
Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

Hybrid Transactional Memory with
Pessimistic Concurrency Control1
Enrique Vallejo1, Sutirtha Sanyal2, Tim Harris3, Fernando Vallejo1, Ramón

Beivide1, Osman Unsal2, Adrián Cristal2 and Mateo Valero2

1University of Cantabria, Avda. Castros S/N, Santander, Spain
{enrique.vallejo, fernando.vallejo, ramon.beivide}@.unican.es
2Barcelona Supercomputing Center, C/Jordi Girona, 31, 08034,Barcelona, Spain
{sutirtha.sanyal, osman. unsal, adrian.cristal, mateo.valero}@bsc.es
3Microsoft Research, J J Thomson Avenue, Cambridge, UK.
tharris@microsoft.com

Abstract

Transactional Memory (TM) intends to simplify the design and implementation of the shared-

memory data structures used in parallel software. Many Software TM systems are based on writer-

locks to protect the data being modified. Such implementations can suffer from the “privatization”

problem, in which transactional and non-transactional accesses to the same location can lead to

inconsistent results. One solution is the use of Pessimistic Concurrency Control, but it entails an

important performance penalty due to the need of reader-writer locking.

In this paper a hybrid TM design is proposed to reduce the performance overheads caused by the

use of these locks while combining three desirable features: (i) full TM functionality whether or

not the architectural support is present; (ii) execution of a single common code path in software or

hardware; and, (iii) immunity from the privatization problem. The analysis shows how a Hybrid

TM can lose important properties, such as starvation freedom. To overcome this issue, Directory

Reservations is presented, a low-cost mechanism improving existent solutions designed for

Hardware TM.

Keywords: Hybrid Transactional Memory; Pessimistic Concurrency Control;

Writer Starvation; Directory Reservation

1 © Springer, 2011. This is the author's version of the work. The final publication is available at Springer via

http://dx.doi.org/10.1007/s10766-010-0158-x

1

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

1. Introduction

Transactional Memory (TM), [19], aims to provide a simple programming

interface to access shared data, avoiding some of the classical problems of shared

memory concurrency. Hardware Transactional Memory (HTM) proposals (such

as [3], [13], [29], [30]) can provide high performance and ‘strong’ semantics in

which conflicts between memory accesses made by transactions and memory

accesses made in non-transaction mode, are detected. However, HTMs mainly

rely on extending the coherence protocol with conflicts detected ‘online’ between

the parties involved; this makes thread pre-emption and paging to disk

complicated or impossible. Transactions that exceed local resources (cache

capacity, write buffers) are either not supported, lead to complicated hardware

designs, or notably increase the possibilities of high rates of false conflicts.

Software Transactional Memory (STM) proposals (such as [5], [10], [14], [15],

[22]) allow the flexibility to explore different semantics and the possibility of

deployment on current hardware. However, pure-software implementations suffer

from high overheads. Even the simplest, blocking implementations of STM

impose a significant slowdown. One approach to improve performance is

hardware-accelerated TM (Ha-TM) in which a STM uses new hardware features

to perform part of the transaction’s work [28], [32], [35]. An alternative approach

is hybrid TM (Hy-TM) [4], [18], in which the system supports the coexistence of

HW and SW transactions, typically by starting a transaction in HW and re-

executing it in SW if it overflows limited resources.

In addition, STMs typically provide ‘weak’ semantics in which conflicts between

transacted and non-transacted accesses go undetected. This leads to programs that,

intuitively, are correctly synchronized but they are not implemented with the

semantics that programmers might anticipate. One example is the ‘privatization

problem’ as presented below:

// Thread 1
// x initially 0
atomic{ // Tx1

x_shared = false ;
}
x++; // W1

// Thread 2
atomic { // Tx2

if (x_shared){
 x = 42 ; // W2

}
}

2

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

In this example, with x_shared initially true, Thread 1 attempts to mark x as no

longer shared (Tx1) before accessing it directly (W1), while Thread 2 attempts to

check if x is still shared (Tx2) before accessing it inside its transaction (W2). This

program is correctly synchronized under the ‘single lock atomicity’ model in

which atomic sections are replaced by the use of a single process-wide lock.

Programmers might therefore expect it to be correctly synchronized using TM and

to see either x = 1 or x = 43. Unfortunately, existing STMs do not correctly

implement it as Spear et al discuss in [36]. In some STM designs, Tx2 may be

serialized before Tx1 but the write from W2 might not yet be made back to main

memory before W1 executes (allowing x = 42). In other STMs, Tx1 may conflict

with Tx2 but Tx2 will continue running after the conflict is detected, letting W1

and W2 race (allowing x = 0 if Tx2 is rolled back after W1 executes).

Different systems have been proposed to overcome this and other similar

problems that impact programming complexity. The work in [34] proposes a

strongly-atomic Java STM providing high performance by extensively using

whole-program analyses and JIT optimizations to reduce the performance penalty

of memory barriers in non-transactional code. In [23] the semantics of atomic

blocks are defined by translating them into various lock acquire/release

implementations. The “single lock” translation is appealing because it provides

semantics that are easy to explain in terms of existing programming language

constructs and the Java memory model. However, the STM-based implementation

of these single-lock semantics requires process-wide barrier operations at various

stages during a transactions execution. This introduces contention between the

implementations of transactions that access disjoint data.

Several techniques are identified in [36] for avoiding the privatization problem:

(1) Data can be statically partitioned between transacted and non-transacted parts

of the heap, with explicit marshalling between them. (2) STM-aware libraries can

be used for private accesses, like W1 in the previous example, with the overhead

that it entails. (3) Synchronization barriers can be added such that data is not used

both in private and shared modes between barriers. (4) Explicit fences can be

required after transactions that make parts of the heap private. (5) Pessimistic

Concurrency Control (PCC) can be used so that if Tx1 is serialized after Tx2 then

Tx1 will not commit until Tx2 has committed, or aborted and cleaned up. Of these

techniques, only this last one has the desirable property that it does not affect the

3

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

programming model. However, as observed in [36], “PCC entails unacceptable

overhead, primarily due to the overhead of reader locking”.

The current paper is devoted to explore the role of architectural support in making

a practical TM based on PCC. The proposed system avoids the privatization

problem while eliminating the need to develop a more complicated programming

model involving barriers and fences that would not be needed under strong

semantics. Our basic approach is a Hy-TM design in which we combine an

optional, generic HTM system with a lock-based variant of Fraser’s OSTM [10].

By carefully structuring the HTM transactions, we allow them both to correctly

interact with software locks and to hold the same read-mode lock concurrently by

multiple transactions.

Specifically, the main contributions of the paper are:

• An evaluation of the base PCC STM system, showing the impact of the

different overheads. The resulting system is compared with a non-

blocking STM that provides higher performance at the cost of failing in

the privatization problem.

• A novel approach to handle multiple-reader, single-writer locks that

allows HW transactions to elide them and detects conflicts with SW

code.

• A Hybrid TM system based on the previous lock handling that can be

accelerated with a generic bounded HTM, without the need of two

different execution paths for HW and SW transactions. The evaluation

quantifies the overhead of the locking mechanism, the read-set

management and the write-set management. It also shows that the

original fairness, provided by queue-based locks, is lost when using a

HTM.

