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We give a complete description of linear biseparating maps between spaces of vector-
valued differentiable functions. This description automatically implies continuity of
such maps.
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1 Introduction

It is well known that an algebraic link between spaces of continuous functions
may lead to a topological link between the spaces on which the functions
are defined. For instance, it turns out that if there exists a ring isomorphism
T : C(X) → C(Y ), then the realcompactifications of X and Y are homeomor-
phic ([16, pp. 115-118]). Also if h is the resultant homeomorphism from the
realcompactification of Y onto that of X, then Tf = f ◦h for every f ∈ C(X),
so we have a complete description of it. As a result, when X and Y are re-
alcompact, we deduce that if both spaces of continuous functions C(X) and
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C(Y ) are endowed with the compact-open topology, then every ring isomor-
phism between them is continuous. In this result, the key point is that every
ring isomorphism sends maximal ideals into maximal ideals. This implies that
a good description of maximal ideals lead to the definition of a map from Y
onto X.

Of course, the pattern above has been successfully applied to many other
algebras of functions. However the situation becomes more complicated if we
consider spaces of functions which take values in arbitrary Banach spaces.
In this context and unlike algebra or ring homomorphisms, we can still use
mappings satisfying the property ‖Tf‖ ‖Tg‖ ≡ 0 if and only if ‖f‖ ‖g‖ ≡ 0.
These maps are called biseparating, and coincide with disjointness preserving
mappings whose inverses preserve disjointness too ([1]). In general these maps
turn out to be efficacious substitutes for homomorphisms. Indeed, in [2], we
prove that the existence of a biseparating mapping between a large class of
spaces of vector-valued continuous functions A(X,E) and A(Y, F ) (E, F are
Banach spaces) yields homeomorphisms between some compactifications (and
even the realcompactifications) of X and Y . The automatic continuity of a
linear biseparating mapping is also accomplished in some cases (see [3,4]).
Related results have also been given recently, for some other families of scalar-
valued functions, for instance, in [5,15,19] and [20]. In this paper, we go a step
beyond and work in a context which does not seem to have made its way into
the literature yet, namely, linear operators between spaces of differentiable
functions taking values in arbitrary Banach spaces.

As for spaces (indeed algebras) of scalar-valued differentiable functions, Myers
([25]) showed that the structure of a compact differentiable manifold of class
Cn is determined by the algebra of all real-valued functions on M of class
Cn. In this line, Pursell ([28]) checked that the ring structure of infinitely
differentiable functions defined on an open convex set of R

n determines such
set up to a diffeomorphism. Homomorphisms between algebras of differentiable
functions defined on real Banach spaces have been studied by Aron, Gómez
and Llavona ([6]); in their paper a description of homomorphisms is given
and the automatic continuity is obtained as a corollary in quite a general
setting, which includes in particular the case when the Banach spaces are
finite-dimensional (see also [17]).

On the other hand, automatic continuity results for algebras of differentiable
functions have been also given for instance in [7,21,24,26] and [27]. In particu-
lar, automatic continuity of separating maps defined on spaces of differentiable
functions has been studied by Kantrowitz and Neumann in [22]. For classical
results and techniques in the study of automatic continuity, see [10] and [29],
and the recent book [11] by H. G. Dales.
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2 Preliminaries and notation

Let E be a real Banach space. If λ = (λ1, λ2, . . . , λp) is a p-tuple of non-
negative integers, we set |λ| := λ1 + λ2 + . . . + λp. If Ω is a nonempty open
subset of Rp, then Cn(Ω, E) consists of the E-valued functions f in Ω that are
of class Cn, that is, those functions whose partial derivatives

∂λf :=
∂λ1+λ2+...+λpf

∂xλ1
1 ∂xλ2

2 . . . ∂x
λp
p

exist and are continuous for each λ = (λ1, λ2, . . . , λp) ∈ Λ, where Λ := {λ ∈
(N∪{0})p : |λ| ≤ n}. It is well known that, if for Lk(Rp, E) we denote the space
of continuous k-R-linear maps of Rp into E, then Cn(Ω, E) coincides with the
space of maps f : Ω → E such that the differential Dkf : Ω → Lk(Rp, E)
exists and is continuous for each k = 0, . . . , n. It is well known that, when it
exists at a point a ∈ Ω, the differential Dkf(a) ∈ Lk(Rp, E) is a symmetric
form of degree k.

Now, given a map f ∈ Cn(Ω, E), we define its Taylor polynomial function of
degree n at a ∈ Ω as

Ta(x) := f(a) + Df(a)(x− a) +
1

2
D2f(a)(x− a, x− a) + . . .

+
1

n!
Dnf(a)(x− a, x− a, . . . , x− a︸ ︷︷ ︸

n

).

In the case when E = R, Cn
c (Ω,R) will denote the subring of Cn(Ω,R) of

functions with compact support.

On the other hand, in the case when Ω is also bounded Cn(Ω̄, E) denotes the
subspace of Cn(Ω, E) of those functions whose partial derivatives up to order
n admit continuous extension to the boundary of Ω.

For a set C ⊂ Rp, clRp C and intRp C denote its closure and its interior in
R

p, respectively. Given x0 ∈ R
p and δ > 0, B(x0, δ) and B̄(x0, δ) stand for

the open and closed balls of center x0 and radius δ, respectively. As for the
norm in Rp, if x = (x1, x2, . . . , xp) belongs to Rp, we set |x| := maxj |xj |. For
i ∈ {1, 2, . . . , p}, xi : Ω → R will be the projection on the i-th coordinate,
that is, xi(t1, t2, . . . , tp) = ti for every (t1, t2, . . . , tp) ∈ Ω.

Notice also that if E is a Banach space over C, it can also be viewed as a
real space, and in this sense we consider defined the space Cn(Ω, E). It is
immediate that all results valid in the real setting hold also in the complex
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case. But being also complex ensures that Cn(Ω, E) is both real and complex
as a linear space, and consequently we can consider both real and complex
linear maps from Cn(Ω, E) into some other vector spaces. This is the reason
why in this paper we will assume that E and F are K-Banach spaces, where
K = R or C.

As for the spaces of linear functions, we will denote by L′(E,F ) and by I ′(E,F )
the sets of (not necessarily continuous) linear maps and bijective linear maps
from E into F , respectively. L(E,F ) and I(E,F ) will denote the spaces of
continuous linear maps and bijective continuous linear maps from E into F .

The context. From now on we will assume that we are in one of the following
two situations. All definitions, results and comments given in this paper apply
to these two situations unless otherwise stated.

• Situation 1. Ω and Ω′ are (not necessarily bounded) open subsets of Rp

and Rq, respectively (p, q ∈ N). An(Ω, E) = Cn(Ω, E) and Am(Ω′, F ) =
Cm(Ω′, F ) (n,m ≥ 1). An(Ω,K) = Cn(Ω,K) and Am(Ω′,K) = Cm(Ω′,K).

• Situation 2. Ω and Ω′ are bounded open subsets of Rp and Rq, respectively
(p, q ∈ N), with the property that intRp clRp Ω = Ω and intRq clRq Ω′ = Ω′.
An(Ω, E) = Cn(Ω̄, E) and Am(Ω′, F ) = Cm(Ω̄′, F ) (n,m ≥ 1). An(Ω,K) =
Cn(Ω̄,K) and Am(Ω′,K) = Cm(Ω̄′,K).

This means that when we refer to spaces Ω, Ω′, An(Ω, E), Am(Ω′, F ), An(Ω,K),
Am(Ω′,K), we assume that all of them are included at the same time in one
of the above two situations.

The topologies. One of the goals of this paper is to provide some results
of automatic continuity. This will be done when the spaces of functions are
endowed with some natural topologies.

Definition 2.1 We say that a locally convex topology in An(Ω, E) is compat-
ible with the pointwise convergence if the following two conditions are satisfied:

• 1. when endowed with it, An(Ω, E) is a Fréchet (or Banach) space, and
• 2. if (fn) is a sequence in An(Ω, E) converging to zero, then (fn(x)) converges

to zero for every x ∈ Ω.

Biseparating maps. For a function f ∈ An(Ω, E), we denote by c(f) the
cozero set of f , that is, the set {x ∈ Ω : f(x) �= 0}.

Definition 2.2 A map T : An(Ω, E) → Am(Ω′, F ) is said to be separating
if it is additive and c(Tf) ∩ c(Tg) = ∅ whenever f, g ∈ An(Ω, E) satisfy
c(f) ∩ c(g) = ∅. Besides T is said to be biseparating if it is bijective and both
T and T−1 are separating.

4



Equivalently, we see that an additive map T : An(Ω, E) → Am(Ω′, F ) is
separating if ‖(Tf)(y)‖ ‖(Tg)(y)‖ = 0 for all y ∈ Ω′ whenever f, g ∈ An(Ω, E)
satisfy ‖f(x)‖ ‖g(x)‖ = 0 for all x ∈ Ω.

Let Ω1 := Ω, Ω′
1 := Ω′ when we are in Situation 1, and Ω1 := Ω̄, Ω′

1 := Ω̄′ if
we are in Situation 2. A point x ∈ Ω1 is said to be a support point of y ∈ Ω′

1

if, for every neighborhood U of x in Ω1, there exists f ∈ An(Ω, E) satisfying
c(f) ⊂ U such that (Tf)(y) �= 0.

