
Performance Optimization of Load Imbalanced
Workloads in Large Scale Dragonfly Systems

Bogdan Prisacari, German Rodriguez, Cyriel Minkenberg
IBM Research – Zurich

Saumerstrasse 4, 8803 Ruschlikon, Switzerland

Marina Garcia, Enrique Vallejo, Ramon Beivide
University of Cantabria

Avenida de los Castros, s/n, 39005, Santander, Cantabria, Spain

Abstract—Dragonfly topologies are one of the most promising
interconnect designs for enabling large, potentially exascale
compute systems, particularly those envisioned to accommodate
workloads that are sensitive to system diameter and end-to-
end latency. They are cost-effective designs with a very low
diameter and close to optimal performance for workloads which
induce a balanced load across the network. However, these
benefits are balanced by a reduced path diversity, which leaves
Dragonflies vulnerable to certain adversarial traffic patterns. The
performance of such workloads can be significantly improved
using indirect routing approaches. However, the indirect routing
approach that is most commonly used today exhibits in turn
significant vulnerability to a subset of these traffic patterns for
reasons that have not been, up to now entirely, understood.

In exploring this vulnerability, we manage to provide a
theoretical justification, based on inherent properties of the
Dragonfly topology, of why performance degrades. Furthermore,
we manage to isolate what specifically in the structure of a traffic
pattern makes it a worst case in this context, and thus we are able
to characterize the precise workload subset that will experience
poor performance. By building upon the understanding of the
interaction that causes sub-optimal behavior, we then show how
simple changes to either the routing strategy or the process to
node assignment can bring performance back close to ideal levels.
Finally, we not only provide a theoretical justification for our
performance models, but also validate them via comprehensive
simulation-based studies of systems with up to 16,512 nodes.

I. INTRODUCTION AND RELATED WORK

With the advent of Big Data, a need has arisen for ever
larger and more powerful systems in both the High Perfor-
mance Computing and datacenter space. Furthermore, future
exascale systems will not only need to be computationally
powerful, but also match that power with high bandwidth and
especially low latency interconnection networks [1]. Dragonfly
networks, a recent cost-effective and efficient network topol-
ogy, developed independently by IBM (as the interconnection
fabric of the PERCS system [2]) and Kim et al. [3], is
one of the most promising candidate topologies for such
systems. They simultaneously offer i) low diameter, ii) high
performance for uniform random traffic, iii) a hierarchical
design that allows for a very advantageous performance/cost
ratio, by using a combination of copper and optical wiring, iv)
very good scalability (exceeding tens of thousands of nodes),
as well as other advantages. Current Dragonfly-based systems
include the IBM PERCS system [2] as well as Cray Cascade
systems [4], most prominently Piz Daint, the largest European
supercomputer [5].

However, while performing very well for applications where
the communication pattern utilizes the network in an ap-
proximately uniform fashion, Dragonfly systems have been
shown to be susceptible to performance degradation when
dealing with certain other types of traffic. Previous works
in this area [6]–[9] have identified several traffic patterns
whose performance is sub-optimal on these networks and
that furthermore are characteristic of relevant HPC workloads.
Techniques have been proposed to reduce the performance
degradation of these workloads. They range from adjusting
the concurrent process placement [6] to adapting the routing
strategy [3], [7] or even the topology of the network itself [7],
[10]. The sought after end result of each of these approaches
is to reshape network traffic into something closely resembling
a uniform random pattern (which the Dragonfly network can
move at peak throughput) by breaking down the regularity
of adversarial workloads. However, as we will show, it is
often the case with the most popular of these techniques that
performance levels still fall short.

This work identifies the root cause of the sub-optimal
performance. We analytically characterize non-trivial bottle-
necks that emerge as a consequence of specific symmetries
characteristic of a wide class of traffic patterns and provide
a performance model capable of accurate predictions. While
for (adversarial) linear shift patterns such bottlenecks had been
empirically observed by previous work [7], a thorough analysis
of the cause of the behavior has not been provided. We pre-
cisely identify necessary and sufficient traffic characteristics
that make workloads prone to these bottlenecks, and exemplify
them with several common practical cases: bit complement,
linear shift and nearest neighbor-like traffic. Furthermore, we
show that the bottlenecks can be mitigated to a large extent by
employing an alternative routing strategy or process allocation.
Finally, we validate our claims via a wide range of simulation-
based studies of practical network configurations.