• Directory Reservations is proposed, which is a low-cost hardware

mechanism to regain fairness between reader and writer transactions,

both hardware and software, preventing starvation and blocking.

3. Overview of the base STM

Our work is built over a lock-based variant of Fraser’s OSTM [10]. This is an

indirection-based STM in which transacted objects are represented by a header

word that points to the object’s current contents. Transactions run optimistically,
4

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

building up thread-private logs of their tentative updates to objects. They commit

by using the fair multi-reader single-writer (MRSW) variant of MCS spin-locks

[27] to (i) lock the objects that they have accessed, before (ii) validating that there

has been no conflict, and (iii) updating objects modified in the transaction.

Source-code of the base STM is available at

http://www.cl.cam.ac.uk/research/srg/netos/lock-free/. The API, defined in Figure

1, is similar to other indirection-based STMs [17], [22]. Running transactions are

represented by tx_id transaction records. Transacted objects are represented by

values of type stm_blk.

Transaction start. Transactions start with a call to new_stm_tx() that prepares the

current transaction logs and records a return point (represented by a sigjmp_buf) to

branch to if the transaction becomes invalid.

Accessing objects in the transaction. The structure of a transactional object,

stm_blk, is shown in Figure 3. The locks behave as defined in [27]. The three lock

fields have been dissected on the right side. Each object must be “open” for read

or write before using it. This open action searches the read and write log, and

allocates a new entry if not found. Both read and write sets are implemented as

ordered singly linked lists of stm_tx_entries (depicted in Figure 2) using the next

pointer. If the object is open for read, both old and new point to the current data;

otherwise, a new data is allocated and new points to it. On each access, the pointer

new is returned. Objects are allocated and de-allocated from per-thread free lists

through new_stm_blk and free_stm_blk. As in Fraser’s thesis, an epoch-based

garbage collector is used to defer actual de-allocation until it is safe to do so [24].

Transaction commit. On commit, the STM acquires the locks corresponding to

the objects in its log using MRSW locks to allow different threads to commit

concurrently if their read-sets overlap. When all of the locks are taken, the system

validates both the read and write sets. This merely consists of comparing the old

pointers in the private log with the data pointers in the shared memory, since the

Begin transaction: stm_tx *new_stm_tx(tx_id *tx, stm *mem, sigjmp_buf *penv);
Commit Transaction: bool commit_stm_tx(tx_id *tx);
Validate transaction: bool validate_stm_tx(tx_id *tx);
Abort transaction: void abort_stm_tx(tx_id *tx);

Read STM block b: void *read_stm_blk(tx_id *tx, stm blk *b);
Write STM block b: void *write_stm_blk(tx_id *tx, stm blk *b);

Allocate STM block: stm_blk *new_stm_blk(tx_id *tx, stm *mem);
De-allocate STM block b: void free_stm_blk(tx_id *tx, stm *mem, stm blk *b);

Figure 1: STM programmer interface

5

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

old pointer is copied in the first block access and only updated on a transaction

commit. In case of any conflict, the transaction releases all of the locks and aborts.

On success, it commits the write set, updating the data pointers in shared memory

to point to the newly allocated data blocks. Finally, all of the locks are released.

Transaction Abort. Ordinarily, abort occurs when commit-time validation fails.

In that case, locks are released and the transaction is re-executed. As with other

OSTM designs, a signal handler catches failures that may be generated by invalid

transactions. The signal handler validates the transaction. If it is invalid, then the

signal might have been generated by a race condition, so it is ignored and the

transaction is aborted returning to the restore point created in the new_stm_tx call

using siglongjmp. As with other designs that allow transactions to run while

invalid, this approach requires care from the programmer to ensure that invalid

transactions will fail ‘cleanly’. In managed languages like C# or Java all such

failures could be detected by the runtime system.

4. Hybrid-TM

A lock-based STM adds four main overheads when compared with running the

same transactions on a native HTM (as in [28]). First, the locking mechanism

itself is not necessary in a HTM system. Second, transactions need to maintain the

read-set and write-set lists. This introduces a list-search for each object accessed,

and an increase in the used memory. In HTM systems the hardware itself tracks

the objects accessed in the transaction (with read and write bits, signatures or

other mechanisms). Third, on commit, the lists have to be traversed to lock and

validate the objects. Fourth, the indirection-based object structure makes it

necessary to copy entire objects when opening them for update even if only a

single field is going to be touched. In HTM these copies are managed implicitly

and at a finer granularity.

Next, it is proposed the construction of a hybrid TM system that removes these

costs by combining the base STM with a generic HTM system. A progressive

approach is used: initially, the STM new_stm_tx and commit_stm_tx functions are

Figure 3: stm_blk structure Figure 3: stm_tx_entry structure

6

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

modified to start a ‘sympathetic’ HTM transaction when each transaction is

started. Transactions are initially attempted in this ‘hardware mode’, being called

hardware-transaction or HW-Tx. The HW-Tx will follow the same execution path

as the original code: It invokes the same STM-library operations as normal,

preventing double compilation of the transaction’s implementation. If the

transaction aborts a given number of times, it will be retried in the original, slow

SW-only mode without the wrapped HTM transaction. Both HW and SW

transactions will be allowed to run concurrently in the system.

Many runtime operations are unneeded when running in the HW-accelerated

mode. Instead of providing two different execution paths (for HW-Txs and SW-

Txs) we will progressively analyze the different steps that can be dynamically

removed from the HW-accelerated execution path. In any case, if HW resources

are exceeded then the HW transaction is aborted and fallen back to SW execution.

This progressive approach allows us to observe the implications of every

architectural change and its effect on the global system performance. In addition,

we will compare the system with a faster ordinary STM which fails in the

privatization problem.

We use an ordinary HTM supporting strong atomicity between transacted and

non-transacted accesses [2]. We assume that all memory accesses are implicitly

transacted when running inside a transaction. We also assume that the ISA

provides a new instruction InHWTx to determine whether or not execution is inside

a HW transaction. When making performance-related decisions we assume that

per-cache conflict detection is used and that updates are made in-place (as with

LogTM). These latest assumptions affect performance, not correctness. Next,

Sections 4.1 to 4.3 present three progressive accelerations for the HW-based

execution path.

4.1 First acceleration: avoiding locking

As the underlying HTM mechanisms provide transaction atomicity and data

collision detection, locking is often un-needed when running a transaction in HW.

However, we cannot simply remove all locking: SW transactions require locks for

correctness, and SW-locked objects must be respected by HW-Txs. Also, SW-Txs

should not acquire a lock if this conflicts with a HW-Tx accessing the object.

7

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

Our approach is based on maintaining the lock access but modifying the lock and

unlock operations (and the lock structure). In HW mode, transactions just test for

collisions with SW ones: a HW read_lock operation will conflict with a previous

SW writer, and a HW write_lock operation will conflict with any SW reader or

writer. To this end, we modify the lock structure adding a new writing field (as

depicted in Figure 4) which is set by SW writers when they acquire the lock and

cleared on release. The rest of the algorithm for SW-Txs remains as in [27]. This

prevents HW-Txs from accessing any object being transactionally modified by a

SW-Tx: if a conflict is detected, the HW-Tx aborts. The detailed correct actions

required by HW and SW lock operations are defined in Table 1.

