Throughput Fairness in Indirect Interconnection
Networks

Cruz Izu
School of Computer Science
The University of Adelaide
Adelaide SA 5005 Australia
Email: cruz@cs.adelaide.edu.au

Abstract—The performance of an interconnection network is
typically measured by two metrics: average latency and peak
network throughput. Average network throughput is usually
reported in the belief the network is fair and all source nodes are
supposedly able to inject at the same rate. However, most systems
exhibit significant network unfairness under non-uniform loads.
At high loads, if link utilization is uneven, the injection matrix
will also become uneven. This unfairness significantly degrades
the performance of some nodes, and eventually the whole system.

Fairness issues have been previously reported for direct topolo-
gies such as mesh and torus, but this work evaluates throughput
fairness in indirect networks, specifically the fat-tree topology.
We will see fairness is still an issue for indirect networks in the
presence of hot-spots. The SAT protocol was initially proposed
to provide throughput fairness for ring networks. This paper
extends the original protocol to implement a fairness injection
mechanism that works for indirect networks. A thorough evalu-
ation will show that for most scenarios it is possible to achieve
throughput fairness without a significant lost of peak throughput.

I. INTRODUCTION

The communication subsystem is a key component of a
parallel computer, which can range from tens of cores in
a multi-core microprocessor to hundreds or thousands of
nodes in a Massively Parallel Processor(MPP). Interconnection
networks (IN) such as the mesh, torus or fat-tree have been
widely deployed in parallel computers [1], [2] and are also
proposed for NoC systems [3].

There is a large body of research on network topologies
and routing strategies, deadlock and livelock [4]. Deadlock is
also a critical issue which can be prevented or detected and
recovered from. Livelock can be avoided by using minimal
paths or prevented by limiting the number of misrouting
steps a packet can take. By contrast, there is limited work
on the problems of unfairness and starvation. Starvation is
the worst-case scenario of network unfairness in which a
particular computation node remains unable to access the
network resources for an unbounded time limit. Starvation
is generally avoided by having a fair arbitration scheme that
guarantees a bounded waiting time for any packet requesting
an output channel. Less severe cases of network unfairness
will allow network nodes to inject packets at different rates,
resulting in some of the nodes experiencing congestion while
others are still able to inject at their full rates.

Enrique Vallejo
University of Cantabria
Avda Los Castros s/n
39005 Cantabria, Spain
Email: enrique.vallejo@unican.es

In order to evaluate fairness, we must measure throughput
as seen by each node, i.e. by the number of packets that can
be sent by that node per unit of time. Fairness is achieved
when the minimum and maximum node throughput are in
close proximity; only in that case, average throughput is a
valid metric for network performance.

The SAT protocol [5] was initially designed to provide
throughput fairness for local-area networks with ring topology.
A variation of this protocol has been shown to be effective in
a mesh or torus network of small to medium size to eliminate
throughput unfairness [6]. This work extends that evaluation
to the fat-tree network under both static and adaptive routing.

This paper is structured as follows: Section II introduces
fairness, the SAT protocol and its extension to indirect net-
works. Section III introduces the evaluation infrastructure and
how to measure and report peak throughput at high loads, and
Section IV presents an evaluation of network fairness with
and without the SAT mechanism for indirect networks. Finally,
Section V summarizes the findings of the work.

II. NETWORK UNFAIRNESS AND THE SAT PROTOCOL

We will start this section describing the motivation for
fairness issues. A locally-fair arbiter (such as round-robin)
allocates the bandwidth evenly amongst its incoming links so
if two network flows request the same output link, each gets
50%. However, as a packet travels through the network, it
merges with both newly injected packets and packets coming
from other directions. This merging causes packets that travel
longer and traverse busy areas to receive less bandwidth that
those travelling shorter paths, generating throughput unfairness
issues. Unfairness in direct networks (mesh, torus) has been
studied in detail in [6].

