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Topological Characterization of Hamming and Dragonfly Networks
and its Implications on Routing

Cristóbal Camarero, Enrique Vallejo and Ramón Beivide,, University of Cantabria

Current HPC and datacenter networks rely on large-radix routers. Hamming graphs (Cartesian products of
complete graphs) and dragonflies (two-level direct networks with nodes organized in groups) are some direct
topologies proposed for such networks. The original definition of the dragonfly topology is very loose, with
several degrees of freedom such as the inter- and intra-group topology, the specific global connectivity and
the number of parallel links between groups (or trunking level).

This work provides a comprehensive analysis of the topological properties of the dragonfly network, pro-
viding balancing conditions for network dimensioning, as well as introducing and classifying several al-
ternatives for the global connectivity and trunking level. From a topological study of the network, it is
noted that a Hamming graph can be seen as a canonical dragonfly topology with a large level of trunking.
Based on this observation and by carefully selecting the global connectivity, the Dimension Order Routing
(DOR) mechanism safely used in Hamming graphs is adapted to dragonfly networks with trunking. The
resulting routing algorithms approximate the performance of minimal, non-minimal and adaptive routings
typically used in dragonflies, but without requiring virtual channels to avoid packet deadlock, thus allow-
ing for lower-cost router implementations. This is obtained by selecting properly the link to route between
groups, based on a graph coloring of the network routers. Evaluations show that the proposed mechanisms
are competitive to traditional solutions when using the same number of virtual channels, and enable for
simpler implementations with lower cost. Finally, multilevel dragonflies are discussed, considering how the
proposed mechanisms could be adapted to them.
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1. INTRODUCTION
Technology trends suggest that the use of high-radix routers [Kim et al. 2005] is the
most cost-efficient alternative for the interconnection networks typically used in dat-
acenters and High-Performance Computers (HPC). An interconnection network is de-
fined by its topology, routing, flow control and deadlock avoidance mechanisms, along
with other technological aspects such as the used media and router design. However,
very often the topology and network terms are used interchangeably in the literature.
The topology of a network defines how the different routers are connected. An indirect
topology (or network) employs transit routers, to which no computing node is con-
nected. Typical examples of these are the tree and folded Clos topologies. Conversely,
a direct topology does not employ transit routers, so each network router has one or
more computing nodes directly connected to it. When all the network links are point-
to-point, as often occurs today in HPC and datacenter networks, the topology can be
completely defined using a graph. The graph degree, ∆, is determined by the radix of
the network routers, not considering the connections to the computing nodes. Frequent
direct topologies proposed for HPC and datacenters are those based on meshes, tori,
dragonflies [Kim et al. 2008] and Hamming graphs (also known as flattened butter-
flies [Kim et al. 2007]). Among these, dragonflies and Hamming graphs are suitable
for their use with high-radix routers, and they will be studied in detail in this paper.
Some important issues of the network topology are its scalability for a given diameter
and degree (in the graph theory literature known as the degree-diameter problem),
its edge- and vertex-transitivity properties, which guarantee network symmetries and
balanced resource usage, as well as the simplicity of the deadlock avoidance mecha-
nisms. All these aspects are discussed next.

The degree-diameter (or d− k) problem consists in finding a graph G for a given de-
gree ∆ and diameter k with the maximum number of nodes N(∆, k). An upper bound
in N(∆, k) is the Moore bound, of value M(∆, k) = ∆(∆−1)k−2

∆−2 , [Hoffman and Singleton
1960]. Graphs reaching this bound are called Moore graphs. Optimizing the degree-
diameter problem provides the largest possible network with optimal performance un-
der uniform traffic. However, practical constraints such as regularity of the topology
and fine-grain scalability1, convenient layouts and cable length, number of computing
nodes per router (or concentration level), routing mechanisms and performance under
alternative traffic patterns make that other topologies with a lower amount of network
nodes become more attractive.

Network symmetries imply graph automorphisms. An automorphism of a graph
G = (V,E) is a bijection f : V 7→ V such that for any edge {x, y} ∈ E, there is
an edge {f(x), f(y)} ∈ E. Then G is said vertex-transitive if for any pair of vertices
x1, x2 ∈ V there is an automorphism f such that f(x1) = x2; and G is said edge-
transitive if for any edges {x1, y1}, {x2, y2} ∈ E there is an automorphism such that
{f(x1), f(y1)} = {x2, y2}. These graph symmetries are interesting properties since they
guarantee equalized resource utilization and allow for systematic analysis of diverse
network characteristics.

Routing and deadlock avoidance mechanisms play a significant role in the router
design and complexity. Distance-based deadlock avoidance mechanisms are frequently
employed in low-diameter networks such as dragonflies. These mechanisms, based on
a original design by Günther [Günther 1981], employ as many virtual channels per
router input port as the longest path allowed in the network. Thus, allowing longer
paths for nonminimal routing increases the router area and complexity. In general,

1Being able to construct topologies for many sizes. For example, the binary hypercube requires 2n routers,
and hence, it is not fine-grain scalable.
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deadlock-free routing mechanisms which do not impose dependencies on the number
and use of virtual channels are desirable.

This paper characterizes and compares Hamming and dragonfly topologies, study-
ing their scalability, their respective degrees of freedom and providing a systematic
characterization of each graph including balancing conditions that lead to a uniform
use of network resources under uniform traffic. The relationship between the Ham-
ming graph and the dragonfly topology is studied, showing that the former can be
seen as a dragonfly topology with an extremely high level of trunking. Based on this
relationship, the dimension-ordered deadlock-free routing (DOR) mechanism used in
Hamming graphs, which does not rely on virtual channels (VCs), is adapted to drag-
onflies. Minimal and non-minimal routing mechanisms of this type are introduced for
dragonflies with trunking t ≥ 2 and t ≥ 4 respectively. These mechanisms rely on rout-
ing restrictions and therefore they decouple the number and use of virtual channels
from deadlock avoidance. An evaluation shows that the proposed mechanisms are com-
petitive with state-of-the-art alternatives, without imposing minimal VC requirements
on the router design.

On the other hand, high-radix is the norm for current HPC discrete routers, forth-
coming designs such as Intel’s Knights Landing and future Xeon chips will imple-
ment on-chip routers [Hazra 2014]. In such designs, the router competes with on-chip
cores, memories and I/O for the chip resources, including the pin bandwidth. This will
necessarily lead to lower-radix routers. Scaling to large networks based on low-radix
switches can be accomplished using multi-level dragonflies. Such designs will be stud-
ied in the last part of the paper, compared to previously proposed routing mechanisms.

The rest of the paper is organized as follows. Section 2 presents related work in
the area. Sections 3 and 4 introduce and characterize the Hamming and dragonfly
topologies. Section 5 focuses on dragonflies with trunking in the global level. Section 6
introduces two novel deadlock-free routing mechanisms for dragonflies with trunking,
based on coloring the underlying graphs, which are evaluated in Section 7. To finish
the contributions, Section 8 makes some remarks about the scalability and routing
of multi-level dragonfly networks, discussing how to adapt the previous proposals for
such cases. Finally, Section 9 concludes the paper.

2. RELATED WORK
The Moore bound sets a limit on the degree-diameter problem. A thorough survey of
the problem and Moore graphs can be found in [Miller and Sirán 2013]. For diame-
ter k = 1 the complete graphs K∆+1 equal the bound. Their simplicity and system-
atic existence make them very interesting; however they are subject to technological
constraints given the large degree necessary to reach a high number of nodes. For di-
ameter k = 2 there are only 2 or 3 Moore graphs [Hoffman and Singleton 1960]: the
Petersen graph (∆ = 3, N = 10), the Hoffman-Singleton graph (∆ = 7, N = 50) and an
hypothetical graph with ∆ = 57 and N = 3250 whose existence is still an open problem.
This sporadic existence of Moore graphs complicates scalability, being very difficult to
decide which topology to use for a given network size. The problem can be relaxed by
considering only the asymptotic behaviour. This relaxed problem consists in finding
for every diameter k an infinite family of graphs with about ∆k vertices. Such graphs
exist for k = 1 (complete graphs), k = 2 [Brown 1966; Brahme et al. 2013], k = 3 and
k = 5 [Delorme 1985]. They are conjectured to exist for any diameter, but even the best
general bounds are exponential in k. The work in [Brahme et al. 2013] seems to be the
first to propose one of these families as interconnection networks, but fails to address
many practical problems.