Figure 4: Modified stm_blk

 with writing field

In a direct-update early detection HTM system (such as LogTM [29] used in our

evaluations), the coherence extensions providing strong atomicity also prevent

any SW-Tx from acquiring a lock in a conflicting mode. Table 2 shows the

actions involved when the lock is held by a thread in reader or writer mode and a

new writer arrives generating a collision (the case of a thread holding the lock in

writer mode and a reader arriving is analogous). When two transactions try to lock

the same object in read mode, they can proceed in parallel: SW-Txs just increase

the reader_count field, while HW-Txs check the writing field. Using a HTM with

lazy detection (like TCC [13] or Bulk [3]) the specific actions would be different

but the behavior would be still correct.
 Current Lock

holder:
HW writer SW writer

 Lock status: reader_count=0
writing=false

reader_count=0
writing=false

HW
writer

Check: writing== false & reader_count ==0 Writing==false & reader_count==0
Action: HTM aborts on real data colisions Explicit abort after check of writing

SW
Writer

Action: HTM coherence extensions
prevent SW-Tx from modifying
writing

Use of the ordinary lock queue system

a) Writer-writer conflict

SW reader original behaviour in [27], with increase of reader_count
SW writer original behaviour in [27], and set writing=true after lock

acquisition
HW reader check writing==false and exit (no field updated);

otherwise, HW abort.
HW writer check writing==false and reader_count==0, and exit;

otherwise, HW abort

Table 1: Locking operations

8

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

 Current Lock
holder:

HW reader SW reader

 Lock status: reader_count=0
writing=false

reader_count=1 (+)
writing=false

HW
writer

Check: writing== false & reader_count ==0 writing== false & reader_count ==0
Action: HTM aborts on real data colisions Explicit abort after check of reader_count

SW
Writer Action: HTM coherence extensions prevent

SW-Tx from modifying writing
Use of the ordinary lock queue system

b) Writer-reader conflict
Table 2: Lock acquisition with writers involved

To dynamically modify the lock behaviour, we define a function in_HW_Tx(), that,

using the inHWTx ISA instruction, returns true only if the code is being executed

with HW support. According to it, the code for read and write lock and unlock

operations is the one presented in Figure 5 (omitted original parts can be found in

[27]):
read_lock(lock, qnode){
 if (in_HW_Tx()){
 if (!lock->writing)

 return; //succeed
 else ABORT_HW_TX();
 }
 else{[…] //original code}
}
a)

write_lock(lock, qnode){
 if (in_HW_Tx()){
 if (!lock->writing)&&
 (lock->read_count==0)
 return; //succeed
 else ABORT_HW_TX();
 }
 else{[…] //original code}
}
b)

read_unlock(lock, qnode){
 if (in_HW_Tx()) { ; }
 else{[…] //original code}
}

write_unlock(lock, qnode){
 if (in_HW_Tx()) { ; }
 else{[…] //original code}
}
c)

Figure 5: Modified a) read_lock, b) write_lock and c) unlock operations

4.2 Second acceleration: skip the read set

Our second acceleration technique comes from the fact that the explicit read-set

list can be elided in HW transactions. Such transactions still need to check the

locks of read objects for two reasons: to avoid reading write-locked objects and to

prevent any further SW-Tx write-locking the object. Therefore, instead of

building up a read-set list, in HW-TXs the read_stm_blk call will check that the

lock is in the appropriate status (writing = false) and return the data pointer to the

shared object. This prevents any further software writer committing changes to the

block before the HW commit, because of strong atomicity.

This operation decreases overhead for two reasons:

- The transaction log is reduced to the write set. Though a search on each access is

still needed, it is much faster.

- The same applies to the validation: the number of validation steps is reduced to

the modified objects count only.

9

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

4.3 Third acceleration: in-place updates

Applying the idea of removing the private log to the write set would prevent the

object copy on the first access and would provide updates in place. However, as

specified in Section 3, SW transactions rely on the update of the data pointer to

detect conflicts on the validation step. HW transactions do not need to allocate a

new data block, but modifying the object without updating the data pointer

wouldn’t allow SW transactions detect HW updates.

To overcome this drawback, we add an additional version counter in the object

header. This field is set to 0 when the object is first instantiated (in any HW or

SW transaction) and increased on every call to write_stm_blk by a HW-Tx. SW-

Txs copy the value of this word in the entry on the read and write sets. The

validation process implies checking both the data pointer and the version field.

Special care is needed to handle version overflows. A simple solution is to abort

HW-Txs on counter overflow and clear the counter on SW updates (to minimize

overflows).

With this last optimization, HW transactions make their updates in place, do not

maintain read or write sets, and consequently avoid any search on these sets. As

our experimental results will show later, this last system provides the highest

performance.

5. HyTM Evaluation

The proposed system has been implemented and simulated with GEMS [25], a

tool based in the full-system simulator Simics [21], using a MESI LogTM

protocol. Network parameters have been set to resemble those of the Sunfire

E25K [37]. Each HW-Tx was retried for 3 times before switching to SW-only.

The modelled system contains 16 processors and the thread count was variable,

while making sure to always leave an empty processor for OS tasks.

We extended the STM implementation to use the LogTM ISA, modifying only the

STM library and not the applications using it. The STM library was modified so

that HW-Txs never call the system malloc and free functions in the garbage

collector. Instead, HW transactions are aborted if a local pool of pre-allocated

chunks is exhausted. Three reasons support this. First, it prevents some limitations

on the base simulator. Although the HTM simulates unbounded transactions, there

10

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

are various low level operations (related with OS locking) which cannot occur

transactionally. Second, it prevents congestion problems in the GC, and

eventually, in the OS, when a HW transaction modifies some global structure.

Finally, it models a HTM system more restricted than the original, unbounded,

LogTM model.

We simulated four versions of our design:

• The original, software only, STM system (sw), which is expected to

be limited by the cost of read-locking.

• A version eliding the locks in HW, but maintaining both read and

write sets (rw).

• A version that avoids entries in the read set (noread).

• A full accelerated version, without read and write sets (nowrite),

A real HyTM system would only use the last version, but we simulate all of them

to evaluate the effect that each change introduces. We also profiled Fraser’s STM

[10], which provides a higher performance than the SW-only lock-based STM, at

the cost of failing in the privatization problem. Its comparison points out the

performance costs of the privatization safety property based on pessimistic

concurrency control.

5.1 Evaluation benchmarks

We used three microbenchmarks: red-black (RB) tree, skip-list and hash-table.

The problem sizes are specified by a key k, similarly to other works in the area

[5], [10]. Each thread executes write transactions with probability p, or read

transactions that search and read a given key with probability (1-p). In the first

two benchmarks, write transactions will add or remove a given key. Write

operations may need to rebalance the tree or to correct the links in the skip list,

introducing some contention between operations on different keys. In these

programs, the root of the tree or list is always part of the transactions read set. In

the hash-table microbenchmark, we implemented two instances of linked hash

tables with different size. Each writing transaction will move the given entry from

one table to the other (if found) or add/remove the key (after searching on both

tables, if needed) with the same probability. In this case, there is no reader-

congestion in the root of the table (actually, there is no such root).