In [2], biseparating maps are studied in a more general setting. In particular,
applied to our situation, we have that An(Ω, E) and Am(Ω′, F ) are modules
over the strongly regular rings Cn(Ω1,R) and Cn(Ω′

1,R), respectively (for
the definition of strongly regular ring, see [2]; see also [30, Corollary 1.2] or
[18, Proposition 2.12.5]). According to [2, Corollary 3.2], we conclude that
there exists a homeomorphism h from Ω′

1 onto Ω1 (which implies that in both
Situation 1 and Situation 2 h is a homeomorphism from Ω′ onto Ω). This map
h sends each point in Ω′

1 into its support point in Ω1, and is called support map
for T . It turns out that the support map for T−1 is h−1 (see the proof of [2,
Theorem 3.1]). Rephrasing Lemma 4.4 in [2], we have the following property.

Lemma 2.1 If y ∈ Ω′
1 and f ∈ An(Ω, E) vanishes on a neighborhood of h(y),

then (Tf)(y) = 0.

Functions of class s − Cn. Suppose that K : Ω → L(E,F ) is a continuous
map, where L(E,F ) is endowed with the topology of the norm. For each e ∈ E,
we define Ke : Ω → F as Ke(y) := (Ky)(e) for every y ∈ Ω. We say that K is
of class s − C1 if, for every e ∈ E, the map Ke admits all partial derivatives
of order 1 in Ω, and for each i = 1, . . . , p, the map

∂s

∂xi
K : Ω → L(E,F ),

sending each y ∈ Ω and each e ∈ E into ∂
∂xi

Ke(y), is continuous when consid-
ering in L(E,F ) the strong operator topology, that is, the coarsest topology
such that the mapping A ∈ L(E,F ) ↪→ Ae ∈ F is continuous for every e ∈ E.

Definition 2.3 Let n ≥ 2. A map J : Ω → L(E,F ) is said to be of class
s − Cn if the following two statements are satisfied:

• 1. J is of class Cn−1 (considering L(E,F ) as a Banach space).
• 2. All partial derivatives K : Ω → L(E,F ) of order n − 1 of J are of class

s − C1.

Examples. Next we provide two examples of biseparating linear maps be-
tween spaces of vector-valued functions of class C1. The first example will
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give the most basic form of a biseparating linear map, which is essentially the
only possible when E and F are finite-dimensional spaces, that is, the case
when the operator through which it is defined is itself of class C1. In the sec-
ond example, the biseparating map is defined through an operator which is of
class s − C1 but it is not of class C1.

Example 2.4 Let Ω = Ω′ = (−1, 1), E = F = R
2. For each t ∈ (−1, 1), let

us consider Jt : R2 → R2 defined as

(Jt)(x1, x2) := ((2 + t)x1, (2 − t)x2)

for (x1, x2) ∈ R2. Clearly each Jt is linear, bijective and continuous, being its
inverse Kt : R

2 → R
2 defined as

(Kt)(x1, x2) =
(

x1

2 + t
,

x2

2 − t

)

for every (x1, x2) ∈ R2.

It is easy to see that the derivatives of J : (−1, 1) → L(R2,R2) and K :
(−1, 1) → L(R2,R2) exist and, for (x1, x2) ∈ R2, (J ′t)(x1, x2) = (x1,−x2) and

(K ′t)(x1, x2) =

( −tx1

(2 + t)2
,

tx2

(2 − t)2

)
.

In this way we see that J and K are of class C1. Consequently the map
T ;C1((−1, 1),R2), defined as (Tf)(t) = (Jt)(f(t)) is biseparating (see Propo-
sition 6.1).

Example 2.5 Let Ω = Ω′ = (−1, 1), E = F = c0 be the space of sequences
in K converging to zero, endowed with the sup norm. For each t ∈ (−1, 1), let
us define the map Jt : c0 → c0 as

(Jt)(xn) :=
((

2 +
2n− 1

2n
t

2n
2n−1

)
xn

)

for each (xn) ∈ c0.

It is easy to see that each Jt ∈ I(c0, c0), that is, it is linear, continuous and
bijective, and that its inverse is the map Kt ∈ I(c0, c0) defined as

(Kt)(xn) :=
xn(

2 + 2n−1
2n

t
2n

2n−1

)

for each (xn) ∈ c0.
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Let us see that the map J : (−1, 1) → L(c0, c0) is continuous when L(c0, c0) is
endowed with the norm topology. We are going to show that if 0 < t < t′ < 1,
then ‖Jt− Jt′‖ ≤ 2 |t− t′|. It is clear that we just need to prove that if n ∈ N,

then
∣∣∣t′2n/2n−1 − t2n/2n−1

∣∣∣ ≤ 2 |t′ − t|. Notice that

0≤ t′
2n

2n−1 − t
2n

2n−1

≤ t′
2n

2n−1 + t′t
1

2n−1 − tt′
1

2n−1 − t
2n

2n−1

= (t′ − t)(t′
1

2n−1 + t
1

2n−1 )

≤ 2(t′ − t).

Since a similar reasoning also holds for any t, t′ ∈ (−1, 1), we conclude that J
is continuous. In the same way we can prove that K : (−1, 1) → L(c0, c0) is
continuous.

On the other hand, we have that, for each (xn) ∈ c0, the maps J(xn), K(xn) :
(−1, 1) → c0, defined as J(xn)(t) := (Jt)(xn) and K(xn)(t) := (Kt)(xn) are
derivable, and it can be seen that for each t ∈ (−1, 1),

J ′
(xn)(t) = (t

1
2n−1xn)

and

K ′
(xn)(t) =

− t
1

2n−1xn(
2 + 2n−1

2n
t

2n
2n−1

)2

 =

− J ′
(xn)(t)(

2 + 2n−1
2n

t
2n

2n−1

)2

 .

Now, let us define J ′
s, K

′
s : (−1, 1) → L(c0, c0) as J ′

s(t)(xn) := J ′
(xn)(t) and

K ′
s(t)(xn) := K ′

(xn)(t) for each t ∈ (−1, 1) and each (xn) ∈ c0. It is straightfor-
ward to see that, for every (xn) ∈ c0, the maps J ′

(xn) and K ′
(xn) are continuous,

which is to say that J ′
s and K ′

s are continuous when L(c0, c0) is endowed with
the strong operator topology. We conclude that J and K are of class s − C1.

Finally notice that, when L(c0, c0) is endowed with the topology of the norm,
then ‖J ′

s(t)‖ = 1 for every t ∈ (−1, 1) \ {0}, which implies that J ′
s is not

continuous at t = 0.

If we define now the map T : C1((−1, 1), c0) → C1((−1, 1), c0) as

(Tf)(t) := (Jt)(f(t)),

it turns out that T is well-defined (see Proposition 6.1), and it is routine
matter to check that it is biseparating.
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3 Some previous results

Lemma 3.1 Suppose that a0, a1, . . . , ak ∈ Cn(Ω, E), and that f : Ω ×R → E
is a polynomial in t defined as

f(x, t) =
k∑

i=0

ai(x)ti

for every (x, t) ∈ Ω × R. Then f ∈ Cn(Ω × R, E).

Proof. It is immediate from the fact that all partial derivatives up to order
n exist and are continuous. ✷

Lemma 3.2 Suppose that f, g ∈ Cn(Ω, E) and k : Ω → R satisfy

f(x) = k(x)g(x)

for every x ∈ Ω. If g(x) �= 0 for every x ∈ Ω, then k ∈ Cn(Ω,R).

Proof. Fix x0 ∈ Ω. We are going to prove that k is of class Cn in a neigh-
borhood of x0. First we take f ′ : E → R linear and continuous, and such
that f ′(g(x0)) �= 0. Since f ′ and g are continuous, then there exists an open
neighborhood U of x0 such that

f ′(g(x)) �= 0

for every x ∈ U .

Now

f ′(f(x)) = k(x)f ′(g(x))

for every x ∈ U . This implies that, for every x ∈ U ,

k(x) =
f ′(f(x))

f ′(g(x))
,

which is the quotient of two real-valued functions of class Cn.

This proves that k is of class Cn. ✷

The proof of the following result is straightforward.
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Lemma 3.3 Suppose that f ∈ Cn(Ω, E), a ∈ Ω, and 1 ≤ k ≤ n. Then the
k-th derivative of the Taylor polynomial function Ta of degree n of f is equal
to the Taylor polynomial function of degree n− k of Dkf at a.

The following theorem, known as Whitney’s extension theorem, can be found,
for instance, in [12, Theorem 3.1.14].

Theorem 3.4 Suppose n ∈ N, A is a closed subset of Rp, and to each a ∈ A
corresponds a polynomial function

Pa : R
p → E

with degree Pa ≤ n. Whenever C ⊂ A and δ > 0 let ρ(C, δ) be the supremum
of the set of all numbers∥∥∥DiPa(b) −DiPb(b)

∥∥∥ · |a− b|i−n · (n− i)!

corresponding to i = 0, . . . , n and a, b ∈ C with 0 < |a− b| ≤ δ.

If ρ(C, δ) → 0 as δ → 0+ for each compact subset C of A, then there exists a
map g : R

p → E of class Cn such that

Dig(a) = DiPa(a)

for i = 0, . . . , n and a ∈ A.

Proposition 3.5 Let p ≥ 2. For s ∈ R, s > 0, consider the following compact
subsets of Rp:

A := {(x1, x2, . . . , xp) ∈ R
p :

p∑
i=2

x2
i ≤ x2

1/9, |x1| ≤ s},

A+ := {(x1, x2, . . . , xp) ∈ A : x1 ≥ 0},

and

A− := {(x1, x2, . . . , xp) ∈ A : x1 ≤ 0}.

Suppose that Ω is an open subset of Rp containing A and that f belongs to
Cn(Ω, E). If

∂λf(0, 0, . . . , 0) = 0
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for every λ ∈ Λ, then there exists a function f+ ∈ Cn(Ω, E) with compact
support such that, for λ ∈ Λ,

∂λf+(x) = ∂λf(x)

for every x ∈ A+, and

∂λf+(x) = 0

for every x ∈ A−.