The fat-tree (or folded Clos) is an indirect topology, since
it employs transit routers not directly connected to processing
nodes. A tree splits transit routers into several levels and
a router at a given level is connected to routers in the
next (if any) and previous levels without creating loops. The
computing nodes are connected to level 1; the highest level
is the root of the tree. Trees typically provide a limited
bisection bandwidth since the root becomes a bottleneck; fat-
trees employ links with more capacity in the higher levels of
the topology towards the root. This can be accomplished in

1/9

Fig. 1. All nodes are sending to P7 and merging traffic at each hop for (a)
a 8-node 1D mesh and (b) a 8-node fat-tree network

two ways: using faster links in the higher levels (as depicted
in Figure 1(b), typically implemented using link trunking),
or using multiple root nodes with constant-degree routers (a
folded Clos, as depicted in Figure 2). This multi-rooted topol-
ogy is mathematically denoted as k-ary n-tree, and provides
maximum Bisection Bandwidth for any size of the network.
This topology has been largely used at system level, and has
been also explored for NoC designs [7].

Figure 1 depicts an example of unfairness for two different
8-node networks, in which nodes 0 to 6 are all sending
packets to node 7. The topology is either a 8-ary 1-cube
network or a 2-ary 3-tree. In an ideal network in which all
nodes have similar communication demands, all nodes should
experience the same throughput. The differences for the array
are significant, due to the parking lot effect. In fact, meshes are
known to be unfair even under uniform traffic [8]. By contrast,
the fat-tree has shorter paths and increased bandwidth, so this
effect is reduced but not eliminated. As before, node 6 gets
most of the available bandwidth, due to being one hop away
(a round robin arbiter would allocate 1/3 of the bandwidth
towards node 7 to its neighbour 6), although any other source
gets the same fraction of the network bandwidth towards node
7, 1/9. Note that the specific result depends on the number of
physical links entering a given router, so an alternative design
(using oversubscription or faster links instead of aggregation)
would result in different node throughput, but it would still
be globally unfair. In short, a fair local arbiter such as round
robin is not a guarantee for node throughput fairness.

As unfairness is a frequent issue after saturation, we would
like to find a mechanism to provide network fairness at high
loads. Next section describes the SAT mechanism, which is
based on the fairness protocol of the Metaring network [5],
with some simplifications due to the fact we assume a lossless
network (with no loss or duplication of signals). We will also
explain how to adapt this protocol to an indirect network.

L]
5858 ébéaéé

Fig. 2. Hamiltonian path for SAT propagation in a k —ary n —tree network

A. The SATisfied Global Fairness Protocol

The SAT protocol balances the number of packets sent by
each node. This is guaranteed by a control signal called SAT
that circulates across the network. An interval is defined as
the time between consecutive receptions of the SAT signal on
the same node. Each node counts the number of packets sent
during each interval. To provide fairness, nodes that send too
many packets will stop injecting until they receive the SAT
signal again, and nodes that could not inject enough packets
will retain the SAT signal.

This is implemented using two thresholds k and [, with k >
l. On a given interval a node cannot inject more than k packets;
if the limit is reached, the node has to wait for the SAT signal.
By contrast, a node that has injected less than / packets during
an interval (with more packets ready) is said to be starved, or
not SATisfied. Starved nodes will retain the SAT signal until
they become SATisfied or have no more packets to send. In
other words, an starved node will force satisfied nodes to slow
down injection until he is also satisfied.

The implementation of this global fairness protocol can be
done with minimal hardware support. The injection interface
will have an injection count register, incremented each time a
packet is injected and reset on SAT departure. Additionally, it
will require either sending a small control packet or adding a
1 bit control line to the routers to propagate the SAT signal
from one node to the next.