The Hamming graph [Mulder 1982] has been studied extensively. Other names for
this graph, or for topologies based on it, are rook’s graph, K-cube [LaForge et al. 2003],
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generalized hypercube [Bhuyan and Agrawal 1984], flattened butterfly [Kim et al. 2007]
and HyperX topology [Ahn et al. 2009]. This graph has been also considered in [Ahn
et al. 2013] as one of the base topologies for an intra-switch network2. The dragonfly
network was first introduced in [Kim et al. 2008]. Different routing mechanisms for
dragonflies that better adapt to the traffic pattern or reduce the implementation cost
have been proposed in other works, [Jiang et al. 2009; Garcı́a et al. 2012; Garcı́a et al.
2013a]. Industrial implementations have been the IBM PERCS [Arimilli et al. 2010]
and Cray Cascade [Faanes et al. 2012].

Network dimensioning typically seeks to balance the utilization of the network re-
sources to maximize performance. Resource usage being balanced or not depends on
the topology, traffic pattern and routing employed. Under uniform traffic and minimal
routing, Square Hamming graphs and Dragonflies with twice as many local ports as
global ports per router are balanced [Kim et al. 2008], as will be detailed later. By
contrast, an unbalanced design such as a rectangular Hamming graph would provide
reduced performance caused by the bottleneck in the scarcest resources. However, even
a balanced network can easily saturate under adverse traffic using minimal routing.
This occurs when all the traffic concentrates on some few links, which leads to severe
congestion. Valiant routing [Valiant 1982] selects a random intermediate router; traf-
fic is first sent minimally to the intermediate router and then minimally to the final
destination. This randomizes the network load, balancing the use of links, but doubles
the utilization of the resources, halving its maximum throughput. Alternatively, task
placement randomization [Bhatele et al. 2011] avoids hotspots by randomizing com-
munications. Given the disparity of performance depending on the traffic pattern and
routing, Hamming and dragonfly networks typically require adaptive routing mecha-
nisms which rely on minimal routing for uniform traffic and revert to Valiant routing
for adverse traffic patterns. Several of such adaptive routing mechanisms have been
proposed in the literature, [Kim et al. 2007; Kim et al. 2008; Jiang et al. 2009; Garcı́a
et al. 2012; Garcı́a et al. 2013a].

Networks built on Hamming graphs are deadlock-free under DOR. Valiant routing
can be made deadlock-free when DOR is employed for each half of the path using differ-
ent VCs, requiring two of them. For dragonflies, most of the previous proposals adapt
the distance-based mechanism by Günther [Günther 1981], employing as many VCs
per router port as the longest path allowed in the network. When local and global links
are always traversed in the same sequence, their VCs can be considered independently,
leading to 2/1 VCs (local/global) required for minimal routing and 4/2 for Valiant rout-
ing [Valiant 1982; Prisacari et al. 2014]. In [Kim et al. 2008] the authors reduce this
number to 3/2 by misrouting traffic to an intermediate group instead of an specific in-
termediate router, but in this way the traffic is not completely uniform and pathological
performance problems can arise [Garcı́a et al. 2012]. In OFAR [Garcı́a et al. 2012] a
simple deadlock-free escape network is embedded in the dragonfly and packets have
the option to move to the escape network to avoid deadlock. Hence, in each port only
1 or 2 VCs are necessary (depending if it belongs to the escape subnetwork). However,
this mechanism does not guarantee bounded paths per se, and requires a congestion
management mechanism to avoid saturation in the escape subnetwork, [Garcı́a et al.
2013]. Restricted Local Misrouting (RLM, [Garcı́a et al. 2013a]) allows for local mis-
routing within any group of a canonical dragonfly without increasing the number of
required VCs. This is implemented by forbidding certain combinations of two local
hops which would generate cycles, in a similar way to how our routing mechanisms for
dragonflies with trunking introduced in Section 6 select the global links that guaran-

2[Ahn et al. 2013] also considers local and global topologies as we do in this work, but they refer to the
intra-switch topology and the traditional topology between switches, instead of per-group and intra-group.
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Fig. 1: Hamming graph K4�K4 with vertices arranged in rows and columns.

tee deadlock avoidance. Opportunistic Local Misrouting (OLM, [Garcı́a et al. 2013a])
allows for cyclic dependencies to appear when applying local misrouting, but it guar-
antees that an alternative safe escape path always exists at any hop in the network.

The use of multiple virtual channels besides providing deadlock-freedom helps to re-
duce Head-of-Line Blocking (HoLB). However, they entail a significant cost. Not only
they increase the area and power requirements for the router, but also make some
router allocator stages more complex, leading to lower router frequencies and reduced
throughput, [Peh and Dally 2001]. For this reason, multiple works propose alterna-
tives to avoid or reduce the number of VCs in network routers, such as [Wang et al.
2013; Garcı́a et al. 2012]. HoLB is typically mitigated in these cases employing internal
speedup, such as in [Arimilli et al. 2010; Faanes et al. 2012].

3. HAMMING GRAPHS
This section defines Hamming graphs, their properties, some alternative isomorphic
definitions and the main routing mechanisms proposed for networks based on it.

The Hamming distance between two vectors is the number of components in which
the vectors differ. Given a space S over which the Hamming distance is defined, the
Hamming graph is defined as the graph with S as vertex set in which two vertices are
connected if and only if their Hamming distance is 1. For the Hamming distance the
only relevant characteristics of the space are the number of components (dimensions)
and the possible values of each component, this is, it can be assumed that the space is
Zm1×· · ·×Zmn

3 for some integers mi. Figure 1 shows a representation of the Hamming
graph over Z4 × Z4.

The Hamming graph is isomorphic to the Cartesian product of complete graphs
Km1
� · · ·�Kmn

. This is, the Cartesian product is defined as having two vertices con-
nected if and only if, for some component, they are connected in the corresponding
factor and the other components are equal. Formally, for a pair of graphs G1, G2, their
Cartesian productG1�G2 is the graph with vertices V (G1�G2) = V (G1)×V (G2) where
the vertices (x1, y1) and (x2, y2) are connected if and only if x1 = x2 ∧ {y1, y2} ∈ E(G2)
or y1 = y2 ∧ {x1, x2} ∈ E(G1). As in the complete graph all vertices are connected, in
the Hamming graph every vertex is connected with any other which differs in exactly
one component. The Hamming graph is also isomorphic to the Cayley graph over the

3Here Zm denotes the set of integers modulo m, which in other texts is written Z
mZ .
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Abelian group (Zm1
×· · ·×Zmn

,+), with generator set
⋃n

i=1{xei | x ∈ Zmi
\{0}}, where

ei is the vector with 1 as the i-th component and 0 otherwise.
This paper focuses in the bidimensional case, i.e. the Hamming graph over the space

Za×Zb, for any pair of integers a, b. This Hamming graph is a diameter k = 2, ∆-regular
graph, for ∆ = a + b − 2, comprising ab vertices. In the square case, this corresponds
to 1

4∆2 + ∆ + 1 vertices. For Cayley graphs over Abelian groups of diameter 2 there
is an upper bound of 1

2∆2 + ∆ + 1 vertices; the current best construction inside this
family is the given in [Macbeth et al. 2012], which achieves 3

8 (∆2 − 4) vertices, about
3
4 of the bound. Square Hamming graphs have about 1/2 of this bound, so while they
are not the best, they have a good position among Cayley graphs over Abelian groups,
while existing for any even degree. Each of these vertices represents one router in the
network, to which ∆0 compute nodes are attached (also known as concentration level).
Thus, each router requires R = ∆ + ∆0 = ∆0 + a+ b− 2 ports.

