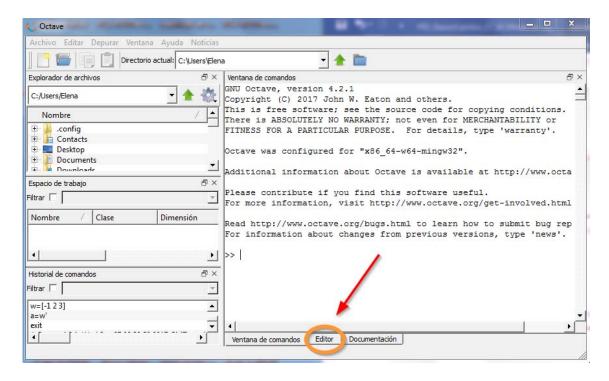
Práctica 2 (4- X-2017)

Objetivos

- Utilizar Octave como calculadora numérica y gráfica para la resolución de problemas.
- Interpretar la derivada como razón de cambio.

Ficheros - M

- En el caso de incluir órdenes complicadas o la repetición de las mismas órdenes con distintos valores de las variables, la utilización de la ventana de comandos no es lo más adecuado. Octave permite utilizar ficheros-M.
- La secuencia de órdenes contenida en un fichero-M constituye en programa y se podrá ejecutar fácilmente cuando se desee.
- Para crear un fichero-M utilizaremos el editor de texto cualquiera y lo guardaremos como nombre.m siendo nombre una secuencia de caracteres que no admite caracteres blancos.



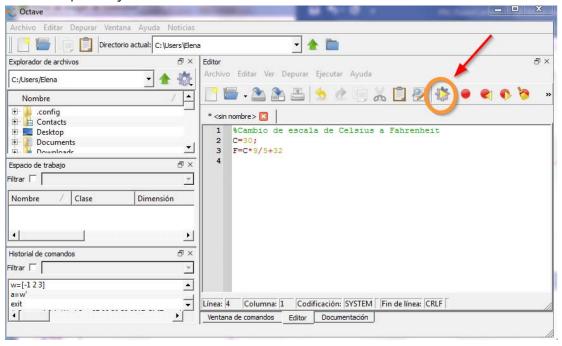
Ejemplo de un fichero-M

%Cambio de escala de Celsius a Fahrenheit C=30; F=C*9/5+32

 Para ejecutar este fichero basta con escribir en la ventana de comandos el nombre de fichero sin la extensión m. Así si el fichero se llama cambio.m se deberá escribir

>> cambio F=86

También se puede ejecutar desde el editor:

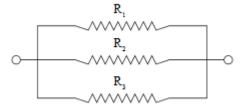


Ejercicio

1

Escribe un fichero-M que permita calcular la resistencia de un circuito de tres resistencias en paralelo como el que se muestra en la figura siendo $R_{_1}=2\Omega$,

$$R_{\scriptscriptstyle 2}=3\Omega$$
 , $R_{\scriptscriptstyle 3}=4\Omega$



La expresión de la resistencia equivalente viene dada por

$$R_{eq} = \frac{1}{\dfrac{1}{R_{_{1}}} + \dfrac{1}{R_{_{2}}} + \dfrac{1}{R_{_{3}}}}$$

Solución

 0.9231Ω

Ejercicio

2

La ley de Boyle para los gases perfectos establece que a temperatura constante PV=k donde P es la presión, V el volumen y k una constante. Si la presión está dada por la expresión $P\left(t\right)=30+2t$ con P en cm de Hg, t en seg. y el volumen inicial es de $60cm^3$, se pide:

- (a) determinar la razón de cambio del volumen ${\cal V}$ con respecto al tiempo t a los 10 segundos.
- (b) Representar la función $V\left(t\right)$ en el intervalo $\left[0,15\right]$

Indicación

Se pide calcular $V\,{}^{\shortmid}\!\left(10\right).$ Para determinar el valor de k , aplica que $V\left(0\right)=60$

Solución

El gas disminuye su volumen a razón de $1.44\,cm^3\,/\,{\rm seg}\,$ a los 10 seg. de iniciado el proceso.