B. Applying the SAT protocol to a k-ary n-tree network.

Previous work [6] have shown how to extend the SAT pro-
tocol to other network configurations by using a Hamiltonian
circuit as a virtual ring to propagate the SAT signal from node
to node. Figure 2 shows the virtual ring chosen for the fat-tree
network, which visits nodes in ascending order, going from
node i to node (i + 1)mod N. The length of this Hamiltonian
length is longer than NV, since there are hops between nodes
and intermediate transit switches.

For a k—ary n—tree network, the Hamiltonian path length
can be calculated using the following recursive relation:

H0)=0
H(n)=2xk+kxH(n-1)

a) Parameter tuning: The parameters k and [determine
the fairness level and the performance of the system. The
parameter [must be set to achieve the maximum throughput
considering the SAT interval: If [is too small, nodes will have

to wait for the SAT signal and throughput will decrease; by
contrast, if [is too large, starved nodes will wait longer for the
SAT signal, increasing average latency and generating bursts
of traffic when SAT is received.

In absence of network contention, the length of the SAT
interval will be I = H(n) + N cycles, being N the number
of processing nodes and assuming single-cycle latencies for
the links and single-cycle node latency. To reach a full load
we need to set [> (H(n) + N)/L. For a 64 node example
network built as a 4-ary 3-tree, the value H(3) is 168, the SAT
interval is 232 cycles and with a packet length of L = 16 phits
we need to set | > 14.

Using k£ = [makes the differences between minimum and
maximum node throughput less than 1% [6], while using k > [
increases average throughput at the cost of reducing fairness.

III. NETWORK SIMULATION

This Section describes the network configurations studied
and the simulation environment used to measure fairness.

A. Network and Router model

Performance and fairness is evaluated using FSIN [9], a
network simulator which models virtual cut-through (VCT)
networks. FSIN can be parameterized, specifying the topology
of the network (direct or indirect), number of dimensions, the
traffic workload and the architecture of the router: number of
virtual channels (VCs), buffer sizes, routing function, crossbar
arbitration, etc.

The fat-tree implementation is a k-ary n-tree [10], whereby
k is half the radix of the routers; actually, the number of links
going upwards (or downwards) from the router. A butterfly
connection pattern is employed between contiguous levels.
In order to keep things simple, we do not employ virtual
channels. Packet size is set to 16-phits and each input queue
can store 4 packets. The network can use static or adaptive
routing. The adaptive algorithm uses shortest paths and a
credit-based flow-control mechanism, so when several output
ports are possible, the one with more available credits is
selected. The arbiter is round-robin in both cases.

B. Network workload

Since we are interested in performance at saturated loads,
each node is modeled as an independent traffic source with an
applied load fixed to 1 phit/cycle/node. Network throughput
is measured at messages delivered per cycle and it is usually
normalized, dividing it by the message size (in phits) and the
network size. Thus throughput is reported as phits/node/cycle.
We have chosen a range of well-known traffic patterns: random
uniform traffic and permutations such as transpose, butterfly
and bit reversal [4]. We also considered a hot-region pattern in
which 25% of network packets have destinations in the range
(0, N/8 -1); the other 75% traffic is uniformly distributed.

The simulator runs for a warm-up period of 50,000 cycles,
followed plus a stationary period in which 5 batches (each
batch has 10 * N2 delivered packets) are measured to verify
that results are stable over time. The output of the network

simulation produces an injection matrix with the number of
packets injected by each node during the simulation time.
From this matrix we can calculate the throughput experienced
by each node with/without the SAT protocol. Fairness is
achieved when the minimum node throughput is not far from
the network average throughout.

We should note that the SAT protocol will not introduce
penalties at low and medium loads. In such cases, most of the
injection buffers would be empty so the SAT signal will travel
fast, and provided that the parameter / is not too small, nodes
will never have to wait for the signal to inject a new packet.
Thus no results will be presented for loads below saturation.