Proof. Suppose that for x ∈ A, Tx stands for the polynomial function of
degree n given in the Taylor formula for f at x. Now for a ∈ A−, we consider
as Pa the polynomial identically zero, and for a ∈ A+, we consider as Pa the
polynomial Ta. As it is seen for instance in [9, Theorem 2.71] or [23, p. 350],
if r > 0 and |b− a| < r, we have that

‖Ta(b) − f(b)‖ ≤ |b− a|n
n!

sup
|x−a|≤r

‖Dnf(x) −Dnf(a)‖ .

Now it is easy to see that, by Lemma 3.3, for i ∈ {1, 2, . . . , n},

∥∥∥DiTa(b) −Dif(b)
∥∥∥ ≤ |b− a|n−i

(n− i)!
sup

|x−a|≤r
‖Dnf(x) −Dnf(a)‖ .

This proves that if |b− a| < r,∥∥∥DiTa(b) −Dif(b)
∥∥∥ · |b− a|i−n · (n− i)! ≤ sup

|x−a|≤r
‖Dnf(x) −Dnf(a)‖

for i ∈ {0, 1, . . . , n}. Then we define τ(r) as the supremum of the set of all
numbers

sup
|x−a|≤r

‖Dnf(x) −Dnf(a)‖

for x, a ∈ A, which is a real number, because A is compact. Clearly, since Dnf
is continuous, if r tends to zero, τ(r) tends to zero. Now suppose that a and
b belong to A and 0 < |b− a| ≤ r. Then we have the following possibilities:

• a, b ∈ A+. Then we have that, by Lemma 3.3, for i ∈ {0, 1, . . . , n},

DiPb(b) = Dif(b)
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and consequently∥∥∥DiPa(b) −DiPb(b)
∥∥∥ =

∥∥∥DiTa(b) −Dif(b)
∥∥∥ .

• a, b /∈ A+. Then∥∥∥DiPa(b) −DiPb(b)
∥∥∥ = 0.

• a /∈ A+, b ∈ A+. Note that since we are assuming by hypothesis that
Dif(0, 0, . . . , 0) = 0, then DiP0(b) = 0 for all i ∈ {0, 1, . . . , n}. Consequently∥∥∥DiPa(b) −DiPb(b)

∥∥∥=
∥∥∥DiPb(b)

∥∥∥
=
∥∥∥DiP0(b) −DiPb(b)

∥∥∥
=
∥∥∥DiT0(b) −Dif(b)

∥∥∥ .
• a ∈ A+, b /∈ A+. Then we have that∥∥∥DiPa(b) −DiPb(b)

∥∥∥=
∥∥∥DiTa(b)

∥∥∥
≤
∥∥∥DiTa(b) −Dif(b)

∥∥∥ +
∥∥∥Dif(b)

∥∥∥
=
∥∥∥DiTa(b) −Dif(b)

∥∥∥ +
∥∥∥Dif(b) −DiT0(b)

∥∥∥ .
Note that in the third and forth cases above, |a| , |b| ≤ |b− a| ≤ r. This implies
that in these two cases

∥∥∥DiPa(b) −DiPb(b)
∥∥∥ · |b− a|i−n · (n− i)!≤ sup

|x−a|≤r
‖Dnf(x) −Dnf(a)‖

+ sup
|x|≤r

‖Dnf(x) −Dnf(0)‖ .

On the other hand it is easy to see that in the other two cases∥∥∥DiPa(b) −DiPb(b)
∥∥∥ · |b− a|i−n · (n− i)! ≤ sup

|x−a|≤r
‖Dnf(x) −Dnf(a)‖ .

This facts imply that, if ρ is defined as in Theorem 3.4, ρ(A, r) ≤ 2τ(r).
Also, it is clear that if C is a compact subset of A, then ρ(C, r) ≤ ρ(A, r).
Consequently by Theorem 3.4, we have that there exists f0 ∈ Cn(Ω, E) such
that, given any λ ∈ Λ,

∂λf0(x) = ∂λf(x)

for every x ∈ A+, and

∂λf0(x) = 0
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for every x ∈ A−. Also it is clear that if we take g0 ∈ Cn
c (Ω,R) such that

g0 ≡ 1 on an open neighborhood of A, then f+ := g0f0 ∈ Cn(Ω, E) satisfies
the requirements of the theorem. ✷

4 Biseparating maps: a first approach

In this section we make a first attempt to describe all biseparating maps, but
we do not take into account some important details which will be discussed
in Section 6. In this way we characterize all biseparating linear maps from
An(Ω, E) onto Am(Ω′, F ) as weighted composition bijective maps. Notice that
we assume no continuity properties on T . In fact, we will suppose that our
spaces An(Ω, E) and Am(Ω′, F ) are not endowed with any topologies.

Lemma 4.1 Suppose that Ω contains the origin, and that T : An(Ω, E) →
Am(Ω′, F ) is a biseparating map. Assume also that f ∈ An(Ω, E) satisfies that
for all λ ∈ Λ,

∂λf(0, 0, . . . , 0) = 0.

If (0, 0, . . . , 0) ∈ Ω is the support point of y ∈ Ω′, then (Tf)(y) = 0.

Proof. First suppose that p > 1 and that the closed ball of center 0 and radius
s is contained in Ω. If we take A+, A− and f+ as in Proposition 3.5, then f+

and f − f+ belong to An(Ω, E) and satisfy f+(x) = 0 and (f − f+)(x) = 0
for every x ∈ A− and for every x ∈ A+ respectively. We have that (Tf)(y) =
(Tf+)(y) + (T (f − f+))(y). Also, since for any neighborhood U of the origin
there exists an open subset V of U such that f+(x) = 0 for every x ∈ V ,
then we have that, taking into account that the support map for T−1 is h−1,
by Lemma 2.1, (Tf+)(h−1(x)) = 0. Since h : Ω′ → Ω is a homeomorphism,
we deduce that (Tf+)(y) = 0 and, in the same way, (T (f − f+))(y) = 0. We
conclude that (Tf)(y) = 0.

Consider now the case when p = 1. Note that if f ∈ An(Ω, E) satisfies f(0) = 0
and 0 = f ′(0) = · · · = f (n)(0), then it is clear that fξ(−∞,0) and fξ(0,+∞)

belong to An(Ω, E) (where ξA stands for the characteristic function of A)
and, as above, (T (fξ(0,+∞)))(y) = 0 = (T (fξ(−∞,0)))(y). We conclude that
(Tf)(y) = 0. ✷

Proposition 4.2 Suppose that T : An(Ω, E) → Am(Ω′, F ) is a K-linear
biseparating map. Then p = q, n = m, and there exist a diffeomorphism h
of class Cn from Ω′ onto Ω and a map J : Ω′ → I ′(E,F ) such that for every
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y ∈ Ω′ and every f ∈ An(Ω, E),

(Tf)(y) = (Jy)(f(h(y))).

Proof. First, the existence of the homeomorphism h (the support map) be-
tween Ω′ and Ω implies that p = q (see for instance [13, p. 120]).

Note that if f ∈ An(Ω, E) and y ∈ Ω′ satisfy

∂λf(h(y)) = 0

for all λ ∈ Λ, then by Lemma 4.1 we have that

(Tf)(y) = 0.

Now take y ∈ Ω′ and fix e ∈ E, e �= 0. If #Λ stands for the cardinal of Λ, then
we can define a linear map Sy : R#Λ → F as follows. Given (aλ1 , . . . , aλ#Λ

) ∈
R#Λ, we consider any f ∈ An(Ω,R) such that

∂λf(h(y)) = aλ

for every λ ∈ Λ. Then we define

Sy(aλ1 , . . . , aλ#Λ
) := (Tfe)(y).

The map Sy is linear and, as we have seen above, does not depend on the
function f we choose. This implies that it is well defined.

Then it is easy to see that there exist functions αλ from Ω′ into F , λ ∈ Λ,
such that for every y ∈ Ω′ and every f ∈ An(Ω,R),

(Tfe)(y) =
∑
λ∈Λ

αλ(y)∂λf(h(y)). (4.1)

From now on we consider i ∈ {1, 2, . . . , p} fixed.

Next we define some functions

α0
i , α

1
i , . . . , α

n+1
i

from Ω′ × R into F . For every y ∈ Ω′ and t ∈ R,

13



α0
i (y, t) := (T ê)(y),

α1
i (y, t) := (Txie)(y) − α0

i (y, t)t,

2!α2
i (y, t) := (Tx2

i e)(y) − α0
i (y, t)t2 − 2α1

i (y, t)t,

3!α3
i (y, t) := (Tx3

i e)(y) − α0
i (y, t)t3 − 3α1

i (y, t)t2 − 6α2
i (y, t)t,

and in general, for k ∈ {1, 2, . . . , n, n + 1}

k!αk
i (y, t) := (Txk

i e)(y) − α0
i (y, t)tk − kα1

i (y, t)tk−1 − k(k − 1)α2
i (y, t)tk−2

− . . .− k!αk−1
i (y, t)t.

Claim 4.1 For l ∈ {0, 1, . . . , n+1}, l!αl
i is a polynomial in t whose coefficients

are a linear combination of T ê, Txie, . . . , Tx
l
ie. Moreover, for y ∈ Ω′ fixed,

the degree of the polynomial l!αl
i(y, t) is at most l. If we also assume that

(T ê)(y) �= 0, then the degree of l!αl
i(y, t) is l and its leading coefficient is equal

to (−1)lα0
i (y, t) (notice that this term does not depend on t).

