tx0(e)) = aT (p ◦ ex0)p(e).

In this way, if we define aTx0
: ExtE → K as aTx0

(p) := aT (p ◦ ex0), then we
will have that, for every p ∈ ExtE,

p ◦ Tx0 = aTx0
(p)p.

As a consequence, Tx0 is a multiplier.

But notice that working as above we can prove that the operator ex0 ◦ T ∗ ◦ i :
E → E is also a multiplier. On the other hand it is straightforward to see that
(in the complex setting) it is the adjoint for Tx0 . Consequently Tx0 belongs to
Z(E), and the claim is proved.

Now, as Z(E) = KIdE (where IdE : E → E stands for the identity map on
E), we have that, for each x ∈ X, there exists ax ∈ K such that Tx = axIdE,
and this implies clearly that, for every p ∈ ExtE, aTx(p) = ax, that is, aTx is a
constant function for each x ∈ X.
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Thus, given f ∈ A(X,E), we saw above that, for every p ∈ ExtE, p((Tf)(x)) =
aT (p ◦ ex)p(f(x)), that is,

p((Tf)(x)) = axp(f(x)) = p(axf(x)).

This implies that

(Tf)(x) = axf(x),

because ExtE separates the points of E. Since this is true for every x ∈ X,
we conclude that, if we define h : X → K as h(x) := ax for each x ∈ X, then
Tf = hf for every f ∈ A(X, E). Finally, since for e ∈ E \ {0}, T ê = hê
belongs to A(X, E), we deduce that h ∈ A(X, K). Consequently we can say
that T = Mh. 2

The proof of the following lemma is an adaptation of the one given in [6,
Lemma 4.13 (i)].

Lemma 4.4 If T : A(X, E) → A(Y, F ) is a surjective linear isometry, then
for each h ∈ A(Y, K), the map T̂Mh, defined as (T̂Mh)(f) := T−1(hTf) for
each f ∈ A(X, E), belongs to Z(A(X, E)).

Proof. First notice that the transposed operator (T−1)′ : A(X, E)′ → A(Y, F )′

is a linear surjective isometry, and consequently it maps ExtA(X,E) onto ExtA(Y,F ).
So, for p ∈ ExtA(X,E), (T−1)′(p) belongs to ExtA(Y,F ), and then, by Lemma 4.1,
it is clear that ((T−1)′(p)) ◦Mh = aMh

((T−1)′(p)) · (T−1)′(p). But this means
that, for every p ∈ ExtA(X,E), p ◦ (T−1 ◦ Mh ◦ T ) = aMh

(p ◦ T−1) · p. As a
consequence, if we define aT−1◦Mh◦T (p) := aMh

(p ◦ T−1), then we have that
T−1 ◦Mh ◦ T is a multiplier.

So the lemma is proved if K = R. Now, if K = C, we just have to find an
adjoint for T−1 ◦Mh ◦ T . But notice that if h ∈ A(Y, K), then h also belongs
to A(Y, K). We deduce that, in the same way as above, T−1 ◦Mh ◦ T is also a
multiplier and, for every p ∈ ExtA(X,E), aT−1◦M

h
◦T (p) = aM

h
(p ◦ T−1). Finally,

since the adjoint for Mh is Mh, as we remarked after Lemma 4.1, we conclude
that T−1 ◦Mh ◦ T is the adjoint for T−1 ◦Mh ◦ T , and we are done. 2

Proof of Proposition 3.1. Clearly, it is enough to prove that T−1 is separating,
because a similar argument allows us to conclude that T is also separating.