In a network with a Hamming topology up to ∆0 = min(a, b) compute nodes per
router can be connected without bisection bandwidth limitations under uniform traffic.
A larger concentration value can introduce network bottlenecks due to oversubscrip-
tion. For a proof, assume without loss of generality a < b and consider the traffic from
the region {(x, y) | 0 ≤ x < a

2 , 0 ≤ y < b} into {(x, y) | a
2 ≤ x < a, 0 ≤ y < b}, with a

even for simplicity. Each region contains ab
2 routers, each router attached to ∆0 com-

pute nodes. As the regions have the same size, the probability of having a destination
in the other one is 1

2 . Thus ab
4 ∆0 packets must traverse the links joining the regions

each cycle. The number of these links is b · a2 ·
a
2 ; thus, to avoid saturation ab

4 ∆0 ≤ ba2

4
is required, which simplifies to ∆0 ≤ a. Then, in a balanced Hamming network with
a = b = ∆0, there are a3 compute nodes for routers of radix R = 3a − 2. Then, for a
given radix R the network connects up to

(
R+2

3

)3 compute nodes.
Like all Cayley graphs, the Hamming graph is vertex-transitive [Akers and Krish-

namurthy 1989]. This can be seen with the automorphism f(v) = v + v2 − v1 for some
vertices v1, v2, for which f(v1) = v2. The edges from (x, y) to (x′, y) can be naturally
denoted as a-edges and the edges from (x, y) to (x, y′) as b-edges, corresponding to the
two different dimensions in the Hamming graph. Under uniform traffic, a minimal
network path will have one a-link with a probability (a−1)b

ab−1 and one b-link with proba-
bility (b−1)a

ab−1 , which are both almost 1. Thus, in order to balance the use of the network
links, the required condition is to have the same number of links per dimension (a = b),
which corresponds to a square Hamming graph. Indeed, the Hamming graph is edge-
transitive if and only if it is square. The sufficient condition is simple, if a = b there
exists an automorphism which maps each vertex (x, y) into (y, x). For the necessary
condition, assume without loss of generality that a < b; then every a-link is included
in some Ka subgraph but not in any Kb subgraph, thus a-links cannot be mapped
into b-links. An unbalanced (not edge-transitive) implementation has less links in the
shorter dimension, which becomes a performance bottleneck because of their higher
utilization.

Networks based on the Hamming graph are deadlock-free under a DOR policy. This
imposes restrictions on the paths that packets can follow, but not on the number of VCs
employed by routers. Alternatively, distance-based deadlock avoidance mechanisms
could be used without routing restrictions if the routers employ at least two VCs: one
for the first hop and the other for the second. Finally, it is interesting to note that
perfect error-correcting Hamming codes based in this graph directly translate into
solutions for the resource placement problem in Hamming networks (in a analogous
way to [Bae and Bose 1996]).
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4. DRAGONFLY TOPOLOGIES
This section presents the dragonfly topology analyzing its multiple degrees of freedom.
Next, it discusses how some dragonfly topologies are subgraphs of a bidimensional
Hamming graph. Finally, it introduces a formal definition of the canonical dragonfly
topology with several alternatives for its global link arrangement.

The dragonfly network was proposed in [Kim et al. 2008] as a two-level hierarchi-
cal direct network. A dragonfly topology has b groups (0, . . . , b − 1) each group being
composed of a routers (0, . . . , a − 1). Routers within a group (first level) are connected
by short, cheap, electrical local links. Different groups (second level) are connected by
long, expensive, optical global links. The definition of the dragonfly in [Kim et al. 2008]
is, purposely, very loose, focusing on technological and economical aspects, rather than
providing a closed definition of the underlying graph. Thus, from a formal point of view,
multiple different topologies can be considered as variants of the dragonfly.

Apart from the parameters a and b, there are three degrees of freedom in the defini-
tion of a dragonfly topology:

(1) local topology: the connectivity pattern of the routers within a group,
(2) global topology: the connectivity pattern between the different groups, and
(3) global link arrangement: the specific router on each group to which each global link

connects.

The diameter k of the dragonfly topology depends on the diameters of the global
topology kg and local topology kl as follows: k ≤ kg + (kg + 1)kl = kg + kgkl + kl. That is,
a limit of kg global links, kg + 1 visited groups, with at most kl local links in each of the
visited groups. In order to minimize the diameter, the complete graph can be employed
as both local and global topologies, leading to k = 3. Furthermore, the complete graphs
reach the Moore bound and thus are very good candidates considering scalability. This
choice of topologies has been the one of previous proposals [Kim et al. 2008; Arimilli
et al. 2010; Jiang et al. 2009; Garcı́a et al. 2012; Garcı́a et al. 2013a] and hence we will
call canonical dragonfly to the dragonfly network using complete graphs Ka and Kb

in both local and global topologies. The canonical dragonfly, for k = 3, asymptotically
reaches 4/27 of the vertices of the Moore bound. This value is only exceeded by graphs
designed to reach the bound; mainly the family introduced in [Delorme 1985], which
has severe practical inconveniences, such as restricting ∆− 1 to odd powers of 2.

Alternative implementations to the canonical dragonfly also exist, such as in Cray
Cascade [Faanes et al. 2012], where a complete graph is used for the global topology
and a rectangular 2D Hamming graph is used for the local one. In Section 8 we will dis-
cuss how this topology can be considered as a 3-level dragonfly. Topologies can employ
parallel links between routers (trunking) what will be considered later in Section 5
and, unless otherwise noted, it is not employed in the dragonfly.

The degree of the topology ∆ can be divided into the two levels. The degree associated
to the first level is denoted by ∆1, this is, the number of local links connected to each
router. Analogously, ∆2 represents the number of global links connected to each router.
Thus, the topology has degree ∆ = ∆1 + ∆2 and the routers have a total number of
ports or radix R = ∆0+∆1+∆2, treating computing nodes as a level 0. In any canonical
dragonfly b = a∆2 + 1 and a = ∆1 + 1. To achieve a balanced use of resources under
uniform traffic, this is, to have similar load in local and global links, the condition
2∆2 ≈ ∆1 needs to hold; the balancing condition proposed in [Kim et al. 2008] is a =
2∆2, whereas up to ∆0 = ∆2 compute nodes can be connected to each router without
saturating the network under uniform traffic. In a canonical dragonfly this imposes a
relation between the group size a and the number of groups b. Given a group size a, the
network is balanced only for the corresponding number of groups b; with less groups
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a = 5

b = 11

Fig. 2: Two layouts of the same dragonfly topology which is a subgraph of K5�K11,
with ∆2 = 2, with nodes organized in rows and columns (left, each row corresponds to
a different group) or groups (right). Global links leaving group 0 are in bold.

there would be too few global links which would become a bottleneck, and with more
groups the local links would be the bottleneck. The second case should be typically
forbidden by design by setting a maximum system size, but the first one is common in
not fully populated systems which can be upgraded by installing more groups. In such
case, balanced networks with a low number of groups b can be built using trunking;
the corresponding balancing conditions will be discussed in detail in Section 5.1. In a
balanced canonical dragonfly without trunking, the routers have radix R ≈ 2a, there
are about a3/2 routers and about a4/4 compute nodes. Then, for a given radix R the
network comprises up to ≈ R4/26 compute nodes.

Proposed routing mechanisms in the canonical dragonfly are hierarchical, routing
first to the destination group and then to the destination node. The minimal routing
introduced in [Kim et al. 2008] first locates the global link between the source and
destination groups; the path consists of one local link l to the router with the required
global link, then the global link g itself and finally a local link l to the destination;
this is denoted as a lgl route. Using such hierarchical routing (instead of a flat rout-
ing) avoids paths with only two global links gg, which can be shorter in terms of hops
but typically have higher latency because of the longer physical length of global links.
Most deadlock-free routing mechanisms for dragonflies rely on an ordered use of vir-
tual channels. Each hop of a path employs a different VC in an increasing order, thus
avoiding cyclic dependencies. Since minimal paths are always of type lgl, or a subset of
them in the same order (but never gll or llg), using minimal routing, local ports employ
two different VCs and global ports do not need to employ VCs.