11

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

In all cases, after a sufficient warm-up period, the number of simulated cycles per

transaction was measured, averaged across nine simulation runs and executed for

a period long enough to converge to a fixed value. Performance is reported as the

inverse of this value. In most cases, our results are normalized against the single-

processor, SW-only performance.

5.2 Performance results

Our first test shows the performance improvement obtained by a single processor,

which reflects the sequential work removed by the HW-support. Table 3 shows

these values for different problem sizes (from 28 to 215 maximum elements), using

workloads with read-only transactions, p = 0%, and for p = 10%.

Fraser’s performance improves the base system in a 20-60% as there is no reader-

lock overhead. The lock elision (sw) provides a similar but slightly lower

improvement, given that the writing lock field still has to be checked by readers.

The remaining two improvements provide higher benefits (up to 3.45) by

offloading the log management and conflict detection functions to the HTM. This

improvement grows with the problem size (211, 215) in RB and Skip, as the

transaction log size is also increased.

Figure 6 shows the multi-processor performance obtained with read-only

transactions in the RB tree and hash table for key size 8. The skip list performance

is similar to the RB tree, and different problem sizes show similar behaviour, so

those plots are omitted. Plots are normalized to the performance of the single-

processor, base STM system. Considering the values in Table 3 there is no super-

linear speedup. Both workloads show a constant speedup, but the baseline STM

offers much lower scalability in the RB benchmark. In the hash-table benchmark,

Hash - Size 28 - Speedup over the base 1p case

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15
Threads

Sp
ee

du
p

sw-only
rw
fraser
noread
nowrite

RB - Size 28 - Speedup over the base 1p case

0

5

10

15

20

25

30

35

40

45

50

1 3 5 7 9 11 13 15
#Threads

Sp
ee

du
p

sw-only
rw
fraser
noread
nowrite

Figure 6: Speedup of read-only RB (left) and Hash (right) with key size 8
12

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

for each thread count the performance improvement of the HyTM models over the

base STM is roughly constant, with the values presented in Table 3. In the RB

benchmark the performance improvement rises with the thread count: with 15

threads lock elision (rw), gains a factor of 2.72x, while noread (that saves the read

set storage and validation) and nowrite (that saves any logging and commit steps)

provide speedups of 4.77x and 5.49x.

The poor scalability of the base STM system in the RB benchmarks can be

explained by profiling the sw and nowrite cases in Figure 7. The left plot dissects

the execution steps, showing how the commit phase of the sw design is almost

removed in the nowrite approach as the validation and update steps are

unnecessary. Also, this commit phase grows in sw with the number of processors

due to the cycles spent manipulating read-set locks. To verify this, the right plot

shows how lock handling time grows with the thread count due to the contention

on the lock reader_count field, which happens especially toward the root of the

shared structure. In the case of nowrite, the lock action is reduced to a simple

check that does not introduce coherence contention and remains constant with the

thread count.

Figure 7: RB read-only transactions cycle dissection (left) and cycles spent with lock operations

0

2000

4000

6000

8000

10000

12000

14000

sw
-o

nl
y

no
w

rit
e

sw
-o

nl
y

no
w

rit
e

sw
-o

nl
y

no
w

rit
e

sw
-o

nl
y

no
w

rit
e

sw
-o

nl
y

no
w

rit
e

1 2 4 8 15

SW lock cycles:

HW lock cycles

0

5000

10000

15000

20000

sw

no
w

rit
e

sw

no
w

rit
e

sw

no
w

rit
e

sw

no
w

rit
e

sw

no
w

rit
e

1 2 4 8 15

SW aborted w ork:

SW - other:

SW commit:

SW TX Write Blk:

SW TX Read Blk:

HW aborted w ork:

HW - other:

HW commit:

HW TX Write Blk:

HW TX Read Blk:

critical exit:

Critical enter:

Non-TX ops:

 RB p=0 RB p=10% Skip p = 0 Skip p = 10% Hash p = 0 Hash p = 10%

Key k 8 11 15 8 11 15 8 11 15 8 11 15 8 11 8 11
sw 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
rw 1.43 1.41 1.38 1.41 1.38 1.33 1.03 1.08 1.13 1.04 1.05 1.17 1.23 1.23 1.23 1.33
fraser 1.70 1.69 1.65 2.19 1.23 1.22 1.14 1.23 1.25 1.15 1.18 1.26 1.38 1.39 1.03 1.49
noread 2.50 2.78 2.92 2.22 2.27 2.35 1.93 2.24 2.37 1.94 2.12 2.58 1.71 1.71 1.52 1.75
nowrite 2.84 3.20 3.36 1.92 2.53 2.68 2.29 2.67 2.84 2.83 3.16 3.45 1.88 1.87 1.68 2.00

Table 3: Single processor performance

13

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

Figure 8 shows the performance obtained with the skip-list benchmark under low

(left, k=15 and p = 10%) and high (right, k =8 and p = 10%) contention. With

low contention, Fraser’s model scales well, but we observe how the hybrid

versions’ performance degrades with the number of threads. With higher

contention (right), the performance of all models suffers as expected, but the

performance penalty is much higher in the hybrid models. This degradation comes

from two facts. First, it is due to the higher proportion of slower SW transactions

triggered by the increase of the rate of HW transactions aborted, as shown in

Figure 9. Though the actual HW abort rate is not very high, LogTM makes

processors wait on conflicts rather than abort, leading to a significant impact on

the overall performance. The second fact is the lack of fairness that will be studied

in the next Section.

Figure 10 shows the performance in a contended case of the hash-table benchmark

(8=k , %25=p). The base STM performs better than before, as there is no root-

node reader congestion. The right plots show that, as collisions are more

infrequent in this data structure, the abort rate is much lower and hence, the

scalability higher. The system maintains, basically, the single-processor

Figure 9: Transactions aborted in hardware and software modes, p = 0%.

Hardware TX abort rate - Skip-list - 28

0

1

2

3

4

5

6

1 2 4 8 15

%

rw

noread

nowrite

Software TX abort rate - Skip-list - 28

0

2

4

6

8

10

12

14

16

1 2 4 8 15

%

sw-only
rw
fraser
noread
nowrite

Figure 8: Skip-list performance under low (left) and high (right) contention, p = 10%

Skip-list - Size 28 - Speedup over the base 1p case

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15
#Threads

sw-only
rw
fraser
noread
nowrite

Skip-list - Size 215 - Speedup over the base 1p case

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15
#Threads

Sp
ee

du
p

sw-only
rw
fraser
noread
nowrite

14

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

performance speedups for every thread count.

5.3 Fairness issues
The base STM provides fairness guarantees between different reading and writing

transactions. The use of per-object queue-based FIFO locks at commit time

implies that a transaction that wants to modify an object will have to wait for any

previous committing readers (or writers) to release the lock. In addition, any

subsequent transaction that reads the same object will have to wait for the writer

to finish, later on the queue.