IV. NETWORK EVALUATION

This section presents the evaluation using a network of 64
nodes (4-ary 3-tree), to be able to examine node throughput in
detail. We first quantify the unfairness level when no fairness
mechanism is employed. Secondly, we show the impact that
the SAT protocol has on fairness under the range of traffic
patterns, assuming [= k. Then, we discuss the impact of
using k£ > [, and look at the node throughput for three of
the traffic patterns in more detail. Finally, the last subsection
extends the evaluation to larger networks, 256 and 1024 nodes,
to see how the protocol scales as the network grows.

A. Measuring unfairness in the k-ary n-tree

We have measured the minimum, maximum and average
node throughput for the two network topologies with a full
applied load of 1 phit/node/cycle. The main objective of this
evaluation is to check whether the average peak throughput of
the network is representative of individual node throughput;
in other words, to see if the network is fair.

Figure 3 shows the throughput values for the 4-ary 3-
tree network under the different traffic patterns. The network
achieves fairness under both uniform and butterfly traffic
patterns. Peak node throughput of 0.95 phits/cycle is achieved
for the butterfly permutation as its communication topology
matches the interconnection pattern of the network, with all
nodes able to inject at nearly full rate. However, the network
is unfair for the other traffic patterns, particularly hot-region
and perfect shuffle. Adaptive routing reduces unfairness but
there are still significant differences between maximum and
minimum node throughput for these patterns.

Compared with the mesh [6], the fat-tree network is more
fair due to two factors: firstly, contention is lower as the
bisection bandwidth grows with the network size; secondly,
as congestion occurs farther from the source nodes that in
direct topologies, its impact is less severe.

B. Using SAT to achieve Throughput Fairness

This section analyzes the impact that SAT protocol has on
node throughput at full applied load. We initially set & = [,
what imposes strict fairness (min and max throughput differ
in less than 1%) so there is no point in showing all the
results. Instead, we will compare average throughput, which
can decrease at the cost of the increased fairness. We tested

4-ay 3-tree(oblivious)

OMIN
B MAX
AAVGE
Uniform Hotregion P.Shuffle Transpose Butterfly Bit reversal
4-ary 3-tree(adaptive)

1.00

0.80
OMIN

0.60 -
B MAX

BAAVGE

ATy

Z

Uniform Hotregion P.Shuffle Transpose

Butterfly Bit reversal

Fig. 3. Node throughput range (phits/cycle) for the indirect 64 Node network
under a range of synthetic traffic patterns at full applied load.

different values of [from 2 to 20. Provided [is large enough to
cover for the SAT interval, there is little difference in network
performance, so we only show the most relevant results.

Figure 4 compares the average node throughput for fat-tree
with or without SAT. We can see that there are significant
gains in minimum throughout when applying SAT for all the
unbalanced workloads.

A small value of & may prevent nodes to inject at their peak
rate. As discussed in Section II-B, a 64-node network get the
best performance with [> 16, although some loads perform
well with [= 8.

Restricting injection reduces message latency and buffer
utilization, as observed in our simulations; the base case for
uniform traffic under static routing has an average message
delay of 551 cycles from packet injection, while [8%8 halves
that delay to 226 cycles. As we increase the SAT parameters,
buffer utilization and network delay grows to 297 cycles for
112k12 and 321 cycles for [16k16. Thus, we should use
the lowest values of [and k that do not restrict network
throughput.

Overall, SAT is effective to guarantee node throughput at
high loads for indirect networks. In the rest of this section
we will look into the performance and tunning of the SAT
protocol in more detail.

4-ary 3-tree (oblivious)

1.00
0.80 Onone
B 4k4
0.60
KI8k8
—l 116k16
0.40
0.20 — - —
0.00
Uniform Hotregion P.Shuffle Transpose Butterfly Bit reversal
4-ary 3-tree (adaptive)
1.00
0.80 Onone
_ M _ W |4k4
060 sk
116k16

0.20] — —

o
N
S
I I

0.00

Uniform Hotregion P.Shuffle Transpose Butterfly Bit reversal

Fig. 4. Average node throughput for different values of k = [.