In some cases, a canonical dragonfly topology is a subgraph of the rectangular Ham-
ming graph Ka�Kb. Figure 2 presents an example with a = 5, b = 11 and ∆2 = 2.
The local topology of each dragonfly group corresponds to each of the complete graphs
Ka, whereas the global topology links need to connect vertices in the same position of
each group in order to belong to the original Hamming graph. Thus, a independent
graphs, G0, G1, . . . , Ga−1, define the global link connectivity. In order to build a canon-
ical dragonfly, each of these Gi graphs needs to have b vertices V (Gi) = {0, 1, . . . , b− 1}
and degree ∆2, which exists if and only if b ≥ ∆2 + 1 and 2|b∆2. The global topology
composed as the union of all Gi’s needs to be a complete graph Kb so the result is a
canonical dragonfly; the union of graphs over the same set of vertices is the graph con-
taining all the edges of the factors, this is, E(

⋃
iGi) = {e | e ∈ E(Gi) for some i}. Thus
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the problem is to decompose Kb into a graphs, G0, . . . , Ga−1, of degree ∆2. Systematic
decompositions can be found easily for b odd and ∆2 even. For ∆2 = 2, as in Figure 2,
Kb can be decomposed into b−1

2 cycles for b odd, [Hilton 1984]. For ∆2 > 2 even, several
of such cycles can be merged into each of the Gi. Although only for certain parame-
ters, as it will be further discussed in Subsection 4.1.3, these subgraphs of Hamming
graphs are the only vertex-transitive canonical dragonfly arrangements which we have
encountered.

4.1. Global Link Arrangement and Network Symmetries

Given a canonical dragonfly, there exist b2
O(a∆2)

possible arrangements for the global
links. This subsection discusses link arrangements in general and a few specific cases:
consecutive, palmtree, and circulant-based in which the topology is a subgraph of the
Hamming graph, as introduced above. Finally, it presents a brief discussion on the
selection of an arrangement. Arrangements with trunking will be presented in Sec-
tion 5.2.

In general, any arrangement can be implemented as follows:

(1) For each group g, partition the set of groups other than g, into a subsets (sets of
groups) of cardinality ∆2. Then assign one subset to each router of g.

(2) For every pair of groups A,B, find in A the router assigned to group B and in B
the router assigned to group A. Then, add a global link between the routers found.

A random arrangement makes the choices in the first step at random. An example is
presented in Figure 3a. Any network configuration admits being implemented in this
way, although sometimes there is a simpler ad hoc implementation.

4.1.1. Consecutive Arrangement. The consecutive allocation of global links consists on
connecting the routers in each group in consecutive order, with the groups in the net-
work also in consecutive order, starting always from group 0 and skipping those links
with source and destination being in the same group. Specifically, the vertex i in group
j is connected for every integer k = 0, . . . ,∆2 − 1 with the vertex b j−1

∆2
c of the group

g = i∆2 + k if g < j and with the vertex b j
∆2
c of the group g + 1 otherwise. Although

not explicitly indicated, this consecutive arrangement can be inferred from the figures
in [Kim et al. 2008]. Figure 3b shows an example for a = 4.

4.1.2. Palmtree Arrangement. The palmtree4 arrangement presents the same global con-
nectivity pattern in each group of the system. In this arrangement, vertex i in group
j is connected to vertices a − 1 − i in groups j − i∆2 − 1, j − i∆2 − 2, . . . , j − i∆2 −∆2

(mod b). Although not explicitly indicated, the palmtree arrangement can be inferred
from the figures in [Garcı́a et al. 2012]. A palmtree for a = 4 is included in Figure 3c.

The palmtree arrangement presents notable symmetries. The clearest one is the
rotational symmetry given by the automorphism defined by sending the vertex x in
group y, (x, y), to (x, y + 1 (mod b)). This rotation shows that groups are equivalent.
Another symmetry is given by f(x, y) = (a − 1 − x,−y (mod b)), which is a reflection
in each group. Therefore, there are at most a/2 classes of vertices modulo the equiva-
lence relation induced by automorphisms. Interestingly, for any pair of vertices of the
same class of these a/2 classes, there is a path between them using only global links.
Reciprocally, each global link connects vertices of the same class.

4The name is inspired by the similarity of the links leaving each group with the Palm Islands in Dubai,
which are shaped as a palmtree.
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(a) Random (b) Consecutive (c) Palmtree

Fig. 3: Three arrangements for a = 4, b = 9,∆2 = 2 with nodes organized in groups.

4.1.3. Circulant-based Arrangement. This arrangement is a particular case in which the
dragonfly network is a subgraph of the Hamming graph, as introduced above in this
section. We restrict the study to the case in which ∆2 is even and each of the subgraphs
Gi is a circulant graph. In this arrangement, vertex i in group j is connected to vertices
i in groups j±(i∆2/2+1), j±(i∆2/2+2), . . . , j±(i∆2/2+∆2/2) (mod b). In the example of
Figure 2 with a = 5, b = 11,∆2 = 2, each graph Gi (corresponding to column i) contains
the edges from x to x± i (mod b) and thus it is a circulant graph.

Interestingly, this arrangement has the property that for ∆2 = 2 if b is a prime
number, the resultant topology is vertex-transitive. To see that, consider the following
automorphisms: an automorphism f that maps the vertex (i, j) into (i, j + 1 (mod b))
and an automorphism g which maps the vertex (i, j) into (min{2i + 1, b − 3 − 2i}, 2j
(mod b)). The automorphism f cycles the groups, and hence, there are at most a classes
of vertices. Then, if b is odd, g is an automorphism, and if b is a prime number then
g acts transitively into the vertices of the group 0. Thus, for b prime there is only one
class modulo isomorphism and the graph is vertex-transitive or node-symmetric.

4.1.4. Discussion on the Global Link Arrangement Selection. While the global link arrange-
ment is important to fully characterize a topology, simulations show that the impact
of the selected arrangement on network performance under uniform traffic is, in gen-
eral, negligible5. However, specific arrangements have different topological properties,
such as symmetries and the possibility of defining multiple classes of vertices in the
network, what can be exploited to simplify routing. The palmtree and any subgraph
of the Hamming graph allow for a natural vertex coloring with a

2 (for a even) and a
colors respectively, in a way such that every global link has the same color in its two
endpoints. This property will be used by the routing mechanisms in Section 6.

Additionally, as studied in [Garcı́a et al. 2012], for certain traffic patterns, patholog-
ical saturation of local links occurs when using the Valiant variant from [Kim et al.
2008], which does not employ local misrouting in the intermediate group. This occurs
when all the nodes in group i send traffic to nodes in group i + ∆2 (mod b). The satu-
ration arises in the intermediate group, in which almost all of the traffic received from
the ∆2 global links from a router leaves the group using the same neighbour router.
The single link between these routers becomes a performance bottleneck. With the
consecutive or palmtree arrangements, all traffic received by router i needs to leave
by router i + 1, leading to a throughput limit of 1/∆2 phits/node/cycle (a phit is the

5Different traffic patterns such as global permutations could be impacted by the global link arrangement.
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amount of data transferred on a link on a single cycle). In the circulant-based ar-
rangement only ∆2/2 of such links would compete for the same local link, leading to
a throughput limit of 2/∆2 phits/node/cycle. A random arrangement would typically
eliminate this problem, at the cost of regularity in the network. In any case, such
pathological performance issues can be solved using the original implementation of
Valiant routing [Valiant 1982] (as discussed in [Prisacari et al. 2014] and implemented
in [Faanes et al. 2012]) or allowing for local misrouting in the intermediate group (as
in the OLM routing [Garcı́a et al. 2013a] that we employ as a reference in Section 7).

5. DRAGONFLY TOPOLOGIES WITH GLOBAL TRUNKING
This section considers trunking in dragonfly topologies and discusses how the Ham-
ming graph responds to the definition of a dragonfly topology with trunking. Based on
this observation, Hamming graphs and canonical dragonfly topologies are considered
as the two extreme possibilities of trunking and the spectrum between them is studied
considering the corresponding balancing conditions.

The trunking level in a topology refers to the number of parallel links that are em-
ployed to increase the aggregated bandwidth, increasing also the number of router
ports used. In a dragonfly topology, local trunking refers to parallel links between pairs
of routers within a group. Such parallel links between pairs of routers are typically
known as a LAG (Link Aggregation Group). This LAG could be also implemented in a
Hamming topology to increase bandwidth between routers in the same row or column.
The global trunking level t is the number of global links between every pair of groups.
In this case, there are multiple alternative implementations. Trunk links can join a
single pair of routers (LAG), one router in a group and multiple routers in the other
(often called as Multi-Chassis LAG, MC-LAG), or different pairs of routers.