We are going to prove it by applying induction on l. It is clear that this is
true for l = 0. Suppose that this relation also holds for l ∈ {0, 1, 2, . . . , k} for
some k ≤ n. We are going to see that it holds for l = k + 1. We have that

(k + 1)!αk+1
i (y, t) := (Txk+1

i e)(y) − α0
i (y, t)tk+1

− (k + 1)α1
i (y, t)tk − (k + 1)kα2

i (y, t)t
k−1

− (k + 1)k(k − 1)α3
i (y, t)tk−2

− . . .

− (k + 1)!αk
i (y, t)t,

which implies that it is a polynomial in t and, for fixed y ∈ Ω, its coefficient for
the term tk+1 is α0

i (y, t)(−1+(k+1)−
(

k+1
2

)
+
(

k+1
3

)
−. . .−(k+1)(−1)k), which

is equal to α0
i (y, t)(−(1 − 1)k+1 +

(
k+1
k+1

)
(−1)k+1), that is, to (−1)k+1α0

i (y, t).

Thus the claim is proved.

Now, by Lemma 3.1, we have that for every k ∈ {0, 1, . . . , n + 1}, αk
i belongs

to Cm(Ω′ × R, F ).

Next define α0 := T ê, and for k ∈ {1, 2, . . . , n}, αk := αλ : Ω′ → F , where

λ = (0, 0, . . . , 0, k,︸ ︷︷ ︸
i

0, . . . , 0).

Also, let hi stand for the i-th coordinate function of h.
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Claim 4.2 For every k ∈ {0, 1, . . . , n}, and for every y ∈ Ω′,

αk(y) = αk
i (y, hi(y)).

First we have from Equation 4.1 that for k ∈ {0, 1, . . . , n} and y ∈ Ω′,

(Txk
i e)(y) =

∑
λ∈Λ

αλ(y)∂λxk
i (h(y)),

which can be written as

(Txk
i e)(y) =α0(y)hk

i (y) (4.2)

+ kα1(y)hk−1
i (y)

+ . . .

+ k!αk−1(y)hi(y)

+ k!αk(y),

because

∂λxk
i (h(y)) = 0

whenever λ ∈ Λ, λ �= (0, 0, . . . , j,︸ ︷︷ ︸
i

0, . . . , 0), j ∈ {0, 1, . . . , k}.

On the other hand, it is clear that α0(y) = (T ê)(y) = α0
i (y, hi(y)) for every

y ∈ Ω′. Also suppose that k < n and that αj(y) = αj
i (y, hi(y)) for every

j ∈ {0, 1, . . . , k} and every y ∈ Ω′. Then, by Equation 4.2, for y ∈ Ω′

(k + 1)!αk+1(y) = (Txk+1
i e)(y)

−α0(y)hk+1
i (y)

− (k + 1)α1(y)hk
i (y)

− . . .

− (k + 1)!αk(y)hi(y),

which coincides with (k + 1)!αk+1
i (y, hi(y)), and the claim is proved.

On the other hand, notice that in the same way as we obtain Equation 4.2,
we have

(Txn+1
i e)(y) =α0(y)hn+1

i (y) (4.3)

+ (n + 1)α1(y)hn
i (y)
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+ . . .

+ (n + 1)!αn(y)hi(y)

for every y ∈ Ω′.

Claim 4.3 Suppose that y0 ∈ Ω′ satisfies α0(y0) �= 0. Then for every open
neighborhood U of y0, there exists a nonempty open subset W ′

i of U where hi

is of class Cm.

First we define F 0
i : Ω′ × R → F as F 0

i := (n + 1)!αn+1
i , that is,

F 0
i (y, t) = (Txn+1

i e)(y)

−α0
i (y, t)tn+1

− (n + 1)α1
i (y, t)tn

− (n + 1)nα2
i (y, t)tn−1

− . . .

− (n + 1)!αn
i (y, t)t,

for every y ∈ Ω′, t ∈ R.

Then, if j ∈ {1, 2, . . . , n + 1}, we define F j
i : Ω′ × R → F as

F j
i (y, t) =

∂jF 0
i

∂tj
(y, t),

for all y ∈ Ω′, t ∈ R.

Notice that from the definition of F 0
i , Claim 4.2 and Equation 4.3, we deduce

that

F 0
i (y, hi(y)) = 0

for every y ∈ Ω′. Also, as we stated in Claim 4.1, the coefficients of F 0
i as a

polynomial of degree n + 1 in t are linear combinations of

(T ê)(y), (Txie)(y), . . . , (Txn+1
i e)(y),

and consequently, by Lemma 3.1, for k ∈ {1, 2, . . . , n}, F k
i belongs to Cm(Ω′×

R, F ).

Taking into account that F n+1
i (y, t) = (n + 1)!(−1)n+1α0(y) for every (y, t) ∈

Ω′ × R, and the fact that α0(y0) �= 0, there exists k0 ∈ {0, 1, . . . , n} such that
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F k0
i (y, hi(y)) = 0 for every y in a neighborhood of y0 and F k0+1

i (y, hi(y)) takes
a value different from 0 for some y in every neighborhood of y0. Suppose then
that U is an open neighborhood of y0 such that F k0

i (y, hi(y)) = 0 for every
y ∈ U and that y1 ∈ U satisfies F k0+1

i (y1, hi(y1)) = f ∈ F , f �= 0. Now take
f ′ in the dual space F ′ (where F is wiewed as a real Banach space) such that
f ′(f) �= 0. According to the Implicit Function Theorem ([14, p.148]), there
exist a neighborhood V of (y1, hi(y1)), an open neighborhood W of y1, and a
function φ : W → R of class Cm such that φ(y1) = hi(y1) and

{(y, t) ∈ V : f ′ ◦ F k0
i (y, t) = 0} = {(y, φ(y)) : y ∈ W}.

It is easy to prove that this implies that φ ≡ hi on a neighborhood W ′
i of y1,

that is, for every open neighborhood U of y0, there exists an open subset W ′
i

of U where hi is of class Cm. The claim is proved.

Since both T and T−1 are biseparating, we can assume from now on, without
loss of generality, that n ≤ m.

Claim 4.4 Suppose that U is a nonempty open subset of Ω′. Then there exists
a nonempty open subset W ′ of U such that the restriction of h to W ′ is a
diffeomorphism of class Cm.

Notice first that the the open set {y ∈ Ω′ : α0(y) �= 0} is dense in Ω′. Otherwise
we could find g ∈ Am(Ω′, F ), g �= 0, such that c(T ê)∩ c(g) = c(α0)∩ c(g) = ∅.
Since T−1 is separating, this would give us Ω∩ c(T−1g) = c(ê)∩ c(T−1g) = ∅,
which is impossible.

So far we have considered i ∈ {1, 2, . . . , p} fixed. Of course a similar process
can be done for every i ∈ {1, 2, . . . , p}. In particular, taking into account the
above paragraph, by Claim 4.3, there exists an open subset W ′

1 of U such that
h1 is of class Cm in W ′

1. For the same reason we can find an open subset W ′
2 of

W ′
1 where h2 is of class Cm. Following this process we construct (nonempty)

open sets W ′
1, . . . ,W

′
p with W ′

1 ⊃ W ′
2 ⊃ . . . ⊃ W ′

p such that h is of class Cm in
W ′

p. It is clear that a similar reasoning shows that the map h−1 is of class Cn in
an open subset V of h(W ′

p). Then our situation is as follows: h−1 is of class Cn

in V and h is of class Cm in h−1(V ). It is well known that, since m ≥ n ≥ 1,
this implies that h is a diffeomorphism of class Cm in W ′ := h−1(V ), and we
are done.

Claim 4.5 Let W ′ be as in Claim 4.4. For every k ∈ {0, 1, . . . , n}, the map
αk belongs to Cm(W ′, F ).
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First we have that α0 = T ê belongs to Am(Ω′, F ). It is also clear that if
k ∈ {0, 1, . . . , n− 1}, then as given in Equation 4.2,

(k + 1)!αk+1 = Txk+1
i e− α0h

k+1
i − (k + 1)α1h

k
i − . . .− (k + 1)!αkhi

on Ω′.

Consequently, since hi ∈ Cm(W ′), if α0, α1, . . . , αk belong to Cm(W ′, F ), αk+1

also belongs to Cm(W ′, F ) and then we are done.

Claim 4.6 For every k ∈ {1, 2, . . . , n}, αk ≡ 0 in W ′.

Suppose that y0 ∈ W ′ and αn(y0) �= 0. Since by Claim 4.5 αn is continuous in
W ′, there exists an open neighborhood U(y0) of y0 such that U(y0) ⊂ W ′ and
αn(y) �= 0 for every y ∈ U(y0). Then take g ∈ Cn(R,R) such that g(n) is not
derivable at the point hi(y0). We define f ∈ An(Ω,R) as

f(x) := g(xi)

for every x = (x1, x2, . . . , xp) ∈ Ω. In this way we have that

∂n+1f

∂xn+1
i

(h(y0))

does not exist. Consequently, using a reasoning similar to that giving Equa-
tion 4.2, we have that Equation 4.1 applied to f yields

(Tfe)(y) = α0(y)f(h(y)) + α1(y)
∂f

∂xi

(h(y)) + . . . + αn(y)
∂nf

∂xn
i

(h(y))

for every y ∈ U(y0). Now we analyze the terms in the above equation, taking
into account that we are assuming 1 ≤ n ≤ m, and that by Claim 4.4, h is a
diffeomorphism of class Cm in W ′. First Tfe is of class C1 in U(y0). Also, by
Claim 4.5, for k ∈ {0, 1, . . . , n}, each αk is of class C1 in U(y0). Finally, f and
all of its partial derivatives up to order n− 1 are of class C1 in Ω.