Suppose that g1 and g2 in A(Y, F ) \ {0} satisfy c(g1) ∩ c(g2) = ∅, and take
x0 ∈ X with

r :=
∥∥∥(T−1g1)(x0)

∥∥∥ > 0.
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We will see that (T−1g2)(x0) = 0. First, by Lemma 2.1, we can take k ∈
A(Y, K) such that 0 ≤ k ≤ 1, k ≡ 1 on {y ∈ Y : ‖g1(y)‖ ≥ r/2} and k ≡ 0 on
{y ∈ Y : ‖g1(y)‖ ≤ r/3}. Now define g′1 := kg1. It is clear that ‖g′1 − g1‖ ≤
r/2. Consequently, as T−1 is an isometry, we see that (T−1g′1)(x0) 6= 0. Next,
using again Lemma 2.1, take h ∈ A(Y, K), 0 ≤ h ≤ 1, such that h ≡ 0 on

{y ∈ Y : ‖g1(y)‖ ≤ r/4},

and h ≡ 1 on

{y ∈ Y : ‖g1(y)‖ ≥ r/3}.

It is clear that hg′1 = g′1 and hg2 = 0.

On the one hand, by Lemma 4.4 we know that T̂Mh ∈ Z(A(X,E)), and then
by Lemma 4.3 T̂Mh = Mf for some f ∈ A(X, K), that is,

(T̂Mh)(T
−1g′1) = fT−1g′1

and

(T̂Mh)(T
−1g2) = fT−1g2.

On the other hand, by definition,

(T̂Mh)(T
−1g′1) = T−1(hg′1) = T−1g′1

and

(T̂Mh)(T
−1g2) = T−1(hg2) = 0.

This implies that fT−1g′1 = T−1g′1 and fT−1g2 = 0, which gives us that f ≡ 1
on c(T−1g′1) and f ≡ 0 on c(T−1g2). We deduce that x0 /∈ c(T−1g2). It is easy
to see now that T−1 is separating, as we wanted to see. 2

Now we are in a position to prove the main theorem. But first, let us recall a
necessary result from [1].

Theorem 4.5 ([1, Theorem 3.5 and Corollary 4.3]) Suppose that T : A(X, E) →
A(Y, F ) is a linear and continuous biseparating map. Then there exist a sur-
jective homeomorphism φ : Y → X and a continuous map J : Y → L(E, F )
such that (Tf)(y) = (Jy)(f(φ(y)) for every f ∈ A(X, E) and y ∈ Y ; also Jy
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is bijective for every y ∈ Y . On the other hand, if we are in Context 4, then
φ is also a uniform homeomorphism.

Proof of Theorem 3.2. Since T is biseparating, we can use the description given
in Theorem 4.5, and we have just to prove that, for each y ∈ Y , Jy ∈ I(E, F ).
Take any y ∈ Y and e ∈ E. Then ‖(Jy)(e)‖ = ‖(T ê)(y)‖. We are going to see
that ‖(T ê)(y)‖ = ‖e‖. Of course, if this is not the case for some y0 ∈ Y , then
‖(T ê)(y0)‖ < ‖e‖. Let

r ∈ (‖(T ê)(y0)‖ , ‖e‖).

Next, using Lemma 2.1, we can take g ∈ A(Y, K) such that 0 ≤ g ≤ 1, g ≡ 0
on {y ∈ Y : ‖(T ê)(y)‖ ≥ r}, and g(y0) = 1. It is clear that there exists α > 0
such that ‖(1 + αg(y))(T ê)(y)‖ ≤ ‖e‖ for every y ∈ Y , that is,

‖T ê + αgT ê‖ ≤ ‖e‖ .

Now, if f0 ∈ A(X, E) satisfies Tf0 = αgT ê, then since g(y0) = 1,

(Tf0)(y0) = αg(y0)(T ê)(y0) = (Tαê)(y0).

We deduce that (T (f0 − αê))(y0) = 0, which implies by Theorem 4.5 that
(Jy0)(f0(φ(y0))−αe) = 0. As a consequence, since Jy0 is bijective, f0(φ(y0)) =
αe and

‖ê + f0‖≥‖(ê + f0)(φ(y0))‖
= ‖(1 + α)e‖
> ‖e‖ ,

which contradicts the fact that T is an isometry. We conclude ‖(T ê)(y)‖ = ‖e‖
for every y ∈ Y , and we are done. 2
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