Prácticas Cálculo I

Práctica 4 (17- X-2018)

Objetivos

• Utilizar Octave como calculadora numérica y gráfica para la resolución de problemas.

1 Polinomio de Taylor

Polinomios de Taylor:

Supongamos que $f\left(x\right)$ es una función derivable n veces en el punto x=a . Se define el polinomio de Taylor de grado n correspondiente a la función f en el punto x=a como

$$T_{n}[f(x);a] = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} =$$

$$= f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^{2} + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^{n}$$

En el caso en que a=0 el polinomio se llama de MacLaurin.

2 Infinitésimo

Definición (Infinitésimo).- Una función $\varphi(x)$ es un infinitésimo para x=a si tiende a cero cuando x se aproxima al punto a, $\lim_{x\to a} \varphi(x) = 0$

3

Orden de un infinitésimo

Definición (Infinitésimos del mismo orden, orden superior y orden inferior).- Se dice que

• $\varphi\left(x\right)$ y $\mu\left(x\right)$ son dos infinitésimos del mismo orden para x=a si

$$\lim_{x \to a} \frac{\varphi(x)}{\mu(x)} = \lambda \quad con \ \lambda \neq 0, \ \lambda \neq \infty.$$

Nota: En este caso se escribe $\varphi(x) = O(\mu(x))$.

- lack arphi(x) y $\mu(x)$ son equivalentes para x=a si $\lim_{x \to a} \frac{arphi(x)}{\mu(x)} = 1$
- $\bullet \ \varphi \big(x \big) \, \text{es de orden superior a} \ \mu \Big(x \Big) \, \, \text{para} \ \, x = a \, \, \text{si} \, \lim_{x \to a} \frac{\varphi \Big(x \Big)}{\mu \Big(x \Big)} = 0 \, .$

Nota: En este caso se escribe $\varphi(x) = o(\mu(x))$

4

Parte principal de un infinitésimo

Definición (Parte principal de un infinitésimo).- Si arphi(x) un infinitésimo de orden p

$$\text{para } x = a \text{ y se cumple } \lim_{x \to a} \frac{\varphi\left(x\right)}{\left(x - a\right)^p} = \lambda \quad con \ \lambda \neq 0, \ \lambda \neq \infty$$

La expresión $\lambda \left(x-a\right)^p$ se llama parte principal de dicho infinitésimo.

Nótese que $\,arphi\left(x
ight)$ es un infinitésimo equivalente a su parte principal.

PRINCIPIO DE SUSTITUCION.- Si en la expresión de un límite se sustituye un infinitésimo que sea factor o divisor por su parte principal o por otro equivalente, el valor del límite no se ve alterado.

Cálculo de la parte principal utilizando polinomios de Taylor

Sea $y=f\left(x\right)$ una función que es un infinitésimo para x=a con todas sus derivadas nulas hasta el orden k-1 en el punto a y cumpliendo $f^{(k)}\left(a\right)\neq0$.

Utilizando la fórmula de Taylor se tendrá:

$$f(x) = \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^k)$$

De esta expresión se deduce que el orden del infinitésimo $y=f\left(x\right)$ para x=a es k y su parte principal es $\frac{f^{(k)}\left(a\right)}{k!}\left(x-a\right)^k$.

Máximos y mínimos

Definición (Extremo relativo).- Sea $y=f\left(x\right)$ una función real definida sobre un dominio D . Decimos que f tiene

- un mínimo relativo en un punto $a\in D$ si existe un intervalo $\left(a-r,a+r\right)$ contenido en D de forma que $f\left(x\right)>f\left(a\right)$ para $x\in\left(a-r,a+r\right)$, $x\neq a$.
- $\bullet \qquad \text{un máximo relativo en un punto} \quad a \in D \quad \text{si existe un intervalo} \quad \left(a-r,a+r\right)$ contenido en D de forma que $f\left(x\right) < f\left(a\right)$ para $x \in \left(a-r,a+r\right)$, $x \neq a$.

Si un punto es mínimo o máximo relativo se dice que es un extremo relativo o local.

Definición (Extremo absoluto).- Sea $y=f\left(x\right)$ una función real definida sobre un dominio D . Decimos que f alcanza

- su valor mínimo absoluto en un punto $a \in D$ si $f\left(x\right) > f\left(a\right)$ para $x \in D$, $x \neq a$.
- su valor máximo absoluto en un punto $a \in D$ si $f\left(x\right) < f\left(a\right)$ para $x \in D$, $x \neq a$.

Si un punto es mínimo o máximo absoluto se dice que es un extremo absoluto o global.

PROPOSICIÓN.- Consideremos una función $y=f\left(x\right)$ derivable en un entorno del punto a verificando $f'\left(a\right)=0$, entonces

- Si f''(a) > 0 entonces en el punto a la función tiene un mínimo local.
- Si f''(a) < 0 entonces en el punto a la función tiene un máximo local.

PÁGINA 4 POLINOMIOS DE TAYLOR

Ejercicio

1

Accede a la página de la asignatura en Moodle y contesta a las preguntas del cuestionario *Práctica 4*.

IMPORTANTE: Realiza los ejercicios a mano y comprueba gráficamente el resultado obtenido escribiendo todas las órdenes que sean precisas para dar respuesta en un fichero .m

Resumen de comandos

En esta práctica no se ha introducido ningún comando nuevo