However, we found that on the HyTM system this fairness guaranty is lost when

using LogTM as the base HTM (or, in general, with any eager conflict detection

HTM that stalls the requestor of conflicting addresses). The problem comes from

the way that LogTM extends the coherence mechanism to provide atomicity:

Whenever a coherence request arrives at a given node, if such request conflicts

with the ongoing transaction, a NACK (“Negative Acknowledgement”) reply is

sent to the coherence requestor, temporarily denying access to the line. This

prevents the requester from reading or writing transactionally modified lines.

This NACKing mechanism effectively provides a hardware-based lock on those

lines read or modified during the transaction. It can be either read-locking when a

transaction reads a line, in which case several transactions can concurrently access

the shared line, or write-locking if the line has been modified by a transaction and

is kept with exclusive coherence permissions.

This kind of multiple-reader, single-writer locking can lead to writer starvation on

frequently read lines. The problem can occur if two processors are continually

running transactions that hold the same cache line in their read set while a third

processor is waiting to make a transactional write to that line. The putative writer

will be continually NACKed while the readers continue executing transactions. A

while (a < 1000){
 atomic{
 if ((a %N)==th_id) a++;
 }
}

Figure 11: Example of code that stalls due to writer starvation

Hash - 28 - p=25% - Speedup over the base 1p STM

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15
#Threads

Sp
ee

du
p

sw-only
rw
fraser
noread
nowrite

Hardware TX abort rate

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 2 4 8 15
#Threads

%

rw

noread

nowrite

Figure 10: Hash-table speedup and abort rate with k=8, p=25% (high contention)
15

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

pathological example is shown in the code of Figure 11, where a is a shared

variable initially set to 0, N is the thread count and th_id<N is a per-thread id.

When there are enough threads running this code, execution never ends due to

writer starvation. Without special contention management, even four threads are

enough to block the Hybrid TM system.

Similarly, we analyzed the performance of individual processors in the red-black

tree microbenchmark. With 32 threads we found that, after starting a couple of

thousand transactions, and depending on the program run, from 4 to 12 processors

are stalled trying to modify some node which is frequently read because of its

location close to the root. This starvation anomaly does not happen in the base

STM. In the next Section, we introduce the idea of Directory Reservations, a

novel, low cost HW mechanism that builds a “semi-fair” queue to prevent this

type of problems.

6. Directory Reservations

In Figure 12, a request (Step 1) from C is forwarded (2) to A and B transactional

readers, and NACKed (3). The general idea of Directory Reservations is that such

NACKed requests will issue a request to the directory to reserve the line,

piggybacked in the coherence response. The directory is extended with a new R

(Reserved) bit per line, and an attached Reservation Table (RT) to support the

new functionality, as presented in Figure 13. Figure 12 also shows the new

behaviour: After receiving a reservation request (4) from processor C, if a line is

available in the RT the directory sets the R flag for the line, allocates such empty

line in the RT and records the address and requestor processor id C in the requestor

field. The fields read_count and W will be discussed later.

Whenever any other processor D issues a GETX (“get exclusive”) or GETS (“get

 DATA stat. Own sharers R addr requestor read count W addr

Directory Reservation Table (RT)

 DATA stat. Own sharers R addr

 DATA stat. Own sharers R addr

 DATA stat. Own sharers R addr

 requestor read count W addr

 requestor read count W addr

Figure 13: Reservation Table structure

Fw GETX(a)

NACK
NACK

2

1

2

3

3 R
ES

ER
V

(a
)

4

C

GETX(a)
5

D

NACK
6

Fw GETX(a)

B

Directory

A

G
ET

X
(a

)

Figure 12: Reservation Mechanism
16

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

shared”) request for the same line (step 6 in Figure 12), it will arrive at the

directory controller where the R flag is already set. The directory controller will

get the corresponding line from the RT and compare the requestor id, D, with the

saved requestor field containing C. Being different, the controller determines that

the current requestor is not the one that reserved the line, and sends a NACK

message (step 7) to D without any need to forward the request to the current

sharers. Only requests from processor C (the one that reserved the line) will be

forwarded to the corresponding processors (owner or sharers). If C receives new

NACK replies, it will have to repeat the request until it is successfully satisfied.

Eventually, in a general case, the blocking processors (A and B) will commit their

transaction. When this happens, no new NACK will be issued to the coherence

requestor, so C will receive the valid data with the valid permissions. In this point,

the final message from C to the directory clears both the R flag and the current

requestor, and finishes the reservation.

In practice, we must be careful because the processors executing A or B may

themselves incur a conflict with a transaction executing in D (conflict in another

line different from a). This would cause a deadlock, e.g.: A waiting for D, D

waiting for C, and C waiting for A. This can be addressed by extending the

existing deadlock avoidance mechanism used in the HTM. In the specific case of

LogTM (deadlock detection based on timestamps), it can be accomplished by

never NACKing requests with a timestamp older than the one in the reservation;

for other HTMs, the mechanism should be appropriately adapted.

6.1 Limited fair queuing

The previously described proposal enables any writer to proceed execution after

the current holders of the line commit. However, it does not implement any queue

for the remaining readers or writers. Once the reservation is served, the rest of the

requests will race for the line. An alternative implementation can provide a result

equivalent to a limited fair queue.

We make use of the optional read_count field and W flag in the directory. Once the

reservation has been set, any GETS request for the same line will be NACKed and

the read_count will be incremented. To prevent counting the same read request

twice, every request message includes a nacked bit, which is set by the requestor

cache on every retry. Only requests with nacked 0 increase the read_count in the

17

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

directory. On the first GETX request not coming from the original requestor C,

the W flag is set, and read_count is no longer incremented. This ensures that if the

block is requested in exclusive mode during a reservation, the read_count field will

contain the count of previous read requests for the block, which will have to be

served before acknowledging any exclusive request. Once the original reservation

is served, the directory will continue to keep the W flag set, and decrease

read_count on every GETS request served, while exclusive requests are NACKed

by the directory. When read_count reaches 0 and the W bit is set, only a single

GETX request will success (and, in the case of a new conflict, generates a new

reservation).

This design does not implement a real queue, given that the directory does not

record the identity of read and write requestors. Once the original reservation is

served, only the amount of read requests before any write request will be

preserved. If new readers try to access the line, nothing prevents them from doing

so before the next writer succeeds. If a new writer comes and wins the request

race, its request will be satisfied. However, this is enough to assure that the

proportion of sharers and writers in the queue is satisfied. We consider that this

mechanism is fair in that, on average, the waiting time for sharers and writers is

the same as it would be with a real queue.

6.2 Thread de-scheduling and migrating

Given that LogTM transactions block accesses that conflict with their read or

write sets, thread descheduling is an important issue for HW transactions.

Signature-based solutions for this issue have been proposed in [39]. In this sub-

section we present how to prevent starvation if the reservation owner gets de-

scheduled. If this happened when the resource became free, there would be no

request for the line. This would block any other threads trying to access the line.

This case does not generate a deadlock but a temporal starvation in the same

manner as de-scheduling a thread which is waiting in a lock queue. To cover this

last case, in [16] a new mechanism is proposed to detect de-scheduled threads.