Thus we deduce from the above equation that

αn
∂nf

∂xn
i

◦ h
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is of class C1 in U(y0), and by Lemma 3.2 the same applies to the function

∂nf

∂xn
i

◦ h.

But, as we said before, h is a diffeomorphism of class Cm in W ′, and conse-
quently

∂nf

∂xn
i

admits a partial derivative with respect to the i-th coordinate at the point
h(y0), which is a contradiction. This implies that αn ≡ 0 in W ′. In a similar
way we can see that αk ≡ 0 in W ′ for k ≥ 1, that is, αλ ≡ 0 in W ′ whenever
λ ∈ Λ is of the form

λ = (0, 0, . . . , k,︸ ︷︷ ︸
i

0, . . . , 0).

Claim 4.7 For every λ ∈ Λ − {(0, 0, . . . , 0)}, αλ ≡ 0 in W ′.

Here our reasoning will be similar to the one given in Claim 4.6. In this way,
if i, j ∈ {1, 2, . . . , p}, i �= j, again by Equation 4.1, for every y ∈ W ′,

(T (xixje))(y) = α0(y)hi(y)hj(y) + αλ1
0
(y)

where λ1
0 := (λ1

01, λ
1
02, . . . , λ

1
0p), λ1

0i = 1 = λ1
0j and λ1

0k = 0, whenever k �= i, j.
Taking into account that α0, hi and hj are of class Cm in W ′, we easily deduce
that αλ1

0
is of class Cm in W ′. Likewise, we can inductively prove that αλl

0
is of

class Cm in W ′, where λl
0 := (λl

01, λ
l
02, . . . , λ

l
0p), λ

l
0i = l, λl

0j = 1 and λl
0k = 0,

whenever k �= i, j, l ∈ {1, 2, . . . , n − 1}. Suppose that αλn−1
0

(y0) �= 0 for some

y0 ∈ W ′. Then, as in the proof of Claim 4.6, we take an open neighborhood
U(y0) of y0 such that U(y0) ⊂ W ′ and αλn−1

0
(y) �= 0 for every y ∈ U(y0).

Also, we take f(x) = g(xi) for every x = (x1, x2, . . . , xp) ∈ Ω, where these
functions meet the same requirements as in the proof of Claim 4.6, and define

d(x) := xjf(x),

for every x ∈ Ω. Clearly d just depends on the i-th and j-th coordinates,
which implies that its only partial derivatives which possibly are not zero at
h(y) ∈ h(U(y0)) are maybe those

∂λd
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for

λ = (0, 0, . . . , 1,︸ ︷︷ ︸
j

0, . . . , 0),

λ = (0, 0, . . . , k,︸ ︷︷ ︸
i

0, . . . , 0),

k = 1, 2, . . . , n, or

λ = λl
0,

l ∈ {1, 2, . . . , n− 1}. Taking into account that αλ ≡ 0 on W ′ for

λ = (0, 0, . . . , 1,︸ ︷︷ ︸
j

0, . . . , 0)

and

λ = (0, 0, . . . , k,︸ ︷︷ ︸
i

0, . . . , 0),

Equation 4.1 gives us, for every y ∈ U(y0),

(Tde)(y) = α0(y)d(h(y)) + αλ1
0
(y)

∂f

∂xi
(h(y)) + . . . + αλn−1

0
(y)

∂n−1f

∂xn−1
i

(h(y)).

We deduce as in the proof of Claim 4.6 that

∂n−1f

∂xn−1
i

(h(y))

admits a second partial derivative with respect to xi at the point h(y0), which
is a contradiction. This implies that αλn−1

0
≡ 0 in W ′. In the same way we

deduce that αλl
0
≡ 0 in W ′, for l ∈ {1, 2, . . . , n− 2}.

A similar pattern of proof leads us to the fact that αλ ≡ 0 in W ′ for every
λ �= (0, 0, . . . , 0), λ ∈ Λ.

Claim 4.8 For every λ ∈ Λ − {(0, 0, . . . , 0)}, αλ ≡ 0 in Ω′.

Notice that given an open subset U of Ω′, in Claim 4.4 we obtain a subset
W ′ of U . Notice also that this process can be done for any open subset of Ω′
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because, as we saw in the proof of Claim 4.4, c(α0) is dense in Ω′. Also in
Claim 4.7 we proved that, for λ �= (0, 0, . . . , 0), αλ ≡ 0 on all the subsets W ′

obtained in this way. This implies clearly that all these functions αλ are equal
to 0 on a dense subset of Ω′. Consequently, to prove Claim 4.8, it is enough
to show that all these functions are continuous.

We are going to prove it using induction on |λ|. First, for |λ| = 0, we have
that α(0,...,0) = T ê belongs to Am(Ω′, F ) and, consequently, it is continuous.

Now assume that k ≤ n − 1, and whenever |λ| ≤ k, then αλ is a continuous
function. Then fix λ = (λ1, . . . , λp) ∈ Λ with |λ| = k + 1.

Next define f ∈ An(Ω,R) as

f := xλ1
1 xλ2

2 . . . xλp
p .

It is clear that given µ = (µ1, . . . , µp) ∈ Λ, if µi > λi for some i ∈ {1, . . . , p},
then

∂µf(h(y)) = 0

for every y ∈ Ω′. This implies that in our situation, Equation 4.1 can be
written as

(Tfe)(y) =
∑

µ<<λ

αµ(y)∂µf(h(y)),

where µ << λ means µi ≤ λi for every i ∈ {1, . . . , p}.

As a consequence, for every y ∈ Ω′,

λ1! . . . λp!αλ(y) = αλ(y)∂λf(h(y)) = (Tfe)(y) − ∑
µ<<λ,µ�=λ

αµ(y)∂µf(h(y)).

On the other hand, if µ << λ and µ �= λ, then |µ| ≤ k, and consequently,
taking into account that h is continuous and the hypothesis of induction, we
deduce that αλ is continuous, and the claim is proved.

Recall that all the process developed so far concerns functions of the form
fe ∈ An(Ω, E), where e ∈ E − {0} and f ∈ An(Ω,R). For this e, we define

ae := α0 = T ê.
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Notice that by Claim 4.8, we have

(Tfe)(y) = ae(y)f(h(y)) (4.4)

for every y ∈ Ω′ and every f ∈ An(Ω,R).

Next we define a map J : Ω′ → L′(E,F ) as (Jy)(0) = 0, and

(Jy)(e) := ae(y)

for each y ∈ Ω′ and e ∈ E − {0}.

Claim 4.9 For every f ∈ An(Ω, E) and y ∈ Ω′,

(Tf)(y) = (Jy)(f(h(y))).

Fix y ∈ Ω′. Suppose that

∂λf(h(y)) = eλ ∈ E

for each λ ∈ Λ.

Let Λ∗ := {λ ∈ Λ : eλ �= 0}. Next, for each λ ∈ Λ∗, take a function fλ ∈
An(Ω,R) such that

∂λfλ(h(y)) = 1

and

∂µfλ(h(y)) = 0

for every µ �= λ, µ ∈ Λ.

It is easy to see that, for every µ ∈ Λ,

∂µ
∑

λ∈Λ∗

fλeλ(h(y)) = eµ,

if µ ∈ Λ∗, and

∂µ
∑

λ∈Λ∗

fλeλ(h(y)) = 0
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if µ /∈ Λ∗.

According to Lemma 4.1, this implies that

(Tf)(y) =

T ∑
λ∈Λ∗

fλeλ

 (y).

Consequently, by Equation 4.4,

(Tf)(y) =
∑

λ∈Λ∗

aeλ
(y)fλ(h(y)).

But by the way we have constructed the functions fλ, we have that fλ(h(y)) =
0 if λ �= (0, 0, . . . , 0).

On the other hand, let us denote by 0 the multiindex (0, 0, . . . , 0). If 0 /∈ Λ∗,
that is, if e0 = 0, we conclude from the above equality that (Tf)(y) = 0 =
ae0(y) = (Jy)(0). Finally, if 0 ∈ Λ∗, taking into account that f0(h(y)) = 1, we
deduce that

(Tf)(y) = ae0(y)f0(h(y)) = ae0(y) = (Jy)(e0),

and we are done.

Claim 4.10 Given y ∈ Ω′, there exists e ∈ E such that ae(y) �= 0.

Notice that T is bijective, so if f ∈ F , f �= 0, there exists g ∈ An(Ω, E)
with Tg = f̂ . In particular, by Claim 4.9, we have that (Jy)(g(h(y))) = f . In
other words, if we take y ∈ c(g ◦ h) and define e := g(h(y)), we have that
ae(y) = (Jy)(e) = f �= 0.

Claim 4.11 h is a function of class Cm.

Fix y0 ∈ Ω′. By Claim 4.10, we can take e ∈ E such that ae(y) �= 0. Since ae =
T ê, it is a continuous function, and we deduce that for some neighborhood V
of y0, ae(y) �= 0 for every y ∈ V .

Now recall that Equation 4.4,

(Tfe)(y) = ae(y)f(h(y)),

holds in particular for every y ∈ V and every f ∈ An(Ω,R).
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Consequently, for i ∈ {1, 2, . . . , p},

(Txie)(y) = ae(y)hi(y)

for every y ∈ V . Since ae(y) �= 0 for every y ∈ V , applying Lemma 3.2, we
have that hi is of class Cm in V . Clearly this implies that h is of class Cm,
and we are done.

Claim 4.12 n = m and h is a diffeomorphism of class Cm.