II. BACKGROUND

Dragonflies are direct, hierarchical networks with two lev-
els. Being direct networks, every switch in the system is
connected to a number of nodes, which in the case of the
Dragonfly is constant across switches. The parameter p of the
topology denotes this number. At the first hierarchical level,
the set of switches in the network is partitioned into equal sized
sets called groups. The parameter a of the topology denotes



Local group 

Local group 

a=4 switches in 
every local group

h=2 remote links 
in every switch

p=2 nodes to 
every switch

Fig. 1: Illustration of a (p = 2, a = 4, h = 2) Dragonfly
topology, with two groups presented in detail.

the number of switches that each group contains. Furthermore,
the switches belonging to the same group are interconnected to
form a typically low diameter subnetwork, such as a full mesh
(such as in the PERCS interconnect) or a flattened butterfly
(such as in the Cray Cascade systems). When the subnetwork
is a full mesh, a− 1 ports per switch are necessary to create
this interconnection pattern. In this work we will refer to links
forming the group subnetwork as intra-group or local (L) links.
Finally, each switch has a constant (across switches) number
of ports that connect it to switches in other groups than its
own. The topology parameter h denotes this number of ports.
These ports are used to effectively interconnect the individual
groups into a full mesh of groups at the second hierarchical
level. In this work we will refer to links between groups as
inter-group or remote (R) links.

To ensure connectivity, at least one link must connect every
pair of groups. In the case of full scale Dragonfly systems,
exactly one link connects every pair. For lower scale systems,
multiple links can be employed to interconnect group pairs,
with the benefit of larger inter-group bandwidth. In this work,
we will restrict our study to the full scale case, but the derived
conclusions extend naturally to the lower scale Dragonflies.
Thus, at full scale, a Dragonfly network is characterized by
three topological parameters, (p, a, h). The structure of a full
scale (2, 4, 2) Dragonfly system is illustrated in Fig. 1. Sets
of p = 2 nodes are connected to every switch. The switches
are partitioned into fully-meshed groups of size a = 4. Each
switch has a − 1 ports connecting it to switches in its own
group and h = 2 ports towards switches in other groups.

One of the most attractive features of Dragonfly networks
is their very low diameter. Indeed, under the so called shortest
path or direct routing, possible paths consists in a traversal
of at most 3 inter-switch links. More precisely, the longest
possible shortest path is made up of

• an L link traversal in the group of the source node to get
to the switch that has the R link to the destination group,

• a traversal of that remote link and
• a second L link traversal in the destination group to get

to the switch directly connected to the destination node.

It has been shown that, for certain topological parameter
constellations (particularly those for which p = a/2 = h)
close to ideal throughput can be achieved for uniform traffic
under direct routing, which is another feature of the Dragonfly
network. While shortest path routing has the advantage of

low end-to-end latency, it also comes with the price of very
low path diversity (at full scale, a single shortest path exists
between any source-destination pair). This lack of diversity
can lead to an extreme degradation in performance for certain
adversarial traffic patterns. Therefore, routing algorithms have
been introduced that sacrifice path length for diversity, the
majority based on Valiant’s algorithm [11].

The general idea of this approach is, given a message going
from a certain source to a certain destination, to:

• randomly chose an intermediate switch,
• send the message along the shortest path route between

the source and the intermediate switch, and finally
• send the message along the shortest path between the

intermediate switch and the destination.
In the case of load imbalanced, or adversarial traffic patterns,
the expectation is that, by using a different random intermedi-
ate switch for each message, the original nature of the traffic
is shifted towards a uniform random traffic (which has close
to ideal performance) at the expense of longer paths and of
a doubling of the load under dense traffic [12]. In addition
to these drawbacks, the longer paths in Valiant routing also
require the use of additional virtual channels to guarantee
deadlock freedom. Indeed, whereas shortest path routing only
requires 2 virtual channels, general Valiant routing can require
up to 4, with variants such as the one described in [3], which
we will call ValiantRestricted, requiring at least 3.