Waiting threads periodically “publish evidence” that they are still iterating, in the

form of a timestamp increase. If other thread finds a timestamp not increased in a

long time, it can “jump ahead” the queue.

18

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

In our case, we include a counter in the RT line (not depicted in Figure 13). This

counter records the current clock on every new GETX request received from the

reservation holder. When a conflicting request is received (that should be

NACKed by the directory), the counter is checked against the current clock. If the

difference exceeds a threshold, the reservation line is cleared to prevent starvation.

Such threshold will be set to several times (2 or 3) the delay between requests to

cover the case in which network congestion delays a request. A similar case must

be considered for readers and writers when using the limited fair queuing

proposed in Section 6.1.

6.3 Evaluation
In the multiple-reader, single writer problem, prioritizing readers over writers

provides the highest throughput, as writers never stop concurrent readers. Thus,

any fairness mechanism will reduce throughput. Similarly, the usage of the

Reservation Table can locally introduce more contention in the system as the

reservation owner stops furthers threads that could continue execution. On the

other hand, starved threads do not contribute to the global throughput, so

temporarily blocking other threads to guarantee writer progress might lead to

higher throughput. Thus, our implementation should try to produce the lowest

performance degradation while still ensuring starvation freedom.

We implemented three versions of the RT mechanism with different reservation

policies:

- RT-base: nack’ed requests always make the reservation.

- RT-delayed: the nack’ed request is retried several times (we used 100 in our

experiments) before it makes the reservation.

- RT-oldest: the nack’ed request only performs the reservation when the

nack’ers have higher (younger) HTM timestamps. This prevents a writer

from stopping transactions that started before.

We also compared our proposal with a different conflict resolution policy: the

Hybrid model presented in [1] (labelled Abort Policy). Such policy targets the same

problem but considering HTM transactions only. With this policy, write requests

abort readers that have a higher (younger) timestamp. It requires the HTM to

allow transactional requests aborting remote transactions.

19

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

Figure 14 Presents a cycle dissection of the average transaction execution of the

RB-tree benchmark with size 211 and p = 10%, using 2 to 31 threads (simulating a

32 processor machine in this last case). Transaction execution time is normalized

to the base Hybrid system (HyTM). With a small thread count (2 to 4), the system

does not suffer from writer starvation and the mechanism does no penalize

execution. The contention increases with the thread count, showing a higher

percentage of time wasted in SW and HW transaction aborts in HyTM for 15 and

31 threads. The RT mechanisms stop such congestion halting new readers and the

performance is significantly increased up to 30.8% with the best RT-oldest policy,

but without big differences between them. By contrast, the Abort Policy model is

based on aborting running transactions, which increases the abort count and

fastens the switch to the slower STM mode, more prone to aborts. This policy also

improves the HyTM performance but only up to 25.03%.

Finally, Figure 15 presents other two cases. The left graph shows normalized

execution time for a highly contended (p=25%) skip-list with 211 maximum nodes.

High thread counts (15 to 31) present much contention, which is clearly avoided

by the RT mechanism and not so much by the HyTM policy in the 31-thread case.

The right graph shows the Hash-table, which suffers almost no congestion and,

therefore, it is not affected by these mechanisms.

RB tree, 211 nodes, p=10%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

H
yT

M
A

bo
rt

po
lic

y
R

T-
al

w
ay

s
R

T-
de

la
ye

d
R

T-
ol

de
st

H
yT

M
A

bo
rt

po
lic

y
R

T-
al

w
ay

s
R

T-
de

la
ye

d
R

T-
ol

de
st

H
yT

M
A

bo
rt

po
lic

y
R

T-
al

w
ay

s
R

T-
de

la
ye

d
R

T-
ol

de
st

H
yT

M
A

bo
rt

po
lic

y
R

T-
al

w
ay

s
R

T-
de

la
ye

d
R

T-
ol

de
st

H
yT

M
A

bo
rt

po
lic

y
R

T-
al

w
ay

s
R

T-
de

la
ye

d
R

T-
ol

de
st

2 4 8 15 31

#Threads

Ex
ec

ut
io

n
tim

e

SW aborted work:
SW - other:
SW commit:
SW TX Write Blk:
SW TX Read Blk:
HW aborted work:
HW - other:
HW commit:
HW TX Write Blk:
HW TX Read Blk:
critical exit:
Critical enter:
Non-TX ops:

Figure 14: 211 RB-tree execution dissection using different contention mechanisms. p = 10%

20

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

7. Related Work

Early STM implementations aimed for providing non-blocking progress

guarantees. Ennals [8] argues that lock-based STM implementations are sensible

given their integration with the rest of the runtime system (to avoid, for example,

a running thread spinning waiting for a lock to be released by a pre-empted

thread). Lock-based implementations temporarily block a given resource, either

from the encounter-point [15], [23] or in the commit phase [5] to simplify the

design and provide higher performance. From these previous works, [5] and [15]

can fail in problems such as the privatization one. The work of Menon el al [23]

covers the problem and proposes several alternative semantics for STM-only safe

transactions. However, they rely on whole-program analyses, JIT optimizations

and barriers on volatile accesses. Our work is orthogonal to that one, being

possible to adapt our HW acceleration proposal to their lock-based system.

Rajwar and Goodman [31], and Martínez and Torrellas [26] proposed

mechanisms that allow threads to execute speculatively past locks without stalling

for lock ownership. These systems support a traditional lock-based programming

model rather than atomic transactions.

Hardware-accelerated STMs provide a performance speedup if the specific

hardware they require is available. The work in [35] extends a traditional HW

coherence protocol and cache operations to detect conflicts between transactions.

In [32] new cache extensions are included so that transactions can avoid part of

their bookkeeping work. Both proposals design specific HW support for a specific

STM system.

Figure 15: Normalized execution time of Skip-list (p=25%) and Hash-table (p=10%)

Skip-list, 211 nodes, p=25%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

H
yT

M

A
bo

rt
po

lic
y

R
T-

al
w

ay
s

R
T-

de
la

ye
d

R
T-

ol
de

st

H
yT

M

A
bo

rt
po

lic
y

R
T-

al
w

ay
s

R
T-

de
la

ye
d

R
T-

ol
de

st

H
yT

M

A
bo

rt
po

lic
y

R
T-

al
w

ay
s

R
T-

de
la

ye
d

R
T-

ol
de

st

H
yT

M

A
bo

rt
po

lic
y

R
T-

al
w

ay
s

R
T-

de
la

ye
d

R
T-

ol
de

st

4 8 15 31

#Threads

No
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e SW aborted work:

SW - other:
SW commit:
SW TX Write Blk:
SW TX Read Blk:
HW aborted work:
HW - other:
HW commit:
HW TX Write Blk:
HW TX Read Blk:
critical exit:
Critical enter:
Non-TX ops:

Hash-table, 211 nodes, p=10%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