Recall that we are assuming that n ≤ m. Now, we have that by Claim 4.4, for
every nonempty open set V ⊂ Ω′, there is a nonempty open set V ′ ⊂ V such
that the restriction of h to V ′ is a diffeomorphism of class Cm. Take y0 ∈ Ω′.
By Claim 4.10, there exists e ∈ E and an open neighborhood V of y0 such
that ae(y) �= 0 for every y ∈ V . Now, as we mentioned above, there exists an
open set V ′, V ′ ⊂ V , where the restriction of h is a diffeomorphism of class
Cm. Assume now that n < m and take g ∈ An(Ω′,R) − Cm(Ω′,R) such that
c(g) ⊂ V ′. Next define f : Ω → E, as

f(x) := g(h−1(x))e,

for each x ∈ Ω. We are going to prove that g is of class Cm, obtaining a
contradiction.

It is immediate that f ∈ An(Ω, E), and applying Equation 4.4, we get

(Tf)(y) = ae(y)g(h−1(h(y))),

that is,

(Tf)(y) = ae(y)g(y),

for every y ∈ Ω′.

Now we have that ae(y) �= 0 for every y ∈ V . Finally, by Lemma 3.2, g is of
class Cm in V , and so is in Ω′, which contradicts our assumption. This implies
that m ≤ n, and since we are assuming that n ≤ m, the claim is proved.

Claim 4.13 For every y ∈ Ω′, Jy ∈ L′(E,F ) is bijective.

Since m = n, all claims above also hold for T−1, and this means that there
exists K : Ω → L′(F,E) such that for every g ∈ Am(Ω′, F ) and x ∈ Ω,
(T−1g)(x) = (Kx)(g(h−1(x))).
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Fix y ∈ Ω′ and f ∈ F − {0}. Let x = h(y). Now take g ∈ Am(Ω′, F ) with
g(y) = f . Then its is clear that f = g(y) = (T (T−1g))(y), that is,

f = (Jy)((T−1g)(x))

= (Jy)((Kx)(g(h−1(x))))

= (Jy)((Kx)(g(y)))

= (Jy)((Kx)(f)).

This implies that (Jy)(Kx) is the identity map on F . In the same way we can
prove that (Kx)(Jy) is the identity map on E. Consequently, Jy is bijective.

This ends the proof of the proposition. ✷

5 A result on automatic continuity

In this section we see that, if we endow the spaces with some natural topolo-
gies, then we obtain the continuity as a consequence. Notice that, according
to Proposition 4.2, we can assume in particular that n = m and p = q.

Theorem 5.1 Assume that An(Ω, E) and An(Ω′, F ) are endowed with any
topologies which are compatible with the pointwise convergence. Suppose that
T : An(Ω, E) → An(Ω′, F ) is a K-linear biseparating map. Then T is contin-
uous.

Proof. In our proof we will take advantage of the description of T given in
Proposition 4.2. For this reason we will use the notation given there. We start
proving the following claim.

Claim 5.1 Let U be a (nonempty) bounded open subset of Ω′ with clRp U ⊂ Ω′.
Then the set

A := {y ∈ U : Jy ∈ I ′(E,F ) is not continuous}

is finite.

Suppose that this is not the case, but there exist infinitely many y ∈ U such
that Jy is not continuous. We are going to construct inductively a sequence of
points in A, a sequence (Un) of pairwise disjoint open subsets of U , a sequence
of functions (fn) in Cn

c (Ω,R), and a sequence (en) of norm-one elements of E,
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satisfying the following properties:

• 1. h(yn) ∈ c(fn) ⊂ h(Un) for every n ∈ N.

• 2. ‖fn‖ := maxλ∈Λ supx∈Ω

∣∣∣∂λfn(x)
∣∣∣ = 1/2n for every n ∈ N.

• 3. ‖(Jyn)(en)‖ ≥ n/ |fn(h(yn))| for every n ∈ N.

Take any point y1 ∈ A such that there are accumulation points of A in Ω′ −
{y1}. Then consider an open subset U1 of U in such a way that y1 ∈ U1, and
there are infinitely many points of A outside clRp U1. Next take f1 ∈ Cn

c (Ω,R)
such that ‖f1‖ = 1, and such that h(y1) ∈ c(f1) ⊂ h(U1). Since Jy1 is not
continuous, there exists e ∈ E, ‖e‖ = 1, with

‖(Jy1)(e)‖ ≥ 1

|f1(h(y1))| .

Next assume that we have {y1, y2, . . . , yn} ⊂ A, U1, U2, . . . , Un ⊂ U open
and pairwise disjoint such that there are infinitely many points of A outside
clRp U1∪clRp U2∪ . . .∪clRp Un, {f1, f2, . . . , fn} ⊂ Cn

c (Ω,R) with h(yi) ∈ c(fi) ⊂
h(Ui) and ‖fi‖ = 1/2i, for i ∈ {1, 2, . . . , n}, and e1, e2, . . . , en ∈ E all of them
with norm 1, and such that ‖(Jyi)(ei)‖ ≥ i/ |fi(h(yi))| for i = 1, 2, . . . , n.

Now it is easy to see how to take yn+1, Un+1, fn+1, and en+1 so that Properties
1, 2 and 3 above hold.

Since ‖fn‖ = 1/2n for every n ∈ N, we deduce that the map

g :=
∞∑

n=1

fnen

belongs to An(Ω, E). Consequently, Tg should belong to An(Ω′, F ). But we
know by Proposition 4.2 that (Tg)(yn) = (Jyn)(g(h(yn))) for every n ∈ N.
This implies, by Property 3 above,

‖(Tg)(yn)‖= ‖(Jyn)(fn(h(yn))en)‖
= |fn(h(yn))| ‖(Jyn)(en)‖
≥n.

As a consequence Tg is unbounded in U . Since this is not possible, we conclude
that the claim is correct.

Next, it is clear that to prove that T is continuous it is enough to show that
it is closed, because we are dealing with Fréchet spaces. To prove it, let us
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consider a sequence (fn) in An(Ω, E) convergent to zero, and assume that
(Tfn) converges to g ∈ An(Ω′, F ). We are going to prove that g = 0.

Take a bounded open subset U of Ω′ with clRp U ⊂ Ω′. By Claim 5.1 above, we
have that the subset A of points y ∈ U such that Jy is not continuous is finite.
So, if y ∈ U − A, Jy belongs to I(E,F ). Consequently, since fn(h(y)) goes
to zero (because the topology in An(Ω, E) is compatible with the pointwise
convergence), then we have that (Tfn)(y) = (Jy)(fn(h(y))) also goes to zero,
that is, g(y) must be zero. But taking into account that U − A is dense in
U , we deduce that g ≡ 0 on U . The conclusion follows now easily and T is
continuous. ✷

6 Biseparating maps and functions of class s−Cn

Our aim in this section is to give a final description of biseparating maps
between spaces of vector-valued differentiable functions taking into account
that we know that they must be continuous when the spaces are endowed
with some natural topologies. Of course these topologies will be compatible
with the pointwise convergence. Namely, it is well known that by means of
the seminorms pK defined as

pK(f) := max
λ∈Λ

max
x∈K

∥∥∥∂λf(x)
∥∥∥

for f ∈ Cn(Ω, E), where K runs through the compact subsets of Ω, Cn(Ω, E)
becomes a locally convex space. In fact it is a Fréchet space. In the same way,
in Cn(Ω̄, E) we can consider the norm ‖·‖ defined as

‖f‖ := max
λ∈Λ

sup
x∈Ω

∥∥∥∂λf(x)
∥∥∥

for f ∈ Cn(Ω̄, E). With this norm, our space Cn(Ω̄, E) is also complete. We
assume that An(Ω, E) and An(Ω′, F ) are endowed with the above topologies.
Remark also that, as it follows easily from the Closed Graph Theorem, the
topologies compatible with the pointwise convergence in our spaces coincide
with these topologies.

Next proposition states that when J : Ω′ → L(E,F ) is of class s−Cn, we can
define maps through J from An(Ω, E) → An(Ω′, F ) in a natural way.

Proposition 6.1 Suppose that n = m, p = q. Let J : Ω′ → L(E,F ) be a map
of class s − Cn, and let h be a diffeomorfism of class Cn from Ω′ onto Ω. If,
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for f ∈ Cn(Ω, E), we define (Tf)(y) := (Jy)(f(h(y))) for every y ∈ Ω′, then
Tf ∈ Cn(Ω′, F ).

Proof. We consider first the map Φ : L(E,F )×E → F defined as Φ(A, e) :=
Ae for each (A, e) ∈ L(E,F )×E. This is clearly bilinear and continuous when
we consider in L(E,F ) the topology of the norm.

Suppose next that L(E,F ) is endowed again with the topology of the norm,
and that K : Ω′ → L(E,F ) is a continuous map. Then, given g : Ω′ →
E continuous, the map Sg

K : Ω′ → L(E,F ) × E sending each y ∈ Ω′ into
(Ky, g(y)) is continuous.

On the other hand, if we suppose that L(E,F ) is endowed with the topology
of the norm and that f ∈ Cn(Ω, E), then Sf◦h

J is of class Cn−1 because both
maps J and f ◦ h are. Consequently the composition map Φ ◦ Sf◦h

J : Ω′ → F ,
mapping each y ∈ Ω′ into (Jy)(f(h(y))) ∈ F is of class Cn−1.

Now we check the form of its first partial derivatives. We just see the partial
derivative with respect to the first coordinate x1. It is easy to check that

∂

∂x1

(Φ ◦ Sf◦h
J )(y) =

∂

∂X
Φ(Sf◦h

J (y)) ◦ ∂

∂x1

Jy +
∂

∂Y
Φ(Sf◦h

J (y)) ◦ ∂

∂x1

(f ◦ h)(y)

= Φ

(
∂

∂x1
Jy, f(h(y))

)
+ Φ

(
Jy,

∂

∂x1
(f ◦ h)(y)

)

=
(

Φ ◦ Sf◦h
∂

∂x1
J

)
(y) +

(
Φ ◦ S

∂
∂x1

f◦h
J

)
(y).