ValiantRestricted can be described as follows: as in the
general Valiant case, when a source s in group S sends a
message to destination d in group D, an intermediate group I
is first chosen. A minimal route (consisting of at most one L
and one R hop) is taken to arrive to the first reachable switch
in group I . From there, the packet follows the unique minimal
route to the destination d (requiring at most two L hops and
one R hop). The longest path using this Valiant variant would
then have the following shape: LR-LRL.

The generic Valiant on the other hand, also called
ValiantAny [8] or VALn [13] in other works, would randomly
choose potentially any switch (not just the first reachable) in
the intermediate group as the intermediate destination, thus
potentially incurring an extra L hop within the intermediate
group, and requiring one extra virtual channel for the L
channels. In this case, the longest paths possible have the
shape: LRL-LRL. This routing variant might negatively affect
some traffic patterns (due to an increased load on the local
links) while helping other patterns (providing a route around
a congested intermediate group local link).

III. IMBALANCED WORKLOAD PERFORMANCE

While very well suited for efficiently accommodating work-
loads with a uniform traffic matrix, Dragonflies can experience
significant performance degradation in the presence of other
workloads. This is caused by the fact that the amount of
bandwidth available between any pair of source-destination
groups is limited, as there is typically a single remote link
connecting the pair. Traffic patterns that are particularly
performance challenged include the bit complement pattern,



0 a-1

s s'

p=2

h=2 
remote 
links

a=4

0a-1

Group i

Group k

Group j

Group i-1 Group j+1

Fig. 2: Illustration of emergence of intra-group bottlenecks for
bit complement traffic.

many shift permutation patterns [12] as well as the nearest
neighbor exchange which occurs commonly in many scientific
workloads. As a general rule, a workload will experience poor
performance on a Dragonfly system under direct routing if
the traffic matrix is such that the traffic originating in nodes
belonging to a given group is predominantly destined to des-
tination nodes that also share the same group. Such a pattern
will induce a large amount of traffic on the link connecting the
source-destination group pairs effectively causing it to become
a bottleneck and limit overall throughput. In this section, we
will show that for a large subset of these adversarial patterns,
including the examples above, the indirect routing approach
that is currently the most popular in practice, ValiantRestricted,
is unable to increase performance significantly.

By selecting an intermediate group uniformly at random
to which to route the traffic in a first phase, before actually
routing towards the destination, ValiantRestricted is indeed
able to avert the bottleneck described earlier. Indeed, the
uniform choice of the intermediate group ensures that the
load previously experienced by a single remote link is now
distribution across all remote links originating in the source
group, However, the choice is uniform only across groups,
which means that once the intermediate group is reached, the
messages will be immediately routed towards the destination.
This leads to load being balanced only across remote links,
with no guarantee for load balancing inside the individual
groups. The approach is consequently unable to prevent the
subsequent formation of bottlenecks in the intra-group links
in the presence of certain load imbalanced traffic patterns.

Given a Dragonfly network with parameters (p, a, h)without
loss of generality one can assume that:

• for a given switch, the remote links originating on that
switch are assigned consecutive numbers from 0 to h−1,

• for a given group, the switches belonging to that group
are assigned consecutive numbers from 0 to a− 1, and

• for the entire system, the groups are assigned consecutive
numbers from 0 to a · h.

Using this numbering scheme, a typical remote link intercon-
nection pattern (the pattern denoted “Palmtree” in [10]) is to
connect switch number x in group i through its m-th remote
link to a switch in group j = (i + x · h + m) mod (ah + 1).
This leads to remote links on the same switch, that are
consecutive according to the number scheme, interconnecting
a given group to groups that are also consecutive in the
same numbering scheme. In the remainder of the section,
we will show that this regularity of the interconnect, coupled
with certain regularities characteristic of some of the load
imbalanced traffic patterns, make intra-group bottlenecks un-
avoidable under ValiantRestricted indirect routing. The traffic
pattern characteristic in question is that pairs of commu-
nicating groups have the property that consecutive source
groups are paired with consecutive destination groups. This is
indeed the case for bit complement, shift and nearest neighbor
exchanges, among others.