C. Node throughput analysis under 3 traffic patterns

This section tested SAT with k& > [, to explore the impact
of k on fairness and looks at the node throughput distribution
in more detail.

Figure 5.(a) shows the injection rate of each of the 64
nodes under uniform traffic; as the network usage is balanced,
the distribution is reasonable flat, with minor variations due
to the randomness of the load. In this case, increasing k
have little impact on node throughput. This changes when
the traffic load is unbalanced. The hot-region pattern, reflects
the appearance of hot-spots and shows significant unfairness
as shown in figure 5.(b). We can see that the nodes which
belong or are close to the hot-region (nodes 0 to 7) are able
to inject more packets overall (as explained by figure 1) while
in the rest of the network are all injecting at the same rate
of 0.16 phits/cycle. The SAT protocol with [12k12 increases
the minimum rate up to 0.22 phits/cycle, which goes down to
0.19 phits/cycle with [12k24. Using a value k& > [reintroduces
unfairness, but limits the differences between minimum and
maximum throughput to the ratio & : [.

Figure 5.(c) shows the node throughput distribution for the
adaptive network under the perfect shuffle permutation. As
expected, SAT with [12k12 or [16k16 produces a flat line, with
all nodes injecting 0.57 phits/cycle; [12k16 increases the injec-
tion rate for nodes in less busy areas and it starts to resemble
the distribution of the base case. As the minimum throughput
is above 0.5 flits/cycle, SAT with [12k24 shows the same node

o
®

%= none

o
3

o
@

e
n

........

¥ none 112k12

e
©

112k16 —<112k24

112k16 ——112k24

112k12 112k12

116k16

112k16 ——112k24

o
©

°
3

°
@

Node Throughput (phits/cycle)
o
'S

Q
o
Node Throughput (phits/cycle)
°
2

e

e
°

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Source node

(a)

Fig. 5.

distribution that the base case. This representation shows best
the trade-off between node throughput and performance. We
can increase average node throughput by favoring nodes whose
traffic uses the less congested areas but this will penalize to
some degree (depending on the topology and workload) the
other nodes in the network.

In short, each traffic load will have its own particular
node distribution. Using the SAT protocol with an adequate
parameter selection will provide fairness without significant
loss of throughput.

D. Scalability of the SAT protocol

Previous sections have studied the performance of the SAT
protocol in a 64 node network . In this Subsection we evaluate
the performance on larger networks: 256 nodes (4-ary 4-tree)
and 1024 nodes (4-ary 5-tree). We will focus only on adaptive
routing as the difference in performance between oblivious
and adaptive routing grows with network size. In addition,
we know that SAT’s parameters need to grow with peak
performance which will be higher in the adaptive network.

We start with the case of networks with 256 nodes. Using
the calculations made in Subsection II-B, the SAT propagation
delay is 936 cycles. Thus, the minimum values to reach full
load are [> 58. However, peak throughput for the base case
ranged from 0.13 phits/cycle for the bit reversal permutation
to 0.94 for the butterfly permutation. Thus we need to set [
in the range 24-56. For a network of 1024 nodes, the SAT
propagation delay will be 3752 cycles for the fat-tree. This
translates into a required ! > 234 for the fat-tree, considering
full load. The fat tree was measured with / from 64 up to 256.

Table I shows a selected summary of the results for the fat-
tree topology, using different parameters / and k. Although we
have evaluated all the previous traffic patterns, we have se-
lected three which represent the different observed behaviors.