Unless otherwise noted, we will always refer to global trunking between different
pairs of routers, that increases both bandwidth and reliability. As discussed in [Faanes
et al. 2012], trunking is required to retain optimal global bandwidth in systems with
less groups than the maximum allowed. A dragonfly with trunking is specified by the
number of routers per group a, the groups b, the global links per router ∆2, the global
link arrangement and the global trunking t > 1 (t = 1 for a canonical dragonfly without
trunking as defined in Section 4). Dragonflies with global trunking obey the relation:

a∆2 = t(b− 1). (1)

The vertices of a Hamming graphKa�Kb can be partitioned into b groups by defining
the group y as the set {(x, y) | x ∈ Za}. Clearly these groups are subgraphs isomorphic
to Ka and hence the Hamming graph satisfies the definition of the canonical dragonfly
topology (complete graphs for local and global topologies) with trunking t = a. Between
groups y1 and y2 there is the set of a global links

{
{(x, y1), (x, y2)} | x ∈ Za

}
.

Therefore from a topological point of view, the Hamming graph Ka′�Kb′ is a trunked
dragonfly with parameters a = a′, b = b′, t = a′ and ∆2 = b − 1; using a specific global
link arrangement which connects all routers in the same position of each group. An
example of the Hamming graph represented as a trunked dragonfly can be seen in
Figure 4.

5.1. Balancing Conditions for the Trunked Dragonfly
The requirements for a balanced trunked dragonfly are studied in detail in this sub-
section, considering uniform traffic and minimal routing. As discussed before, non-
uniform traffic can be made uniform by randomizing it (like Valiant routing) or by
other means such as randomizing task placement, so it is not considered in this anal-
ysis. The detailed balancing conditions are derived from calculating the average dis-
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Fig. 4: Hamming graph K4�K4 with nodes organized in groups.

tance on each type of links and relating it to the number of links of each type to be
used, considering network trunking.

Let avg be the average distance, this is, the quotient between the length and the
number of all possible minimal paths. This distance can be divided into avg = avg1 +
avg2, with avg1 being the average number of hops in local links and avg2 in global links.
A similar relation can be established with the total number of edges |E| = |E1|+ |E2|.
A balanced network requires

avg1

|E1|
=

avg2

|E2|
.

Let α = avg2

avg1
represent the relation between the use of each type of links under uniform

traffic. Thus, α also represents the relation between the amount of links of each type
(global, local) for a balanced network, ∆2 = α · ∆1. In order to approximate α, it can
be observed that for global links avg2 = ab−a

ab−1 ≈ 1. The average distance in local links
avg1 can be derived from the number of possible minimal paths between two groups,
ignoring the communication internal to a single group, as follows. There are a2 pairs
of source/destination vertices among two given groups; t vertices of each group have a
direct global edge to the other group and a− t do not. Hence,

— t pairs are connected by a direct global edge, which is their minimal path, g.
— t(a − t) pairs begin at a vertex with a global edge to the other group and finish in

one without such edge. Their minimal path is gl.
— (a− t)t pairs begin at a vertex without a global edge to the other group but finish in

one with such edge. Their minimal path is lg.
— t(t− 1) pairs begin and finish at vertices with global edges between the groups, but

they are different. Their two possible minimal paths are lg and gl.
— (a − t)(a − t) pairs begin and finish at vertices without direct global edges. The t

minimal paths are lgl.

Thus, ignoring the traffic local to a group, avg1 ≈ (t2 − t− 2ta+ 2a2)a−2. Removing low
order terms it becomes avg1 ≈ 1 + ( t

a − 1)2 and α can be approximated as

α ≈ 1

1 + ( t
a − 1)2

. (2)

Thus, in the Hamming graph t = a and α = 1, whereas in the canonical dragonfly t =
1 and α tends to α → 1/2 for a → ∞. The approximate dragonfly balancing conditions
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Table I: Examples of dimensioning the number of groups b of a network with a = 4
routers per group, for different levels of trunking t as in Figure 5. Networks with less
groups (middle column) require more trunking to be balanced.

t
Limit for b using
α = 1 in (3)

b for a balanced network,
according to (4)

Limit for b using
α = 1/2 in (3) Actual network example

1 13 8.7 7.5 canonical dragonfly b = 9
2 7 5.8 4.0 b = 5, ∆2 = 2
3 5 4.8 3.0 b = 5, ∆2 = 3
4 4 4.0 2.5 Hamming K4�K4.

presented in Section 4 (2∆2 ≈ ∆1 or a = 2∆2) no longer hold when the network employs
trunking, since α becomes larger than 1/2 so the ratio between global and local router
ports needs to increase.

The parameter α and its relation with the number of edges of each type in a balanced
network is:

α =
avg2

avg1

=
|E2|
|E1|

=
tb(b−1)

2

ba(a−1)
2

=
t(b− 1)

a(a− 1)
. (3)

From the expressions of α in 3 and 2, the following balancing condition is obtained:

b = 1 + α
a(a− 1)

t
= 1 +

1

1 + ( t
a − 1)2

a(a− 1)

t
. (4)

The balancing condition (4) can be related with the cardinal equation (1):

a∆2 = t(b− 1) = a(a− 1)α. (5)

In the extreme case of Hamming graphs, t = a and α = 1, and hence the balancing
condition is b = a or equivalently ∆2 = a − 1. This was already known since it is the
case of the Hamming graph being edge-transitive.

Table I shows in the middle column several dimensioning examples for groups of
a = 4 routers, and in the sides the valid range for the number of groups b that keep
α ∈ [ 1

2 , 1]. Since the result from the balancing equation (4) is not necessarily integer,
an approximation with integral values is presented on the right. The corresponding
topologies can be seen in Figure 5. It can be observed that for t = 1 (no trunking) the
balancing condition is close to the lower limit given for α = 1/2 on its right, whereas
for t = a = 4 (maximum trunking) the result is close to the upper limit for α = 1 on
its left. Also, it is clear that the less groups of a dragonfly are present, the higher the
trunking level is required for the topology to be balanced.

5.2. Arrangements for Dragonflies with Global Trunking
Trunking increases the number of possible arrangements of a dragonfly network. Sub-
section 4.1 introduced several possible global link arrangements for dragonflies with-
out trunking. Those same configurations can be directly applied when using LAG, this
is, multiple parallel links between each pair of linked routers. This section extends
the arrangements presented in Subsection 4.1 to use trunking with disjoint pairs of
routers for parallel links, to maximize fault tolerance. We denote such configurations
as “extended.”

In general, building a trunked dragonfly with an arbitrary arrangement requires:

(1) In each group, for each router select ∆2 (generally different) groups. Among all the
routers of the group, each other group must have been selected exactly t times.
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(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

Fig. 5: Dragonfly networks with extended palmtree arrangement; a=4 routers per
group and b groups, according to Table I.

(2) For every pair of groups A,B, find in A the t routers which have selected B and in
B the t routers which have selected A. Then there are t! ways to add the t global
links between the two collections of routers found.

5.2.1. Extended Consecutive Arrangement. The consecutive arrangement presented in
4.1.1 is generated adding global edges in a greedy way. However, for t > 1 any greedy
strategy ends connecting some router to several other routers of the same remote group
(what we denoted as multichassis-LAG). Since this section searches for solutions that
connect disjoint pairs of routers for maximum fault tolerance, we do not present an
extension of the consecutive arrangement.

5.2.2. Extended Palmtree Arrangement. A generalization of the palmtree arrangement
is defined here for any trunking level which obeys equation (1). This configuration
employs disjoint pairs of routers for each parallel link between groups. The router x of
group y is connected by global links to the following ∆2 routers:

{
(
a− x− 1, rem(y + 1 + rem((a− x− 1)∆2 + k − 1, b− 1), b)

)
| k ∈ {1, . . . ,∆2}}

As in the base case, (x, y) 7→ (x, rem(y + 1, b)) and (x, y) 7→ (a − x − 1, rem(b − y, b)) are
automorphisms of the extended palmtree. Hence, there are are most ba2 c isomorphism
classes. The graphs in Figure 5 employ such arrangement and, as stated before, they
correspond to the examples in Table I. The graph obtained for a = b is very similar
to the Hamming graph but not isomorphic to it; this is the case of the last graph in
Figure 5. A representation of such graph with nodes organized in rows and columns
is presented in Figure 6, providing a visual comparison with the Hamming graph pre-
sented in Figure 1. It is remarkable that a lg path exists for any pair of routers with
this last arrangement, enabling a deadlock-free DOR routing.