H
yT

M

Ab
or

t p
ol

ic
y

R
T-

al
w

ay
s

R
T-

de
la

ye
d

R
T-

ol
de

st

H
yT

M

Ab
or

t p
ol

ic
y

R
T-

al
w

ay
s

R
T-

de
la

ye
d

R
T-

ol
de

st

H
yT

M

Ab
or

t p
ol

ic
y

R
T-

al
w

ay
s

R
T-

de
la

ye
d

R
T-

ol
de

st

8 15 31

#Threads

SW aborted w ork:

SW - other:

SW commit:

SW TX Write Blk:

SW TX Read Blk:

HW aborted w ork:

HW - other:

HW commit:

HW TX Write Blk:

HW TX Read Blk:

critical exit:

Critical enter:

Non-TX ops:

21

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

Damron et al’s hybrid system [4] is the first to consider HW acceleration by a

generic HTM system. However, their proposal compiles each transaction’s code

twice: once for HW supported transactions and the second for SW ones. This

system is based on hash-addressed ownership records (orecs), and introduces the

idea of extending HW transactions to detect conflicts with SW ones by checking

the corresponding orec status. The improvement in PhTM [20], proposes different

transaction execution phases for hybrid systems, such as HARDWARE, HYBRID or

SOFTWARE. While we do not consider such phase division, our proposal would be

applicable to their HARDWARE and HYBRID phases of execution, affecting orecs

instead of locks. Even more, such work also introduces the idea of using scalable

non-zero indicators instead of counters in the modeIndicator variable. This would

also suffer from strong starvation in the general case, which could be managed by

the Reservation Table. As a note, the authors had to modify the contention

manager in LogTM, changing the stalling mechanism addressed in this work.

NZTM [38], is another hybrid proposal (also with a modified contention manager)

that achieves zero-indirection STM, eliminating some of the performance

overheads of our base STM.

In [28], the authors propose a hybrid system based on TL2 [5]. It does not support

software-only transactions. However, it does provide strong isolation, which is

impractical to offer in a software-only scheme without whole-program analyses.

As with our design, TL2 is based in a blocking, lock-based STM system.

However, our design can still operate when hardware support is not available.

The LogTM HTM model was presented in [29]. The problem of writer starvation

in the LogTM model was discussed in [1], labelled STARVINGWRITER. The

authors propose what we called Abort Policy. Our approach is different in that we

do not need to abort remote transactions, and we explicitly cover the case of both

HW and SW transactions using a HyTM.

Contention management for TM has been previously considered in many different

works such as [4] or [33]. However, as far as we know no other work has

addressed cache-line fairness issues for directory-based hybrid systems.

Many different HW mechanisms have been proposed to improve the performance

of shared-memory synchronization and exclusion. Software reader-writer queue-

based locks [27], as the ones used in our base hybrid TM, reduce contention by

using a queue of waiters, at the cost of increased memory usage. QOLBY [11],

22

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

was the first proposal to improve shared-memory synchronization using hardware

distributed queues. Memory-side atomic operations, first used in the NYU

Ultracomputer [12], perform atomic operations in the memory controller rather

than the processors’ caches to prevent cache lines bouncing between processors.

Recently proposed Active Memory Operations [9] extends the performance to

streams of data. Active Messages [6] is a software proposal to move computation

to the owner node, considering that the programmer knows where it resides. In

forthcoming works of the authors, the extension of Directory Reservations to

support fair access for explicit synchronization will be considered. Although

possible, we do not know of any of these works specifically addressing writer

starvation in shared-memory synchronization. Even more, the complexity of our

directory is much lower than any of the previously mentioned mechanisms.

8. Conclusion and future work

This paper has studied the implications of using a pessimistic reader-writer-lock-

based transactional memory system with semivisible readers. While this system

does not fail in problems such as the privatization one, the performance is

seriously degraded by the readers’ visibility. A hybrid approach that can use any

generic HTM as an acceleration mechanism has been proposed. The overheads

incurred by the locks can be easily avoided in atomic blocks, allowing HW and

SW transactions to coexist together.

It has been shown that the use of the HyTM can negatively affect some desirable

properties of the original STM, specifically the fairness in the resource access. We

have shown how, in corner cases, this can lead to program blocking or thread

starvation. Such solutions, proposed for HTM systems can be suboptimal for a

HyTM model. Directory Reservations is proposed as a low-cost mechanism for

the HTM to build a “semi-fair” queue to access blocked resources. This solution

removes the starvation problem minimizing aborts and leads to higher

performance.

The author’s future work includes extending the idea of Directory Reservations to

accelerate explicit locking. Having a hardware mechanism implementing this

semi-fair queue could offload this task from a software lock, thus reducing the

coherence congestion and the lock passing time.

23

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

Acknowledgments

This work has been supported by the European Network of Excellence on High-

Performance Embedded Architecture and Compilation (HiPEAC), by the

cooperation agreement between the Barcelona Supercomputing Center - National

Supercomputer Facility and Microsoft Research and by the Ministry of Science

and Technology of Spain under grants TIN2007-60625, TIN2007-6802-C02-01

and CONSOLIDER CSD2007-00050.

References

[1] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift and D. A.

Wood, Performance Pathologies in Hardware Transactional Memory.

International Symposium on Computer Architecture (ISCA), June 2007.

[2] Colin Blundell, E Christopher Lewis and Milo M. K. Martin. Subtleties of

Transactional Memory Atomicity Semantics. IEEE Computer Architecture

Letters, 5(2), July 2006.

[3] Luis Ceze, James Tuck, Calin Cascaval and Josep Torrellas. Bulk

Disambiguation of Speculative Threads in Multiprocessors. In the

Proceedings of the 33rd Intl. Symposium on Computer Architecture (ISCA),

June 2006.

[4] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir and D.

Nussbaum. Hybrid transactional memory. 12th Intl. Conf. on Architectural

Support for Programming Languages and Operating Systems, San Jose, CA,

Oct. 2006.

[5] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In the

Proceedings of the 20th Intl. Symposium on Distributed Computing (DISC),

Stockholm, Sweden, Sept. 2006.

[6] T. von Eicken, D. Culler, S. Goldstein and K. Schauser. Active Messages: A

mechanism for integrated communication and computation. In Proc. of the

19th ISCA, May 1992.

[7] F. Ellen, Y. Lev, V. Luchangco and M. Moir, SNZI: Scalable Non-Zero

Indicators. In Proceedings of the Twenty-Sixth Annual ACM Symposium

on Principles of Distributed Computing. Portland, Oregon, USA, August 12

- 15, 2007.

24

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

[8] Robert Ennals Software Transactional Memory Should Not Be Obstruction-

Free. Intel Research Cambridge Technical Report. IRCTR-06-052.

[9] Z. Fang, L. Zhang, J. B. Carter, A. Ibrahim and M. A. Parker. Active

memory operations. In Proceedings of the 21st Annual international

Conference on Supercomputing. Seattle, Washington, June 17 - 21, 2007.

[10] Keir Fraser and Tim Harris. Concurrent programming without locks. ACM

Transactions on Computer Systems, Vol 25, Issue 2, May 2007.

[11] J. R. Goodman, M. K. Vernon and P. J. Woest. Efficient syncrhonization

primitives for large-scale cache-coherent multiprocessors. In Proceedings

of the 3rd international conference on Architectural support for programming

languages and operating systems (ASPLOS’89), Boston, MA, USA, 1989.