Let us consider that the indirect routing approach used in
the system is ValiantRestricted. Given an arbitrary switch s
of an intermediate group g, let us consider the h remote
links of s. These links will connect the group g to h source
groups, that will be consecutive, as a consequence of the
interconnection pattern described above. When a message
originating in any of the source groups is routed indirectly such
that g is selected as the intermediate group, the structure of
the path that the message will take will be the following. The
message will be routed minimally from its source to switch
x, and from there it will again be routed minimally to its
destination (as explained in Sec. II). Due to the assumptions
we’ve made on the traffic pattern, the destination groups of
traffic originating in the h consecutive source groups will also
be consecutive. This implies that the h destination groups
will be connected to group g via consecutive links, i.e., by
links x to h − 1 on some switch s′ and links 0 to x − 1 on
switch s′′ = (s′ + 1) mod a, for some values of x and s′

that are specific to the traffic pattern. This further implies that
messages incoming on the h remote links of s and taking the
shortest paths to their respective destinations will necessarily
have to navigate to one of the two switches s′ or s′′, and
from there take the remote link to their respective destination
groups. It necessarily follows those messages will at most use
one of two possible local links within group g: either the link
connecting s to s′ or the link connecting s to s′′. All other
intra-group links originating on s will be completely unused
by indirect traffic, leading to a significant intra-group load
imbalance. Fig. 2 illustrates this effect for the bit complement
pattern. Processes in group i send messages to processes in
group j; processes in group i− 1 send messages to processes
in group j+1. Under indirect ValiantRestricted routing, due to
the typical wiring of a Dragonfly, a local link in each potential
intermediate group k experiences a load that is a up to factor
of h higher than what it can sustain. The cause of this behavior
is the ValiantRestricted strategy itself, which forces the taking
of a minimal path towards the destination, immediately once
the intermediate group is reached.

As an observation, for traffic patterns that exhibit a high



degree of locality, i.e., for which (source,destination) group
pairs have the property that the absolute difference between
the source and destination group index is low (lower than
h), s′ and/or s′′ might coincide with s, in which case traffic
entering the intermediate group might exit it via the same
ingress switch s, leading to the weakening of the intra-group
bottleneck. Among the traffic patterns analyzed in this work,
this is the case only for high locality phases of nearest neighbor
exchanges and shift patterns with a very small offset.

This imbalance has an important performance impact. The
traffic incoming over x of the remote links of s and the traffic
incoming over the remainder h−x of the remote links of s will
effectively see their throughput limited to that of a single intra-
group link, leading to a limitation of the effective bandwidth
available to each remote link that is between 1/h (worst case,
when x = 0 or x = h) and 2/h (best case, when x = h/2) of
the L link bandwidth.

Given a remote link connecting groups g and g′, two main
types of traffic will traverse it. The first type is made up of
messages originating in group g, destined to any of the groups
g′′ /∈ {g, g′} and using group g′ as an intermediate group. The
second type is made up of messages originating in any of the
groups g′′ /∈ {g, g′}, destined to group g′ and using group g
as an intermediate group. Due to the same number of (source,
destination) pairs in each flow and to the way the indirect
route is selected for each message, both of these flows are
equal in size. Thus each flow will be able to use half of the
effective bandwidth of the remote link. As this applies to any
of the remote links of the network, it follows that the maximum
aggregate injection throughput that the network can sustain is
upper limited by half the aggregate effective throughput of all
remote links. Thus, the network’s performance T , expressed
as the relative (to total injection bandwidth) throughput the
network can sustain, is bounded by:

1
2
· Nr

N
· 1
h
≤ T ≤ 1

2
· Nr

N
· 2
h

, (1)

where Nr is the total number of R links and N is the total
number of nodes in the system:

Nr = (ah + 1) · a · h, (2)

N = (ah + 1) · a · p. (3)

For every intermediate switch s, the number x of incoming
remote links that share the same local link in the next hop
takes a pattern-specific value that can be computed explicitly.
Thus, for a given traffic matrix, the bottlenecks in every R link
and consequently the throughput T can be computed exactly.
The cumulative effect across all s is however generally well
approximated by an average R limitation equal to the average
of the extreme values, i.e., 3/(2h). Thus, from Eq. (1), (2),
and (3), a reasonable estimate for the effective throughput is:

T =
3
4p

. (4)

IV. EXPERIMENTAL RESULTS

In this section we validate the model introduced in Sec. III
by comparing it to simulation results obtained for several
traffic patterns on multiple Dragonfly topologies. We also show
how addressing the two root causes of bottleneck emergence,
either by altering the routing strategy (to spread traffic more
evenly across the local links of the intermediate group) or
the process allocation (to break the symmetries in the traffic
patterns) can effectively improve performance.