5.2.3. Extended Circulant-based Arrangement. Subsection 4.1.3 discussed the construc-
tion of canonical dragonflies as subgraphs of the Hamming graph, by finding a de-
composition of the complete graph Kb into a regular subgraphs. When using trunking,
the construction relies on finding a decomposition of t > 1 copies of a complete graph,
this is, of a multigraph with t edges between every pair of vertices.

The arrangements composed of multiple circulant graphs from Subsection 4.1.3 can
be easily extended to the case of global trunking, under the restrictions of equation
(1), even ∆2 and odd b. Specifically, the following connectivity pattern generates a
dragonfly with trunking t: vertex i in group j is connected to vertices i in groups
j ± (rem(∆2

2 i+ k, b−1
2 ) + 1) (mod b) for every integer k ∈ {0, . . . ,∆2/2− 1}.
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Fig. 6: Palmtree arrangement for t = a = 4; vertices organized in rows and columns.

6. DEADLOCK-FREE ADAPTIVE ROUTING IN DRAGONFLIES WITH TRUNKING
As discussed in Section 4, distance-based deadlock-free routing mechanisms proposed
for dragonflies require as many VCs as hops allowed through a given type of network
link. Such implementations can be costly and complex, and tie the number of VCs with
the maximum path length. However, Hamming graphs allow for deadlock avoidance
mechanisms based on route restrictions (DOR). Such a mechanism does not require
VCs.

Section 5 showed how Hamming graphs and dragonflies with trunking can be seen
as members of the same family. In this section, three alternative routing mechanisms
are introduced for dragonflies with global trunking, based on a variation of the route
restriction mechanism employed in Hamming graphs. A DOR mechanism is equiva-
lent to coloring all the links in the network with one of two colors, according to their
dimension, and following paths that obey a certain color order. Similarly, our mecha-
nisms impose a selection of the global links in the path, from those t specified by the
trunking level. They rely on coloring the routers, which is possible when the global
link configuration is an extended palmtree or a subgraph of the Hamming graph (as
defined in Subsections 5.2.2 and 5.2.3), what highlights the importance of a careful
selection of the global link connectivity.

DOR can be safely used with trunking level t = a. With a > t ≥ 2, cyclic dependencies
in minimal routing can be avoided by deciding which of the t global links to use each
time, based on two router colors and without relying on VCs; as we will see next,
it requires t ≥ 2. For adverse traffic patterns, a variant of Valiant routing (which
sends traffic to an intermediate network router) can be implemented without VCs,
requiring t ≥ 4. These two mechanisms are oblivious. Finally, an adaptive mechanism
can be implemented, which selects between the minimal or Valiant paths depending
on network conditions, requiring again t ≥ 4. These three mechanisms are detailed
next and evaluated in Section 7.

6.1. Oblivious Minimal Deadlock-free Routing for t ≥ 2

In this subsection a deadlock-free routing mechanism denoted “2-color minimal” is in-
troduced for dragonflies with t ≥ 2 global links between pairs of groups. Deciding which
of the t links to use for each packet can prevent deadlock; t = 2 will be assumed from
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Fig. 7: Coloring of routers with 0 or 1 and the local links with +0 or +1. The cyclic
dependency presented would be avoided using the color-ordering rules, since at least
one of the messages must follow the l+1 local channels.

here onwards although our mechanism is still valid for larger values of t. However, in
such cases the proposals of the next subsection present several advantages.

Every router in the network will be colored with one of two colors, say 0 and 1. Con-
sidering an even number of routes per group a, half of them receive each color. Global
links should be arranged so they only connect vertices with the same color, which im-
plies a restriction in the global link arrangement. The extended palmtree for a ≥ 4 and
any subgraph of the Hamming graph for a ≥ 2 satisfy this restriction since they divide
vertices into several classes. Local links are labelled according to the difference of the
color of their endpoints, modulo 2. Thus we have “+0” and “+1” local links, depending
on whether they connect vertices with the same or different color, respectively. They
will be denoted l+0 and l+1. A simple three-group example is presented in Figure 7.

The routing mechanism will vary depending on the respective colors of the source
and destination routers. Routes with source and destination of different colors will
need to employ up to one l+0 and one l+1 local links. The l+0 link always will be selected
in the source group and the l+1 in the destination group. Implicitly, this forces the
selection of the global link to be used, which will have the same color as the source
router. This routing restriction prevents dependencies from l+1 to l+0 local links, which
furthermore implies that any possible cyclic dependencies are completely composed
either of l+0 local links or of l+1 local links. For routes in which endpoints have the
same color, the path must contain two l+0 or two l+1 local links. Selecting which one is
employed is done in a careful way to avoid deadlock. Our mechanism employs the l+0

local links when the destination group index is larger than the source index and the
l+1 local links otherwise. Again, this implies a selection of the global link to traverse.
Alternative orderings between the groups can be used, as long as they guarantee that
directed cycles do not appear in the global topology.

The proposed mechanism is deadlock-free by construction: multiple paths between
routers with different color never form cycles because they follow local links in an as-
cending order, and paths between routers of the same color never form cycles because
they employ different links when the group index is increased or decreased. An exam-
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l+0AA

l+0BA

gA

l+1AA l+1AB

l+0AB l+1BB

gB

l+1BA

l+0BB

Fig. 8: A precedence of links using t = 4 which allows for routes lgl and lgllgl. Allowed
paths flow from left to right, and parallel routes represent different alternatives, one
of which is chosen depending on the labels of the source and destination routers.

ple is presented in Figure 7, in which three paths between routers of different groups
always employ l+0 local links. Such cycle is forbidden with the proposed mechanism,
since at least one of the paths will decrease the group index and thus will be forced to
employ the l+1 links. Finally, it should be noted that under uniform traffic all links are
used similarly. There are (a

2 )2 “+1” and 2
(
a/2
2

)
= a

2 (a
2 − 1) “+0” local links per group.

Their ratio tends to 1 for large a. Global link usage is completely balanced, according
to the color of the source and destination routers.

6.2. Oblivious Minimal and Non-minimal Deadlock-free Routing for t ≥ 4

Non-minimal Valiant routes like lgllgl are required to balance load and avoid bottle-
necks under adverse traffic patterns. This section introduces a non-minimal routing
for dragonflies with t ≥ 4 global links between pairs of groups denoted as “4-color non-
minimal,” which does not need VCs for deadlock-freedom. Additionally, by traversing
only the first or the second half of the allowed path, routes with a single global hop
can be employed. Such routing will be denoted as “4-color minimal,” despite using in
some cases one extra local hop. This minimal routing is less restrictive than the pre-
vious mechanism for t = 2, what will be patent in the performance results of the next
section.

Like in the previous subsection, this new mechanism relies on a coloring of the
routers that allows to classify and order the local and global links considering a di-
rected graph. Unlike the previous mechanism in which the order was only relevant for
local links, in this case the link order will be strict. Considering the possible paths,
this requires 4 colors for routers, 2 colors for global links and 8 colors for local links; 6
colors for local links are not enough to generate a balanced use of the network links, as
we will see later. The four router colors will be labelled with one number and one letter
{0A, 0B, 1A, 1B}. Every global link joins routers of the same color, what is possible for
the extended palmtree with a ≥ 8 and for subgraphs of the Hamming graph with a ≥ 4.
Global links will receive one of two labels, A or B, the same that of their endpoints. By
contrast, local links receive one of eight labels. A local link from a router labelled xP to
a router labelled yQ will be labelled as +zPQ where z ≡ y − x (mod 2), P,Q ∈ {A,B}
and x, y, z ∈ {0, 1}.

In order to provide a deadlock-free routing, an ordering of the links is required. That
is, if α and β are two classes of links with α ≺ β (α preceding β), then in every possible
route there will be at most one link of each class and then the link of class α will
appear earlier in the route than the link of class β. The partial order of global links
will always be gA ≺ gB , as it is required in a complete graph Kb. Considering local
links, our routing employs the complete ordering l+0AA, l+0BA ≺ gA ≺ l+1AA ≺ l+1AB ≺
l+0AB ≺ l+1BB ≺ gB ≺ l+1BA, l+0BB , which allows for the paths shown in Figure 8 in
which every node represents a link in the path.