[12] A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe, L. Rudolph and M.

Snir. The NYU multicomputer – designing a MIMD shared-memory parallel

machine. IEEE TOPLAS, 5(2):164–189, Apr. 1983.

[13] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B.

Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis and K. Olukotun.

Transactional Memory Coherence and Consistency. Proc. of the 31st Intl.

Symp. on Computer Architecture (ISCA), Munich, June 04.

[14] T. Harris and K. Fraser. Language Support for Lightweight Transactions. In

the 18th Conf. on Object-oriented Programming, Systems, Languages, and

Apps. (OOPSLA), Anaheim, CA, 2003.

[15] T. Harris, Mark Plesko, Avraham Shinnar and David Tarditi. Optimizing

Memory Transactions. In the Proceedings of the Conference on

Programming Language Design and Implementation (PLDI), Ottawa,

Canada, June 2006.

[16] B. He, W. N. Scherer III and M. L. Scott. Preemption Adaptivity in Time-

Published Queue-Based Spin Locks. 11th Intl. Conf. on High Performance

Computing, Dec. 2005.

[17] M. Herlihy and J.E.B. Moss. Transactional Memory: Architectural Support

for Lock-Free Data Structures. In the 20th Intl. Symposium on Computer

Architecture (ISCA), May 1993.

[18] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kunduand

Anthony Nguyen. Hybrid Transactional Memory. In the 11th Symposium on

25

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

Principles and Practice of Parallel Programming (PPoPP), New York, NY,

Mar. 2006.

[19] J. Larus and R. Rajwar. Transactional Memory. Morgan Claypool Synthesis

Series, 2007.

[20] Yossi Lev, Mark Moir and Dan Nussbaum. PhTM: Phased Transactional

Memory. Workshop on Transactional Computing (TRANSACT), 2007.

[21] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J.

Hogberg, F. Larsson, A. Moestedt and B. Werner. Simics: A Full System

Simulation Platform. IEEE Computer, 35(2):50-58, February 2002.

[22] V. J. Marathe, M. F. Spear, A. Acharya, D. Eisenstat, W. N. S. Iii and M. L.

Scott. Lowering the Overhead of Nonblocking Software Transactional

Memory. In the Proceedings of the 1st Workshop on Languages, Compilers,

and Hardware Support for Transactional Computing, Ottawa, Canada, June

2006.

[23] Vijay Menon et al. Towards a Lock-based Semantics for Java STM.

University of Washington Technical Report: UW-CSE-07-11-01. November

2007.

[24] M. M. Michael. Hazard pointers: safe memory reclamation for lockfree

objects. IEEE Transactions on Parallel and Distributed Systems. Vol. 15,

No. 6, pp 491- 504, June 2004.

[25] M. M.K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.

Alameldeen, K. E. Moore, M. D. Hill and D. A. Wood. Multifacet’s General

Execution-driven Multiprocessor Simulator (GEMS) Toolset. Computer

Architecture News (CAN), Sept. 2005

[26] J.F. Martinez and J. Torrellas, Speculative synchronization: applying

thread-level speculation to explicitly parallel applications, Proc. 10th Intl.

Conf. on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), San Jose, California, Oct. 2002.

[27] J. M. Mellor-Crummey and M. L. Scott. Scalable reader-writer

synchronization for shared-memory multiprocessors. Proc. of the 3rd ACM

SIGPLAN Symp. on Principles and Practice of Parallel Programming. 1991,

Williamsburg, Virginia.

[28] C. C. Minh, M. Trautmann, J. W. Chung, A. McDonald, N. Bronson, J.

Casper, C. Kozyrakis and K. Olukotun. An Effective Hybrid Transactional

26

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

Memory System with Strong Isolation Guarantees. In 34th International

Symposium on Computer Architecture. San Diego, June 2007.

[29] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill and D. A. Wood. LogTM:

Log-Based Transactional Memory. Proc. of the 12th Intl. Conference on

High-Performance Computer Architecture (HPCA), Austin, TX, Feb. 2006.

[30] R. Rajwar, Maurice Herlihy and Konrad Lai. Virtualizing Transactional

Memory. In the Proceedings of the 32nd International. Symposium on

Computer Architecture (ISCA), Madison, WI, June 2005.

[31] R. Rajwar and J. R. Goodman. Speculative Lock Elision: enabling highly

concurrent multithreaded execution. In Proc. Of the 34th Intl. Symposium on

Microarchitecture, Austin, Texas, 2001.

[32] Bratin Saha, Ali-Reza Adl-Tabatabai and Quinn Jacobson. Architectural

Support for Software Transactional Memory. In the Proceedings of the 39th

Intl. Symposium on Microarchitecture (MICRO), Orlando, FL, Dec. 2006.

[33] W. Scherer and M. Scott. Advanced contention management for dynamic

software transactional memory. In Proc. 24th Annual ACM Symposium on

Principles of Distributed Computing, 2005.

[34] T. Shpeisman, V. Menon, A. Adl-Tabatabai, S. Balensiefer, D. Grossman,

R. Hudson, K. F. Moore and B. Saha. Enforcing isolation and ordering in

STM. Proc. of the ACM SIGPLAN Conf. on Programming Language

Design and Implementation (PLDI’07). San Diego, California, 2007.

[35] Arrvindh Shriraman, Michael F. Spear, Hemayet Hossain, Virendra

Marathe, Sandhya Dwarkadas and Michael L. Scott. An Integrated

Hardware-Software Approach to Flexible Transactional Memory. Proc. of

the 34th International Symposium on Computer Architecture (ISCA), June

2007.

[36] Michael F. Spear, Virendra J. Marathe, Luke Dalessandro and Michael L.

Scott. Privatization Techniques for Software Transactional Memory. UR

CSD;TR915. Rochester University, Feb. 2007.

[37] Sun Microsystems. Sun Fire E25K/E20K Systems Overview. Technical

Report 817-4136-12, 2005.

[38] Fuad Tabba and Cong Wang and James R. Goodman and Mark Moir.

NZTM: Nonblocking, Zero-Indirection Transactional Memory. Workshop

on Transactional Computing (TRANSACT), 2007.

27

Vallejo - Hybrid Transactional Memory with Pessimistic Concurrency Control

[39] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M.

Swift and D. A. Wood. LogTM-SE: Decoupling Hardware Transactional

Memory from Caches. Int. Symposium on High Performance Computer

Architecture (HPCA), Feb. 2007.

[40] C. Zilles and R. Rajwar. Transactional Memory and the Birthday Paradox.

In the 19th annual ACM symposium on Parallel algorithms and

architectures (SPAA). June 2007.

28

	3. Overview of the base STM
	4. Hybrid-TM
	4.1 First acceleration: avoiding locking
	4.2 Second acceleration: skip the read set
	4.3 Third acceleration: in-place updates

	5. HyTM Evaluation
	5.1 Evaluation benchmarks
	5.2 Performance results

	6. Directory Reservations
	6.1 Limited fair queuing
	6.2 Thread de-scheduling and migrating

	7. Related Work
	8. Conclusion and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