A. Framework, parameters and metrics

The results presented in this section were obtained using a
simulation framework [14] that is able to accurately model and
measure generic and custom networks, including Dragonflies,
at a flit level. Dragonflies with as little as 42 (2, 3, 2) and as
many as 16,512 nodes (8, 16, 8) were simulated. The switch
architecture chosen was that of an input-output-buffered switch
with 4 Kbytes of buffer space per port per direction per virtual
channel. The links had a bandwidth of 40 Gbit/second. Credit
based flow control was used and each exchanged message
consisted of a single 64 byte flit. The routing algorithms used
were shortest path, ValiantRestricted and ValiantAny routing
with virtual channel based deadlock avoidance.

We benchmarked several traffic patterns that satisfy both
the adversarial criterion (the majority of traffic originating in
one group is destined to a single other group) and the con-
secutiveness criterion (consecutive groups send to consecutive
destinations). These are:

• bit complement traffic, where each process k (where 0 ≤
k < K, K being the total number of processes) selects
as the destination of every message process K − k − 1;

• shift traffic, where each process k selects as the des-
tination of every message process (k + mG) mod K,
G being the total number of processes hosted by an
entire Dragonfly group and m being an integer larger
than h (this condition is necessary to avoid the situation
mentioned in Sec. III where traffic leaves the intermediate
group from the switch it came in on);

• 3D nearest neighbor, particularly the most remote phase
of the exchange (corresponding to the third dimension).

For the first two traffic patterns, messages were generated
continuously at link rate throughout the simulation, while for
the last pattern the total amount of data exchanged between
any pair of neighbors was 256 KB. For each traffic pattern,
the assignment of processes to nodes was performed either in
a contiguous fashion or a randomized fashion, with a single
process per node. For the contiguous placement, every process
was assigned to the node that has a node index equal to the
processes’ index. The nodes are indexed topologically: they
are numbered consecutively (starting with 0) one group at a
time, and within a given group, one switch at a time. For the
randomized placement, we start with a contiguous assignment,
and then simply randomize the group numbering (described
in Sec. III) before creating the remote link interconnection
pattern. This breaks the symmetry in the workload, i.e., in