Ejercicio

3

Determinar si existe algún valor de x en el intervalo $\left[0,2\pi\right)$ tal que los ritmos de cambio de $f\left(x\right)=\sec x$ y $g\left(x\right)=\csc x$ sean iguales.

Indicación

- a) Resolución gráfica: calcula la derivada de f y de g en el intervalo $\left[0,2\pi\right)$ y comprueba que se cortan en dos puntos.
- b) Otra forma: Aplica el teorema de Bolzano teniendo en cuenta que $f'(a) = g'(a) \Leftrightarrow a \ es \ un \ cero \ de \ h(x) = f'(x) g'(x)$

Teorema de Bolzano: Sea h una función continua en un intervalo cerrado [a, b] que toma valores de signo contrario en los extremos, entonces existe al menos un $c \in (a, b)$ tal que h(c) = 0

Solución

Sí existe

Ejercicio

4

Una bebida se saca del refrigerador a una temperatura de 10° y se deja en una habitación donde la temperatura es de 25° . Según la ley de enfriamiento (calentamiento en este caso) de Newton la temperatura $\it T$ de la bebida variará en el tiempo de acuerdo a la expresión: $T\left(t\right)=25-A\,e^{-kt}$, con A y K constantes.

- a) Sabiendo que al cabo de 20 minutos la temperatura de la bebida es de $15^{\circ}\,C$, calcula las constantes A y k.
- b) ¿Cuál será la temperatura de la bebida al cabo de una hora?
- c) Bosqueja el gráfico de la función T para $t \ge 0$ y encuentra la expresión de la rapidez instantánea de calentamiento de la bebida.
- d) Encuentra el instante en que esa rapidez es máxima y el instante en que ella es la mitad de la máxima.

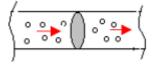
Indicación

- a) Calcula la expresión de A y K a partir de $T\left(0\right)=25$, $T\left(20\right)=15$
- b) Utiliza Octave como una calculadora para obtener el valor pedido.
- c) Representa con el comando plot la función en el intervalo [0,40]
- d) Calcula a mano la derivada de la temperatura y calcula la expresión de t en el que la derivada es cero.

Solución

a) A=15 , $k\cong 0.02$ b) Aproximadamente 20°C d) $t_{_{o}}\cong 35\,\mathrm{min}$

La carga eléctrica Q que atraviesa la sección de un conductor está dado por la expresión $Q\left(t\right)=-\frac{A}{\omega}\cos\left(\omega t\right)$ siendo A y ω constantes.

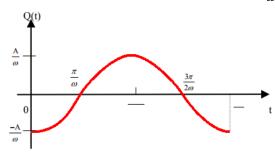


Ejercicio

- a) Dibuja a mano Q en función de t en un período. Representa con Octave para distintos valores de A y ω .
- b) Recordando que la intensidad I de la corriente indica la rapidez con que varía la carga Q que atraviesa la sección del conductor, deduce de la gráfica de la parte a) los instantes en que I es máxima y mínima.
- c) Verifica con el cálculo tus respuestas a la parte anterior.
- d) Calcula en qué instante la intensidad I en valor absoluto es la mitad del valor máximo.

Indicación

a) Recuerda que el periodo de una función $cos(\omega t)$ es $T=rac{1}{\omega}$



Solución

b) La pendiente máxima ocurre para $\,t=rac{\pi}{2\omega}\,$ y un valor mínimo para $\,t=rac{3\pi}{2\omega}.$

b) d)
$$t_{\scriptscriptstyle o}=\frac{\pi}{6\omega}$$
 , $t_{\scriptscriptstyle 1}=\frac{5\pi}{6\omega}$, $t_{\scriptscriptstyle 2}=\frac{11\pi}{6\omega}$, $t_{\scriptscriptstyle 3}=\frac{7\pi}{6\omega}$

Resumen de comandos

En esta práctica no se ha incluido ningún comando nuevo.