By an inductive reasoning, we see that the partial derivatives of order n−1 of
Φ◦Sf◦h

J are just a sum of terms of the form Φ◦S∂µ(f◦h)
∂λJ , where |λ| , |µ| ≤ n−1.

Consequently, to prove that Tf ∈ Cn(Ω′, F ), we just have to show that each

one of the terms Φ ◦S∂µ(f◦h)
∂λJ (|λ| , |µ| ≤ n− 1) is of class C1. We suppose that

Sg
K : Ω′ → L(E,F ) × E is one of the above S

∂µ(f◦h)
∂λJ (that is, let us denote

g = ∂µ(f ◦ h) ∈ C1(Ω′, E) and K = ∂λJ), which is continuous when L(E,F )
is endowed with the topology of the norm, as we stated above.

Now we check the form of its first partial derivatives. Take i ∈ {1, . . . , p}, and
assume without loss of generality that i = 1. It is easy to check that

lim
k→0

(Φ ◦ Sg
K)(y + (k, 0, . . . , 0)) − (Φ ◦ Sg

K)(y)

k
,
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that is,

lim
k→0

(K(y + (k, 0, . . . , 0)))(g(y + (k, 0, . . . , 0))) − (Ky)(g(y))

k

is equal to

lim
k→0

(K(y + (k, 0, . . . , 0)))(g(y + (k, 0, . . . , 0))) − (K(y + (k, 0, . . . , 0)))(g(y))

k
+

+ lim
k→0

(K(y + (k, 0, . . . , 0)))(g(y)) − (Ky)(g(y))

k
,

that is, it is equal to

(Ky)

(
∂

∂x1
g (y)

)
+

(
∂s

∂x1
Ky

)
(g(y)),

by the definition of ∂s

∂x1
Ky and the fact that K is continuous for L(E,F )

endowed with the topology of the norm.

Applied to our context, we have that

∂

∂x1
(Φ ◦ S

∂µ(f◦h)
∂λJ )(y) =

(
Φ ◦ S

∂
∂x1

∂µ(f◦h)

∂λJ

)
(y) +

(
Φ ◦ S

∂µ(f◦h)
∂s

∂x1
∂λJ

)
(y).

Now, as we noted above, S
∂

∂x1
∂µ(f◦h)

∂λJ is continuous when considering in L(E,F )
the topology of the norm. As a consequence, to obtain the continuity of all
partial derivatives of order n of Tf , it is enough to see that Φ ◦ S

∂µ(f◦h)
∂s

∂x1
∂λJ

is

continuous.

In order to prove this, notice first that, since J is of class s − Cn−1, then for
the above λ the map ∂s

∂x1
∂λJ is continuous when L(E,F ) is endowed with the

strong operator topology. This means that, given e ∈ E, the map ∂s

∂x1
(∂λJ)e :

Ω′ → F sending each y ∈ Ω′ into ( ∂s

∂x1
∂λJy)(e) is continuous. Now take ε > 0

and y0 ∈ Ω′. We are going to show that there exists δ > 0 such that if
|y − y0| < δ, y ∈ Ω′, then∥∥∥∥∥Φ ◦ S

∂µ(f◦h)
∂s

∂x1
∂λJ

(y) − Φ ◦ S
∂µ(f◦h)
∂s

∂x1
∂λJ

(y0)

∥∥∥∥∥ < ε.

Let e0 := ∂µ(f ◦ h)(y0), and take δ1 > 0 such that the closed ball B̄(y0, δ1) is
contained in Ω′. Since ∂s

∂x1
(∂λJ)e0 is continuous, there exists an upper bound
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M for this function on the compact set B̄(y0, δ1). Also, there exists δ2 > 0,
δ2 < δ1, such that if |y − y0| < δ2, then∥∥∥∥∥

(
∂s

∂x1

∂λJy − ∂s

∂x1

∂λJy0

)
(e0)

∥∥∥∥∥ < ε

2
.

On the other hand, since ∂µ(f ◦ h) is continuous, there exists δ > 0, δ < δ2,
such that if y ∈ B(y0, δ), then ‖∂µ(f ◦ h)(y) − e0‖ < εM/2.

Consequently, if |y − y0| < δ, we have∥∥∥∥∥Φ ◦ S
∂µ(f◦h)
∂s

∂x1
∂λJ

(y) − Φ ◦ S
∂µ(f◦h)
∂s

∂x1
∂λJ

(y0)

∥∥∥∥∥
is less than or equal to∥∥∥∥∥

(
∂s

∂x1

∂λJy

)
(∂µ(f ◦ h)(y) − e0)

∥∥∥∥∥ +

∥∥∥∥∥
(

∂s

∂x1

∂λJy − ∂s

∂x1

∂λJy0

)
(e0)

∥∥∥∥∥ ,
which is easily strictly less than ε. This proves the continuity of our functions,
as it was to see. ✷

The following result is a direct consequence of Proposition 4.2 and Theo-
rem 5.1. Roughly speaking, it says that Proposition 6.1 provides the only way
to construct linear biseparating maps from An(Ω, E) onto An(Ω′, F ). We state
the result in its complete form.

Theorem 6.2 Suppose that T : An(Ω, E) → Am(Ω′, F ) is a K-linear bisepa-
rating map. Then p = q, n = m, and there exist a diffeomorphism h of class
Cn from Ω′ onto Ω and a map J : Ω′ → L(E,F ) of class s −Cn such that for
every y ∈ Ω′ and every f ∈ An(Ω, E),

(Tf)(y) = (Jy)(f(h(y))).

Moreover, Jy ∈ I(E,F ) for every y ∈ Ω′.

Proof. We will follow the same notation as in Proposition 4.2, which provided
a first description of linear biseparating maps, in particular everything related
to the definition of J and h. Also, by Proposition 4.2, p = q and n = m.

First, for each λ ∈ Λ, we define a map Jλ : Ω′ → L′(E,F ) as

(Jλy)(e) := ∂λ(T ê)(y),
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for y ∈ Ω′ and e ∈ E. Jλ is clearly well defined.

The rest of the proof will apply just for the case when we are in Situation 1,
but it is easy to see that slight changes in it allow to prove the theorem when
we are in Situation 2. We will prove it through several claims.

Claim 6.1 For every y ∈ Ω′ and every λ ∈ Λ, Jλy belongs to L(E,F ).

Take y ∈ Ω′ and a sequence (en) in E converging to zero. We will see that
((Jλy)(en)) goes to zero. First we have that, since T is continuous by Theo-
rem 5.1, the sequence of functions (T ên) converges to zero, which implies in
particular that ((∂λT ên)(y)) goes to zero. But this last sequence is precisely
((Jλy)(en)), so the claim is proved.

Claim 6.2 For each λ ∈ Λ, |λ| ≤ n − 1, the map Jλ : Ω′ → L(E,F ) is
continuous when L(E,F ) is endowed with the topology of the norm.

We will show that if y0 ∈ Ω′, then Jλ is continuous at y0. Since T is continuous,
we have that, for r > 0 such that the closed ball B̄(y0, r) is contained in Ω′,
there exists M > 0 such that pB̄(y0,r)(T ê) < M holds for every e ∈ E with

‖e‖ ≤ 1. This implies that, for these e, if |y − y0| < r, then
∥∥∥(D∂λT ê)(y)

∥∥∥ ≤
pM . Consequently, as it can be seen for instance in [8, Theorem 3.3.2], we
have that

∥∥∥(∂λT ê)(y) − ∂λ(T ê)(y0)
∥∥∥ ≤ pM |y − y0| ,

for every e ∈ E with ‖e‖ ≤ 1. Now, taking into account that (Jλy)(e) =
(∂λT ê)(y) for every y ∈ Ω′, the result follows, and the claim is proved.

Claim 6.3 For each λ ∈ Λ, |λ| ≤ n− 1, ∂λJ = Jλ.

Of course, the result is clear if n = 1, so we suppose that n ≥ 2. We will just
prove the claim in the particular case when λ = λ1 := (1, 0, . . . , 0). The proof
for all other λ ∈ Λ is similar and can be achieved inductively.

Take y0 ∈ Ω′ and r > 0 such that the closed ball B̄(y0, r) ⊂ Ω′. It is clear that
if h ∈ R − {0}, |h| < r, and if e is in the closed unit ball of E, then

∥∥∥∥∥J(y0 + (h, 0, . . . , 0))(e) − (Jy0)(e)

h
− (Jλ1y0)(e)

∥∥∥∥∥
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is equal to∥∥∥∥∥(T ê)(y0 + (h, 0, . . . , 0)) − (T ê)(y0)

h
− (∂λ1T ê)(y0)

∥∥∥∥∥ ,

which, by [23, Corollary XIII.4.4], is less than

sup
|y−y0|<2h

∥∥∥(∂λ1T ê)(y0) − (∂λ1T ê)(y)
∥∥∥ ,

that is, less than

sup
|y−y0|<2h

‖Jλ1y0 − Jλ1y‖ .

Clearly this implies that

lim
h→0

∥∥∥∥∥J(y + (h, 0, . . . , 0)) − Jy

h
− Jλ1y

∥∥∥∥∥ = 0.

Consequently, the partial derivative of J with respect to the first coordinate
exists at each y0 ∈ Ω′ and is equal to Jλ1y0.