The fat-tree scales well, due to is larger bisection bandwidth
that grows linearly with network size. Network is fair for
uniform traffic, but throughput unfairness slowly grows ith
network size: for the hot region the minimum value is now
57% of its average value (compared with 65% in 64-node fat-
tree), and for the transpose it is 77% of its average(compared
with 89% for the 64-node fat-tree). SAT with a value [> 32

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Source node

(b)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Source node

(©

Node throughput distribution (phits/cycle) for adaptive 4-ary k-3 network under (a) uniform, (b) hot-region and (c) perfect shuffle traffic patterns.

performs well for most patterns. The exception is the butterfly
permutation (not presented in the Table) which still reaches
0.95 phits/cycle and it work best with either [or k greater
than 56 as expected. Similarly, the 1024-node network works
well with k£ = 128, as the time to inject 128 each packets
is 55% of the SAT propagation delay and they can reach up
to 0.55 phits/cycle. In the butterfly permutation (not shown)
the average throughput is near full load, so it needs at
least [192k256 to reach its maximum value, which is 0.94
phits/cycle.

As we can see in Table I, SAT improves throughput for the
transpose permutation. It only reduces the peak throughput for
the hot region traffic pattern, so it performs better in the larger
network by providing fairness with nearly no lost of peak
throughput. However, as the SAT parameters must increase
with network size, the traffic will be more bursty at high loads.

To improve scalability, we must reduce the propagation
time of the SAT signal. We could replace the Hamiltonian
path with a spanning-tree so that the propagation time of
the SAT grows logarithmically with the network size. We
called this alternative implementation Spanning-tree SAT
(SS). The root switch distributes one SAT signal to each of the
network switches in the lower level as shown in figure 6. Upon
reception, each switch distributes it again using an one-to-all
communication to the lower level, and wait for an all-to-one
reply before sending an acknowledgement up. Therefore, the
SAT interval only depends on the number of levels of the fat-
tree, n, which need to be traversed twice, up and down, and
the node response latency. Assuming single-cycle latencies the
length of the SAT interval will be I = 2n 4 1. In the 256-

Fig. 6.
network

Spanning tree path for SAT propagation in a 4 — ary 2 — tree

TABLE I
NODE THROUGHPUT (PHITS/NODE/CYCLE) FOR LARGE INDIRECT NETWORKS UNDER 3 TRAFFIC PATTERNS.

Size Injection Uniform Hot region Transpose
policy Avge Min Max | Avge Min Max | Avge Min Max
none 0.531 0.517 0542 | 0213 0.126 0.622 | 0418 0.320 0.779
256 132k32 0.529 0.528 0.530 | 0.205 0.205 0.206 | 0.548 0.547 0.550
148k48 0.528 0.527 0.530 | 0.205 0.204 0.206 | 0.555 0.553 0.556
156k56 0.529 0.526 0.530 | 0.206 0.205 0.208 | 0.546 0.545 0.549
SS-12k2 0.529 0.529 0.530 | 0.204 0.204 0.205 | 0.575 0.574 0.575
256 SS-12k3 0.530 0.514 0545 | 0.206 0.192 0.241 | 0.585 0.552 0.679
SS-14k4 0.529 0.528 0.529 | 0.204 0.204 0.205 | 0.573 0.573 0.574
none 0.501 0496 0506 | 0.197 0.112 0.598 | 0446 0.362 0.702
164k128 0.500 0493 0507 | 0.194 0.156 0.298 | 0.502 0.466 0.552
1024 1128k128 0.499 0.498 0.501 | 0.192 0.186 0.205 | 0.482 0476 0.489
1192k192 0.500 0.498 0502 | 0.191 0.186 0.205 | 0.451 0441 0461
1192k256 0.501 0.493 0.507 | 0.191 0.176 0.229 | 0.486 0.452 0.558
SS-12k2 0.501 0499 0502 | 0.191 0.190 0.191 | 0.536 0.535 0.537
1024 SS-12k3 0.503 0494 0515 | 0.192 0.177 0.223 | 0.540 0.506 0.618
SS-14k4 0.501 0.500 0.502 | 0.191 0.190 0.192 | 0.535 0.534 0.536

node network, the SAT interval is reduced from 936 to only
9 cycles and in the 1024-node network the SAT interval is
only 11 cycles. Thus, any small value of the parameter [will
suffice.