0%

10%

20%

30%

40%

50%

2,3,2 3,6,3 4,8,4 5,10,5 6,12,6 7,14,7 8,16,8

Dragonfly configurations

R
e
la
tiv
e
 t
h
ro
u
g
h
p
u
t

Direct routing    ValiantRestricted indirect routing    Model

(a) Bit complement - bottleneck-limited performance

0%

10%

20%

30%

40%

50%

2,3,2 3,6,3 4,8,4 5,10,5 6,12,6 7,14,7 8,16,8

Dragonfly configurations

R
e
la
tiv
e
 t
h
ro
u
g
h
p
u
t

ValiantAny    ValiantRestricted with randomized groups

(b) Bit complement - optimized performance

0%

10%

20%

30%

40%

50%

2,3,2 3,6,3 4,8,4 5,10,5 6,12,6 7,14,7 8,16,8

Dragonfly configurations

R
e
la
ti
ve
 t
h
ro
u
g
h
p
u
t

Direct routing    ValiantRestricted indirect routing    Model

(c) Shift - bottleneck-limited performance

0%

10%

20%

30%

40%

50%

2,3,2 3,6,3 4,8,4 5,10,5 6,12,6 7,14,7 8,16,8

Dragonfly configurations

R
e
la
ti
ve
 t
h
ro
u
g
h
p
u
t

ValiantAny    ValiantRestricted with randomized groups

(d) Shift - optimized performance

0%

10%

20%

30%

40%

50%

2,3,2 3,6,3 4,8,4 5,10,5 6,12,6 7,14,7 8,16,8

Dragonfly configurations

R
e
la
ti
ve
 t
h
ro
u
g
h
p
u
t

Direct routing    ValiantRestricted indirect routing    Model

(e) Nearest neighbor - bottleneck-limited performance

0%

10%

20%

30%

40%

50%

2,3,2 3,6,3 4,8,4 5,10,5 6,12,6 7,14,7 8,16,8

Dragonfly configurations

R
e
la
ti
ve
 t
h
ro
u
g
h
p
u
t

ValiantAny    ValiantRestricted with randomized groups

(f) Nearest neighbor - optimized performance

Fig. 3: Measured and predicted throughput for adversarial workloads running on balanced dragonflies of increasing size. The
figures on the left show performance under i) shortest path routing, illustrating the adversarial nature of the workload ii)
ValiantRestricted indirect routing, and iii) the local imbalance aware estimation we introduced in this work. The figures on the
right show performance under i) the locally balanced ValiantAny indirect routing, as well as ii) the effect of group randomization
on ValiantRestricted. The load-imbalance-oblivious theoretical maximum is shown as a horizontal line.

the resulting pattern consecutively numbered source groups
no longer send to consecutively numbered destination groups.

For every experiment, the system was simulated for a fixed
amount of time (10 milliseconds) chosen such that throughput
is estimated within a 99% confidence interval.

B. Results

Figures 3a, 3c and 3e show the relative throughput achieved
by bit complement, shift and nearest neighbor traffic respec-
tively under shortest path and ValiantRestricted routing, side
by side with the analytical throughput estimates. We can see
that the ValiantRestricted indirect routing approach fails to
randomize traffic sufficiently, i.e., such that it would exhibit
a behavior similar to that of uniform random traffic (shown

as the horizontal line in the figures). Indeed, we can see
that instead, the measured performance under this approach
follows closely the performance levels anticipated by the
analytical model derived in Sec. III. Due to communication
bottlenecks shifting to the intra-group links, and routing being
unable to distribute the load within the intermediate group (as
explained in detail in the same section), performance follows
a descending trend as the size of the network grows. Indeed,
if N is the total number of nodes in the system, the relative
throughput is measured to be inversely proportional to 4

√
N/4,

exactly as predicted by the analytical model (Eq. (3) and (4)
coupled with the balancing condition p = a/2 = h). Due to
the specificities of each workload’s traffic matrix, there are



small differences between measured performance and model
predictions. This is due to us using the approximate yet
straightforward estimator expressed by Eq. (4). A more com-
plex analysis can be performed that would take into account
the variations in bottleneck intensity specific to each group.
While more precise, such an analysis would also make it more
difficult to understand whether the predicted performance level
is inherent to the application class or induced by particularities
of the application instance. We believe the estimator we pro-
pose reaches a good balance between genericity and precision
and, as the results show, reasonably approximates measured
behavior across applications.

Figures 3b, 3d and 3f on the other hand show the relative
throughput achieved in the case where the routing scheme
or the process to node assignment is changed precisely to
address the bottlenecks we identified. That is, they show
performance measured i) when using the ValiantAny indirect
routing approach, which effectively balances not only remote
traffic, but also local traffic in the indirect groups and ii) when
using the ValiantRestricted indirect routing approach, coupled
to a de-correlation between group numbering and workload
numbering achieved via process to node assignment random-
ization. As the figures show, these measures are effective in
mitigating to some extent the intra-group bottlenecks that the
workloads were creating, leading to a traffic pattern that better
approximates a uniform traffic scenario.

Indeed, whereas perfectly uniform traffic is expected to
achieve a 50% relative throughput (indicated by a horizon-
tal line in the figures), performance for the benchmarked
traffic patterns is as follows. All traffic patterns routed with
ValiantAny achieve a relative throughput of 33% − 43%,
slightly higher overall for the shift and bit complement work-
loads. ValiantRestricted on the other hand leads to progres-
sively worse performance as the system size grows, dropping
below 15% (bit complement and shift) and 20% (nearest
neighbor) throughput respectively for networks with more
than 512 switches. Enhancing ValiantRestricted with process
placement randomization as an alternative to ValiantAny leads
to a gain in performance of roughly 10%, especially for the
larger network sizes.