This ordering allows to communicate every pair of nodes. The first local link is se-
lected between l+0AA or l+0BA depending on the label A or B of the source router. Sim-
ilarly, the last local link allows to select the A/B label of the destination router and
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Table II: Simulation parameters.
Group size a = 24 routers, 312 nodes Link latency (local/global) 10/100 cycles

Number of groups b = 79 groups Packet size 8 phits
Network size 24,648 computing nodes Buffer capacity(local/global) 32/256 phits

Router size (ports) R = 49 Virtual channels per port 3 (except Valiant, 4)
(∆0 = 13, ∆1 = 23, ∆2 = 13) Switching policy Virtual Cut-Through

Global link arrangement Extended palmtree Router arbitration Random
Router model input-queued Router speedup No

the middle branch allows to select the change +0/+1 of the whole path. For example, a
route from 0A to 0A must be l+0AA, gA, l+0AB , l+1BB , gB , l+1BA. This ordering restricts
the class of the middle router, 0B in the previous example, which illustrates the restric-
tion of routes applied. However, for any pair of 0A source and destination routers in
different groups, this mechanism allows to select any of the 0B routers in the network
as the intermediate router of the Valiant path. Similar routes can be calculated for the
other 15 color combinations of source-destination pairs. Thus, it is similar to Valiant
[Valiant 1982] but with the intermediate node restricted to a fourth of the total nodes.

The same link ordering can be used for minimal routing. Depending on the labeling
of the source and destination, either the first 3 links or the last 3 links will be used.
For example, packets going minimally from a 0A router to a 1A router will need to use
a route l+0AA, gA, l+1AA (first half); and to go minimally from a 0A to a 0A the path is
l+1AB , gB , l+1BA (second half). A priori, one could expect a small loss of performance
when using this routing, since some packets which could minimally route as gl in-
crease their paths in routes lgl to satisfy the coloring criteria. However, as it will be
observed in the next section, our deadlock-free routing algorithms perform similarly
to the references and in some cases outperform them. It is also interesting to remark
that the minimum routing mechanism for t ≥ 4 performs better than the one for t ≥ 2.

As both minimal and non-minimal routes are allowed with the same ordering of
links, adaptive routing can be employed by selecting one of them at the source. This
requires the use of some decision mechanism, such as UGAL [Singh 2005] and using
congestion information from neighbors as in [Jiang et al. 2009].

7. EVALUATION
This section shows the performance of the proposed routing mechanisms. We used the
FSIN cycle-accurate network simulator [Perez and Miguel-Alonso 2005], modified to
support trunked dragonflies with variable-length links. We have simulated a network
of input-buffered routers with a = 24 routers per group and global trunking t = 4 using
the extended palmtree arrangement. We rounded the number of groups to b = 79, what
provides a balanced topology according to equation (4) requiring routers with R = 49
ports and leading to a total of 24,648 computing nodes. The complete set of parameters
is presented in Table II and the routing mechanisms characteristics in Table III. We
have implemented the following oblivious routing mechanisms:

— Minimal: Hierarchical routing first to the destination group and then to the destina-
tion router, as described in [Kim et al. 2008]. The global link of the path is selected
as follows: if the source router has a direct link to the destination group, select it;
otherwise, select an available link to any random router with a direct link to the
destination. This mechanism is the reference for uniform traffic, although it only
exploits 2/1 VCs, therefore suffering from more HoLB.

— Valiant, [Valiant 1982]: Nonminimal routing composed of two parts: Minimal to a
random intermediate router and then minimal to the destination, as defined before.
This is the reference mechanism for adversarial traffic.
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Table III: Parameters of each routing mechanism.
Routing Adaptive Min VCs (local/global) Min. trunking
Minimal No 2/1 1
Valiant No 4/2 1

2-color minimal No 1/1 2
4-color minimal/nonminimal No 1/1 4

OLM Yes 3/2 1
4-color adaptive Yes 1/1 4

minimal Valiant 4VCs OLM+MML 4 color minimal
2 color minimal 4 color nonminimal 4 color adaptive
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Fig. 9: Throughput and average latency for uniform and ADV+1 traffic.

— 2-color Minimal, 4-color Minimal and Nonminimal: As described in Section 6.

Additionally, two adaptive mechanisms have been implemented:

— OLM-MML: An in-transit adaptive routing mechanism described in [Garcı́a et al.
2013a], using the MM+L global misrouting policy from [Garcı́a et al. 2013b]. This
mechanism has been selected because it provides similar or better performance than
the naı̈ve PAR6/2 from the same paper, while requiring less virtual channels.

— 4-color adaptive: The 4-color routing presented in Section 6.2, implementing Piggy-
backing [Jiang et al. 2009] to adaptively select between minimal (lgl) or nonminimal
(lgllgl) paths at injection time, using information from the neighbour routers.

Figure 9 shows latency and throughput results under minimal and adverse traffic
patterns. As expected, minimal routings give the best results for uniform traffic but
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Fig. 10: Throughput and average latency for uniform and ADV+1 traffics varying the
number of virtual channels

accept an insignificant amount of the adverse traffic. 2 and 4 colors minimal routings
obtain approximately the same latency with a slight advantage for the 2-color imple-
mentation at medium loads, but higher throughput for the 4-color variant. The lower
throughput of the 2-color variant comes from some groups using local links of type l+0

in most of the first local hops, especially in those with a low group index: l+0 is used in
the first local hop both when the source and destination colors are the same, and when
they differ and the destination group has a higher index. An alternative more balanced
ordering between each pair of groups (without introducing cyclic dependencies) would
mitigate this effect. Interestingly, the 4-color adaptive mechanism throughput is close
to the maximum, despite being adaptive (and thus making some erroneous decisions).

The 4-color nonminimal implementation is relatively close to the performance of
Valiant, despite its route restrictions and the use of one VC less for HoLB, which ex-
plain the lower throughput. The adaptive variant reacts very well to the traffic pattern,
almost reaching the accepted load of its respective oblivious minimal and non-minimal
counterparts. It also accepts more load than the OLM reference for adaptive routing.
However latency is higher than OLM and Valiant especially for adverse traffic; this
comes from worse decisions using source-routing in the 4-color mechanism, compared
to in-transit adaptivity of OLM, which can save intermediate hops when no congestion
is detected (for ADV+1 traffic, one hop in the intermediate group).

Figure 10 shows the performance of 4-color adaptive using different number of vir-
tual channels. As the mechanism does not restrict VCs at all, any number of buffers
can be employed, unlike the fixed requirement imposed by other policies. Furthermore,
there is freedom in the way to use the VCs; in these simulations the VC is selected
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randomly among those available. The HoLB problem is seen to have a great impact
especially when not using VCs (i.e. 1 VC), but the performance with just 2 VCs notice-
ably improves. It is interesting to see that for adversarial traffic the delay increases
with the number of VCs; this is explained by the higher capacity of the network buffers
before the bottleneck, which increases the number of stored packets. When the buffer
count is low, explicit mechanisms could be employed to mitigate the HoLB performance
issues, such as internal router speedup or virtual-output queueing [Tamir and Frazier
1988]. Such mechanisms are widely known and they have not been explored in this
work.

8. 3-LEVEL DRAGONFLIES
While dragonfly networks provide a very competitive scalability, larger networks can
be built if the number of hierarchy levels is increased at the cost of a longer diameter.
Alternatively, very large systems can be built based on moderate-radix routers (such as
the integrated routers discussed in the introduction) if multiple levels are employed.
This section explores the properties of 3-level dragonflies. More levels could be con-
sidered but the analysis would be similar and as we will see, the scalability grows
very quickly with the number of levels, making configurations with more than 3 levels
unlikely.

For 3-level dragonflies, links can be considered as local (l or 1), medium (m or 2) and
global (g or 3). For notation, a 1-level group contains a routers, a 2-level group contains
b 1-level groups and there are c 2-level groups in the whole network. The degree will
be extended to ∆ = ∆1 +∆2 +∆3. Two trunking levels can be considered in this case: t2
will be the number of 2-links between every pair of 1-groups and t3 will be the number
of 3-links between every pair of 2-level groups.