Table I shows the network throughput for SS with parame-
ters [2k2, [2k3 and [4k4. As expected when k& = [we achieve
fairness; SS-12k3 improves throughput but reduces fairness for
most loads. The main advantage of the Spanning-tree SAT
compared with the Hamiltonian SAT is that there is no need
to tune the parameters for each workload, as both SS-12k2
and SS-14k4 work well for all traffic patterns, and for a wide
range of network sizes. The only drawback is that it requires
the network switches to act as SAT concentrators.

V. CONCLUSIONS

This work has measured throughput fairness in the k-ary n-
tree topology under synthetic loads. The level of unfairness in
the fat-tree is lower that in direct networks but the variations
in node throughput are significant and cannot be ignored. As
an adaptive network attempts to balance the load, it show less
fairness issues that its static counterpart but it cannot prevent
unfairness for most loads.

The SAT protocol, which was proposed to be used in a ring
topology can be extended to any other topology by using a
hamiltonian path to propagate the SATisfied signal. The cost
of implementing this protocol is very low, needing a counter
to keep track of the number of packets sent and a control line
to propagate the signal from one node to the next.

We have evaluated SAT for the k-ary n-tree network under 6
synthetic traffic patterns for both static and adaptive networks,
with sizes ranging from 64 to 1024 nodes. The fairness
protocol works well for small to medium networks, increasing
minimum node throughput for unbalanced loads. For large
networks, the propagation delay results in a large value of
the parameter [, forcing the nodes to inject their packets in
large bursts. By replacing the hamiltonian path with a spanning

tree we reduced SAT propagation delay so that this fairness
protocol is able to scale to very large networks; besides, this
alternative is easy to tune as the same value [= 4 work well
for a range of workloads and network sizes.

Finally, when network traffic is unbalanced there is a trade-
off between network fairness and peak average throughput, but
minimum node throughput is more important so that slower
nodes won’t become the bottleneck of a parallel task.

REFERENCES

[1] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara,
S. Kumar, V. Salapura, D. L. Satterfield, B. Steinmacher-Burow, and
J. J. Parker, “The IBM Blue Gene/Q interconnection network and
message unit,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC *11.
New York, NY, USA: ACM, 2011, pp. 26:1-26:10.

[2] “Top 500,” www.top500.o0rg.

[3] M. Azimi, D. Dai, A. Kumar, and A. S. Vaidya, On-chip Interconnect
Trade-offs for Tera-scale Many-core Processors - Designing Network
On-Chip Architectures in the Nanoscale Era. Chapman and Hall, 2011.

[4] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2003.

[5] L Cidon and Y. Ofek, “Metaring-a full-duplex ring with fairness and
spatial reuse,” Communications, IEEE Transactions on, vol. 41, no. 1,
pp. 110 —120, jan 1993.

[6] C. Izu, “A throughput fairness injection protocol for mesh and torus
networks,” in High Performance Computing (HiPC), 2009 International
Conference on, dec. 2009, pp. 294 -303.

[7] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance
evaluation and design trade-offs for network-on-chip interconnect archi-
tectures,” Computers, IEEE Transactions on, vol. 54, no. 8, pp. 1025 —
1040, aug. 2005.

[8] C. Izu, “Throughput fairness in k-ary n-cube networks,” in Proceedings
of the 29th Australasian Computer Science Conference - Volume 48, ser.
ACSC ’06. Darlinghurst, Australia: Australian Computer Society, Inc.,
2006, pp. 137-145.

[9]1 F. J. R. Perez and J. Miguel-Alonso, “INSEE: An interconnection

network simulation and evaluation environment,” in Euro-Par’05, 2005,

pp. 1014-1023.

F. Petrini and M. Vanneschi, “k-ary n-trees: High performance networks

for massively parallel architectures,” in Proceedings of the 11th Inter-

national Parallel Processing Symposium, IPPS’97, Geneva, Switzerland,

April 1997, pp. 87-93.

[10]