V. CONCLUSIONS

In this work we have provided a detailed analysis of
bottlenecks induced by certain adversarial communication
patterns in the internal groups of Dragonfly networks under a
specific Valiant routing approach: ValiantRestricted. Although
enabling shorter indirect paths and being more cost-effective
(by requiring less switch resources than other Valiant routings),
we have shown that, on-par with observations from other
works, this indirect routing approach is unable to distribute
load in the network such that performance levels approach
those of uniform traffic. Furthermore, we identified and char-
acterized several workloads for which ValiantRestricted is
prone to creating severe intra-group load imbalances that
induce a significant degradation of the expected performance,
degradation that increases with the scale of the network. In this

work we provide a theoretical explanation for this behavior and
an analytical model that accurately predicts performance.

In support of these theoretical results, we equally provided
simulation-based experimental measurements that showed our
conclusions to hold in practical system configurations with
as many as 16,512 endpoints. Finally, by means of similar
experiments, we also showed that relative throughput can
be increased by roughly 10% by using process to node
assignment randomization on top of ValiantRestricted, and that
an even larger improvement can be obtained by switching to
an alternative indirect routing approach, ValiantAny, requiring
one extra virtual channel on each link and increasing by one
the length of indirect paths. This latter approach is able to
better balance load both inter and intra-group, significantly
improving the similarity of the resulting traffic to uniform
random traffic, and consequently improving performance to
roughly 65% to 85% of the optimum.

ACKNOWLEDGMENTS

This work has been supported by the Spanish Science and
Technology Commission (CICYT) under contract TIN2013-
46957-C2-2-P, the European HiPEAC Network of Excellence
and the JSA no. 2013-119 as part of the IBM/BSC Technology
Center for Supercomputing agreement.

REFERENCES

[1] K. Bergman and et al., “Exascale computing study: Technology chal-
lenges in achieving exascale systems,” 2008.

[2] B. Arimilli et al., “The PERCS high-performance interconnect,” Pro-
ceedings of the 2010 18th IEEE Symposium on High Performance
Interconnects, pp. 75–82, 2010.

[3] J. Kim et al., “Technology-driven, highly-scalable dragonfly topology,”
SIGARCH Comput. Archit. News, vol. 36, no. 3, pp. 77–88, Jun. 2008.

[4] G. Faanes et al., “Cray Cascade: A scalable HPC system based on a
Dragonfly network,” Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, pp.
103:1–103:9, 2012.

[5] “Top500,” http://www.top500.org/list/2014/11/, November 2014, ac-
cessed: 2015-03-01.

[6] A. Bhatele et al., “Avoiding hot-spots on two-level direct networks,”
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 76:1–76:11, 2011.

[7] M. Garcı́a et al., “On-the-fly adaptive routing in high-radix hierarchical
networks,” in The 41st International Conference on Parallel Processing
(ICPP), 09 2012.

[8] B. Prisacari et al., “Randomizing task placement and route selection
do not randomize traffic (enough),” Design Automation for Embedded
Systems, pp. 1–12, 2014.

[9] M. Alvanos et al., “Improving performance of all-to-all communication
through loop scheduling in PGAS environments,” Proceedings of the
27th international ACM conference on International conference on
supercomputing, pp. 457–458, 2013.

[10] C. Camarero et al., “Topological characterization of hamming and
dragonfly networks and its implications on routing,” ACM Trans. Archit.
Code Optim., vol. 11, no. 4, pp. 39:1–39:25, Dec. 2014.

[11] L. G. Valiant, “A scheme for fast parallel communication,” SIAM J.
Comput., vol. 11, no. 2, pp. 350–361, 1982.

[12] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers Inc., 2003.

[13] J. Won et al., “Overcoming far-end congestion in large-scale networks,”
IEEE 21st International Symposium on High Performance Computer
Architecture, pp. 415–427, Feb 2015.

[14] C. Minkenberg et al., “End-to-end modeling and simulation of high-
performance computing systems,” Springer Proceedings in Physics: Use
Cases of Discrete Event Simulation: Appliance and Research, p. 201,
2012.