The network average distance can be decomposed as avg = avg1+avg2+avg3. Similar
to the 2D trunked dragonfly studied in Section 5.1, balancing conditions can be derived
from a calculation of the relations between the average distance on each type of link.
It can be defined as α = avg2

avg1
and β = avg3

avg2
. The equations of size and balance (5)

generalize easily:
a∆2 = t2(b− 1) ≈ a(a− 1)α; ab∆3 = t3(c− 1) ≈ t2b(b− 1)β

From which the following expressions of the degrees are obtained:
∆2 ≈ (a− 1)α ≈ ∆1α; ∆3 ≈ (a− 1)αβ ≈ ∆2β

In 3-level dragonflies a medium-link arrangement and a global-link arrangement
can be defined. Any combination could be chosen such as (random, palmtree) or (ran-
dom, random). The definition for the global-link arrangement equals the one in the
2-level case only when t2 = 1, otherwise it needs some adaption.

In this 3-level case, minimal routes are in general lmlglml, thus requiring up to 4
VCs. The classical Valiant [Valiant 1982] (using an intermediate router) duplicates
the route and would need up to 8 VCs. Shortened versions as in [Kim et al. 2008]
can be defined; using an intermediate 1-level group the routes would be lmlglmlml-
glml requiring only 7 VCs; and using as intermediate a 2-level group routes would be
lmlglmlglml requiring only 6 VCs. However only the original Valiant routing makes
traffic completely uniform. This large number of VCs can be reduced by increasing one
or both of the trunking levels, and applying the studied coloring techniques.

Considering two levels, a family of topologies between the Hamming graph and the
dragonflies was built in Section 5 by modifying the parameter t. This is depicted by the
horizontal line on top of Figure 11. With three levels, there are two parameters (t2 and
t3) that can be modified, what extends the design space to a plane, represented in the
lower part of the same Figure. Some of the most remarkable properties of this family of
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t2 = 1
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t2 = a, t3 = ab

3D Hamming
Ka�Ka�Ka

t2 = a, t3 = 1
Cascade-like

t2 = 1, t3 = b

t2 = 1, t3 = 1

3-level canonical
dragonfly

Fig. 11: Classification of 3-level networks. Nodes correspond to extreme cases. Solid
lines correspond to changes in one of the trunking levels. Dotted arrows represent the
increase from two to three dimensions, where a trunking level for the new dimension
must be chosen.

Table IV: Characteristics of the extreme cases (respect to trunking) of 2D and 3D
balanced dragonflies. a, b and c routers per dimension. ∆0 compute nodes per router.
Routers with R ports (radix). Number of compute nodes approximate.
name t2 t3 balancing

conditions
link use
relations

routers compute
nodes

general
route

2-levels ab ab∆0

canonical dragonfly 1 - b = 1 + a(a− 1)/2 α ≈ 1/2 ≈ a3/2 (R4 + 4R3 +
12R2)/26

lgl

Hamming Ka�Ka a - a = b α = 1 a2 (R+ 2)3/33 lg
3-levels abc abc∆0

3-level canonical
dragonfly

1 1 b = 1+a(a−1)/2,
c = 1 + b(b− 1)/2

α ≈ β ≈
1/2

≈ a7/16 R4(R+
2)4/214

lmlglml

Cascade-like a 1 a = b,
c−1 = a2(a−1)/2

α = 1,
β ≈ 1/2

≈ a5/2 (R6+12R5+
54R3)/(2236)

lmglm

— 1 b c− 1 = b− 1 ≈
a(a− 1)/3

α ≈ 1/3,
β = 1

≈ a5/32 R6/(2633) lmlgl

Hamming
Ka�Ka�Ka

a ab a = b = c α = β = 1 a3 (R+ 3)4/28 lmg

networks are presented in Table IV. There are three corner cases which are very rele-
vant, being the first of them the canonical 3-level dragonfly without any trunking. The
opposite case is the 3D Hamming graph Ka�Kb�Kc, which is balanced for a = b = c.
Notably, according to this classification there exists another 3-level corner configura-
tion (using t2 = a) which employs 2D Hamming graphs in the two lower levels, but
no trunking in the highest level. This is equivalent to a 2-level dragonfly in which a
Hamming graph is used for the local group topology, as in Cray Cascade [Faanes et al.
2012]. It is due to the fact that the Hamming graph can be seen as a 2-level drag-
onfly as discussed in Section 5. Interestingly, their design combines route-restriction
and distance-based deadlock-avoidance mechanisms (DOR in the 2D Hamming and
increasing order of VCs otherwise).

The remaining corner case in the design space (the one with no name in Table IV)
employs t3 = b, as many global 3-level links as 2-level groups. With such trunking
and a proper arrangement, a global link leads directly to the destination 1-level group,
shortening minimal routes to lmlgl. This leads to β = 1 and α & 1/3. Larger values
of trunking, up to t3 = ab could shorten paths to lmlg, but this clearly overdimensions
the network.

In a n-level network, up to ∆0 = ∆n compute nodes can be connected per router
with maximum throughput. Larger values ∆0 > ∆n lead to oversubscribed networks
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Fig. 12: Scalability of different network configurations.

and lower values to waste of the network maximum bandwidth. For these concen-
tration values, routers with radix R =

∑n
i=0 ∆i = ∆0 + ∆ are required. Then for 2-

level networks it is obtained R = (a − 1)(1 + 2α) and for 3-level balanced networks
R = (a−1)(1+α+2αβ). Table IV summarizes the maximum number of compute nodes
in a network (abc∆0) for a given router radix R, along with balancing conditions and
minimal routes employed in each case.

Figure 12 depicts the system size for different router radices and trunking levels,
considering 2 and 3 levels. Notice the logarithmic vertical axis. Figure 12a corresponds
to the upper line in Figure 11. The 2D Hamming graph (t = a, diameter k = 2) and
the canonical 2-level dragonfly topology (t = 1, k = 3) are extreme cases. Between them
are multiple alternatives with variable trunking and smaller size than the canonical
dragonfly. As discussed before, trunking is required to build systems smaller than the
maximum achievable size for a given router radix. Figure 12b represents the scalabil-
ity of certain designs in the lower rectangle of Figure 11, scaling from a 3D Hamming
graph (t2 = a, t3 = a2, k = 3) to a Cascade-like Dragonfly topology (t2 = a, t3 = 1, k = 5)
and then to a canonical 3-level Dragonfly without trunking (with diameter k = 7).
These figures clearly highlight two issues: the trade off between diameter, degree and
scale (the d− k problem discussed in the introduction) and the need of global trunking
to build systems that do not reach the maximum size for a given router and diameter,
which can be in the order of millions of nodes.

9. CONCLUSIONS
Hamming graphs and dragonflies have been extensively studied in the technical litera-
ture. However, Hamming graphs have been revisited multiple times without recogniz-
ing its previous existence, whereas the dragonfly topology definition was intentionally
very loose and not completely specified. In this work we have characterized topologi-
cally both networks including their balancing conditions and provided precise defini-
tions for the dragonfly topology. The relation between both graphs has been studied.
With a proper global link arrangement, canonical dragonfly topologies are subgraphs
of Hamming graphs. On the other hand, Hamming graphs can be seen as an extreme
case of a dragonfly network with trunking, showing that both networks are actually
part of the same broader family.
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Based on this classification, the typical deadlock-free DOR mechanism used in Ham-
ming graphs has been adapted to dragonflies with trunking, based on a coloring and
ordering of the network resources. Trunking t = 2 allows for 3-hop paths while trunk-
ing t = 4 allows for 6-hop paths and traffic randomization, in both cases without a
restriction on the number or use of virtual channels in the system. Evaluations show
that performance results are competitive with alternative mechanisms based on VCs,
but they allow for implementations with more VCs to prevent Head-of-Line Blocking
and increased performance, or less VCs to reduce implementation cost. The overall cost
of this routing mechanism can be obviously higher than an equivalent VC-based rout-
ing, because it requires more router ports rather than more VCs. However, in many
cases the required trunking is already employed to build a balanced dragonfly of a
given size or for adding fault tolerance, so it would imply no extra cost. Finally, this
routing would allow to leverage existing 2-level dragonfly router designs to multi-level
dragonflies, thus increasing the maximum achievable system size with the same router
design.
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