Claim 6.4 Take λ = (n1, n2, . . . , ni, . . . , np) ∈ Λ with |λ| = n − 1. Then Jλ

is of class s − C1. Moreover, if for each i ∈ {1, . . . , n}, µi = (n1, n2, . . . , ni +
1, . . . , np), then

∂s

∂xi
Jλ = Jµi

.

The proof that ∂s

∂xi
Jλ = Jµi

is similar to the proof of Claim 6.3 we have done,
taking into account that Jµi

is perhaps no longer continuous when L(E,F ) is
endowed with its norm but ∂µiT ê is continuous for every e ∈ E. Consequently,
to finish we just have to show that Jµ, |µ| = n, is continuous when considering
in L(E,F ) the strong operator topology. We have to prove that if µ ∈ Λ, and
(yn) is a sequence in Ω′ converging to y ∈ Ω′, then (Jµyn)(e) converges to
(Jµy)(e) for each e ∈ E. But this is immediate from the definition of Jµ. ✷

Remark 6.3 Notice that, in the case when we are in Situation 2, in Theo-
rem 6.2 the map J and its partial (s-)derivatives up to order n can also be
extended continuously to the boundary of Ω′ in a natural way, when consid-
ering in L(E,F ) the strong operator topology.
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In the special case when E = K = F , we immediately deduce the following
result.

Corollary 6.4 Suppose that T : An(Ω,K) → Am(Ω′,K) is a K-linear bisepa-
rating map. Then p = q, n = m, and there exist a diffeomorphism h of class
Cn from Ω′ onto Ω and a map a : Ω′ → K of class Cn which does not vanish
at any point of Ω′, such that for every y ∈ Ω′ and every f ∈ Am(Ω,K),

(Tf)(y) = a(y)f(h(y)).

We finish with a corollary whose proof is easy from Theorem 6.2.

Corollary 6.5 If An(Ω, E) and An(Ω′, F ) are endowed with the topology of
the pointwise convergence, then every linear biseparating map T : An(Ω, E) →
An(Ω′, F ) is continuous.

7 Final Remark

Even if in previous sections we consider two possible situations for our spaces
of vector-valued functions, Proposition 4.2 and Theorems 5.1 and 6.2 can be
given in a broader context.

Let Ω ⊂ Rp and Ω′ ⊂ Rq be (nonempty) open sets, and consider any of the
following contexts.

• Case i) Ω1 := Ω and Ω′
1 := Ω′.

• Case ii) Ω and Ω′ are bounded, intRp clRp Ω = Ω, intRq clRq Ω′ = Ω′, and
Ω1 := clRp Ω and Ω1 := clRq Ω.

Suppose now that A ⊂ Cn(Ω,R) ∩ C(Ω1,R) and B ⊂ Cm(Ω′,R) ∩ C(Ω′
1,R)

are strongly regular rings (see [2] for an appropriate description). Take now
A(Ω, E) ⊂ Cn(Ω, E)∩C(Ω1, E) and B(Ω′, F ) ⊂ Cm(Ω′, F )∩C(Ω′

1, F ). Namely,
to construct the support map h : Ω′

1 → Ω1, we need that subspaces A(Ω, E) ⊂
Cn(Ω, E) ∩ C(Ω1, E) and B(Ω′, F ) ⊂ Cm(Ω′, F ) ∩ C(Ω′

1, F ) are a compati-
ble A-module and a compatible B-module (see [2]). In both cases h will be a
homeomorphism from Ω′ onto Ω.

On the other hand, apart from these necessary conditions for constructing
h, a careful reading of the proofs shows that the essential requirements that
linear subspaces A(Ω, E) and B(Ω′, F ) must meet so as to satisfy Lemma 4.1
and Proposition 4.2 are: 1) A(Ω, E) and B(Ω′, F ) contain the constant func-
tions; 2) A(Ω, E) (respectively, B(Ω′, F )) contains all functions in Cn(Ω, E)
(respectively, Cm(Ω′, F )) with compact support; and 3) Cn

c (Ω,R) ⊂ A and
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Cm
c (Ω′,R) ⊂ B. In the case when Ω and Ω′ are bounded and the coordinate

projections xi belong to A and B, then the proof of Proposition 4.2 can be
followed step by step with no changes. Otherwise (even if Ω and Ω′ are not
bounded), changes are few and natural.

Finally, if we want to obtain results similar to Theorems 5.1 and 6.2 (with
the same proofs) for our spaces A(Ω, E) and B(Ω′, F ), besides all the above
conditions, they must be endowed with a suitable norm or family of seminorms
providing a topology compatible with the pointwise convergence. This will be
the case, for instance, of the spaces of functions with bounded derivatives.

So we study the case of the spaces Cn
∗ (Ω, E) ⊂ Cn(Ω, E) and Cm

∗ (Ω′, F ) ⊂
Cm(Ω′, F ) consisting of all functions such that all partial derivatives up to
orders n and m, respectively, are bounded. The space Cn

∗ (Ω, E) (and similarly
Cm

∗ (Ω′, F )) becomes a Banach space with the norm defined for each f ∈
Cn

∗ (Ω, E) as

‖f‖ := max
λ∈Λ

sup
x∈Ω

∥∥∥∂λf(x)
∥∥∥ .

This is a suitable norm in the above sense because the proof of Theorem 6.2
can be followed easily for these spaces equipped with such norm.

First, notice that, since we are assuming that n,m ≥ 1, then in particular
when Ω is convex all functions in Cn

∗ (Ω, E) admit a continuous extension to
the closure of Ω in Rp: suppose that (xn) is a sequence in Ω converging to x0

in the boundary of Ω, and that f ∈ Cn
∗ (Ω, E); then since the differential Df

is bounded on the whole Ω by an M > 0, we have that, by [8, Theorem 3.3.2],

‖f(xn) − f(xm)‖ ≤ M |xn − xm| ,

which implies that (f(xn)) is a Cauchy sequence. In this way we would define
the extension f(x) as the limit of this sequence. It is straightforward to see
that the new extended function is continuous in the closure of Ω.

On the other hand, when Ω and Ω′ are bounded and convex, then it is easy to see
that Cn

∗ (Ω, E) is a Cn(Ω̄,R)-module, and a similar statement is also valid for
Cm

∗ (Ω′, F ). As a consequence, by the comments given above, Proposition 4.2
and Theorems 5.1 and 6.2 can also be stated in this new situation (for Ω
and Ω′ bounded and convex). Furthermore, in this case, as in Remark 6.3, it
is also possible to say that partial derivatives up to order n − 1 of J admit
a continuous extension (when L(E,F ) is equipped with the strong operator
topology) to the boundary of Ω′. As for the partial s-derivatives of all partial
derivatives of order n − 1 of J , an elementary application of the Uniform
Boundedness Theorem shows that they are bounded on Ω′.
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What happens if Ω is for instance not bounded? One might be tempted to
follow a similar pattern as indicated above when trying to describe linear
biseparating maps defined between Cn

∗ (Ω, E) and Cm
∗ (Ω′, F ). But, in that

case, we have that Cn
∗ (Ω, E) is no longer a Cn(Ω,R)-module (as An(Ω, E) in

previous sections was). Anyway, it is a Cn
∗ (Ω,R)-module, and we could try

to follow the proof of Proposition 4.2 to get a similar description of linear
biseparating maps, but even if we could manage to adapt the proof step by
step (with some changes), there is a major problem from the beginning: in
general the space Cn

∗ (Ω,R) is not a strongly regular ring, so our results cannot
be applied, and in particular the existence of the support map h is not clear.
Let us see an example where Cn

∗ (Ω,R) is not a strongly regular ring.

Example 7.1 Suppose that Ω ⊂ R is the open set defined as Ω :=
⋃∞

k=1(k −
1/k, k + 1/k). Let us define K as the closure of N in βΩ (the Stone-Čech
compactification of Ω). Now take x0 ∈ βΩ − (K ∪ R). It is clear that if a
derivable function f : Ω → R satisfies fβΩ ≡ 0 on K and fβΩ ≡ 1 on a
neighborhood of x0 (where fβΩ stands for its extension to βΩ), then for some
sequence (xn) in Ω going to infinity, the sequence (f(xn)) converges to 1. As a
consequence from the Mean Value Theorem, we conclude that the derivative
of f cannot be bounded on Ω, that is, f /∈ C1

∗(Ω,R), as we wanted to show.

We end the paper with some related questions, concerning special cases where
our techniques cannot be applied.

Problem 1. Assume that there exists a biseparating map T : An(Ω, E) →
Am(Ω′, F ) which is not linear. Can we deduce that the support map h : Ω′ → Ω
is a diffeomorphism of class n? Remark that the assumption of linearity in
Proposition 4.2 is necessary for its proof.

Problem 2. Suppose that C∞(Ω, E) is the space of E-valued functions which
are of class C∞ in Ω, and that C∞(Ω′, F ) is defined in a similar way. Describe
the linear biseparating maps from C∞(Ω, E) onto C∞(Ω′, F ). Must such a
map be continuous? Notice that by the comments given in the Final Remark
above, the construction of the support map h is possible, but the proof of
Proposition 4.2 is no longer valid.

Problem 3. Let Ω and Ω′ be unbounded open subsets of Rp and Rq, respec-
tively. Describe the linear biseparating maps from Cn

∗ (Ω, E) onto Cm
∗ (Ω′, F ).

Problem 4. Determine all subspaces A(Ω, E) ⊂ An(Ω, E) and B(Ω′, F ) ⊂
Am(Ω′, F ) such that the existence of a (linear) biseparating map from A(Ω, E)
onto B(Ω′, F ) implies that E and F are isomorphic as Banach spaces.
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