
On the Use of Commodity Ethernet Technology in
Exascale HPC Systems
Mariano Benito, Enrique Vallejo, Ramón Beivide

University of Cantabria
Santander, Spain

{mariano.benito, enrique.vallejo, ramon.beivide}@unican.es

Abstract—Exascale systems will require large networks with
hundreds of thousands of endpoints. Ethernet technology is
employed in a significant fraction of the Top500 systems, and will
remain as a cost-effective alternative for HPC interconnection.
However, its current design is not scalable to Exascale systems.
Different solutions have been proposed for scalable Ethernet
fabrics for data center, but not specifically for HPC applications.

This work identifies the major differences in network require-
ments from both environments. Based on them, it studies the
application of Ethernet to Exascale HPC systems, considering
the topology, routing, forwarding table management, and address
assignment, with a focus on performance and power.

Our scalability solution relies on OpenFlow switches to im-
plement hierarchical MAC addressing with the introduction of
compaction mechanisms for TCAM table reduction. To simplify
deployment, a protocol denoted DMP performs automated ad-
dress assignment without interfering with layer-2 service an-
nouncement protocols. An analysis of latency requirements of
HPC applications shows that their communication phases are
very short, making controller-centric adaptive routing unfeasible.
We introduce Conditional OpenFlow rules as an instrument
which allows for adaptive routing with proactive rule instan-
tiation. Routing decisions are taken in the switch depending on
network status, without controller interaction. This mechanism
supports multiple topologies which require minimal or non-
minimal adaptive routing and improve performance and power.

Altogether, this work introduces a realistic and competitive
implementation of a scalable lossless Ethernet network for
Exascale-level HPC environments, considering low-diameter and
low-power topologies such as Flattened Butterflies or Dragonflies,
and allowing for power savings up to 54%.

Index Terms—Exascale HPC; Interconnection Network; SDN

I. INTRODUCTION

Technology evolution has led to a convergence in Data Cen-
ter (DC) and High-Performance Computing (HPC) systems. In
fact, similarly to the introduction of commodity x86 processors
in HPC systems in the 90’s - 2000’s, nowadays a signifi-
cant part of the HPC systems rely on commodity Ethernet
technology. Figure 1 shows the evolution of the system-level
interconnection technology employed by supercomputers in
the Top500 ranking [1]. From its introduction in HPC systems
in the early 2000’s, Ethernet technology has been used in a
significant fraction of the systems.

Ethernet’s large economy of scale [2], the advent of sim-
ple whitebox switches [3] based on merchant silicon, the
possibility of lossless implementations [4], and the ubiquity
of Ethernet NICs in SoCs or motherboards suggests it will
remain as a cost-effective alternative for HPC interconnection.

 0

 100

 200

 300

 400

 500

06/2000

11/2000

06/2001

11/2001

06/2002

11/2002

06/2003

11/2003

06/2004

11/2004

06/2005

11/2005

06/2006

11/2006

06/2007

11/2007

06/2008

11/2008

06/2009

11/2009

06/2010

11/2010

06/2011

11/2011

06/2012

11/2012

06/2013

11/2013

06/2014

11/2014

06/2015
N

u
m

b
e
r 

o
f 

m
a
ch

in
e
s

Publication date

Infiniband Ethernet Other Myrinet

Fig. 1. Number of systems in the Top500 list by interconnection family (plot
in order by current % of total) from 2000’s.

For example, the Mont-Blanc project [5] aims to design an
Exascale-level HPC system based on commodity SoCs used
in embedded systems, leveraging on their low power and high
computing efficiency [6]. Such embedded chips often imple-
ment an Ethernet NIC, and in fact the Mont-Blanc prototype
interconnection relies on commodity Ethernet technology.

However, such simple interconnect design is not scalable to
Exascale systems. The number of computing nodes required
for such system would be very large; with 3 TeraFLOPS
nodes, more than 300,000 of them would be required, clearly
exceeding the capacity of the forwarding tables of any com-
modity switch. Scaling these tables would impact both switch
latency and power consumption; indeed, alternative low-
diameter topologies have been proposed for large-level HPC
systems which help reduce the overall power consumption.

Although several techonologies have emerged to scale Eth-
ernet networks, such as overlay encapsulations or Software
Defined Networking (SDN) solutions based on OpenFlow [7],
they are not necessarily suited for an HPC environment. In
fact, the flexibility and migrability requirements in a DC
differ from the low-latency and high-throughput goals in HPC
systems. Based on an analysis of requirements of HPC appli-
cations, this paper identifies the shortcomings of large-scale
Ethernet deployments and introduces efficient alternatives for
Exascale-level HPC environments. This proposal constitutes
a novel practicable implementation of HPC networks based
on commodity Ethernet switches, including the use of low-



diameter topologies such as Flattened Butterflies [8] (FBs) or
Dragonflies [9] (DFs). In particular, the main contributions of
this paper are the following:

• A comparative study of the different requirements of HPC
and DC networks, highlighting the need for proactive flow
rules and non-minimal adaptive routing.

• An analysis of the suitability of Ethernet scalability mech-
anisms in HPC environments, introducing techniques for
topology-dependant forwarding table compaction.

• The Dynamic MAC Protocol (DMP), a mechanism to
dynamically identify the hosts based on rewritten media
access control (MAC) addresses.

• Conditional Flow Rules for minimal and non-minimal
adaptive routing in OpenFlow-based direct topologies,
which allow to implement low-diameter networks with
up to 54% power savings.

The remainder of this paper is organized as follows. Section II
analyzes the different requirements in HPC and DC envi-
ronments, highlighting power consumption issues. Scalability
solutions for Ethernet networks are discussed in Section III.
Section IV studies the associated service discovery and MAC
address rewriting interferences and introduces a dynamic MAC
address assignment protocol. Multipath adaptive routing in
different topologies considering HPC application traffic is
discussed in Section V. Section VI presents the evaluation
environment and the results of tests and simulations. Finally,
Section VII summarizes the related work and Section VIII
concludes the paper.

II. HPC INTERCONNECTION REQUIREMENTS AND
PROBLEM STATEMENT

Scalable SDN solutions have been proposed for large-
scale DC networks based on commodity OpenFlow Ethernet
switches. However, network requirements and traffic charac-
teristics in an HPC environment differ from those in traditional
DC, making the optimal solutions in one case not so suited
to the other. In particular, the main requirements identified to
differ in HPC from traditional DCs are:

• Low latency is crucial for application performance, mak-
ing controller-based flow instantiation unfeasible.

• The communication stack is not necessarily TCP/IP.
• Topologies other than traditional Folded-Clos have been

proposed specifically for large HPC systems, with a
special focus on both scalability and power saving.

• HPC communication phases are typically shorter.
The next paragraphs analyze these differences and map them
to implications on the underlying network fabric.

Low latency requirements translate into the need of proac-
tive forwarding rules [10] (rather than reactive ones instanti-
ated when a flow begins) to avoid traffic indirections in the
critical path. An SDN controller should learn the network
topology and set the forwarding rules in advance, like the
Subnet Manager in Infiniband [11] networks. Of course,
network flooding due to missing forwarding entries (used in
traditional Ethernet with conversational learning, 802.1D [12])
should be avoided.

HPC alternatives to the TCP/IP communication stack, such
as Open-MX [13] and RDMA over Converged Ethernet [14]
(RoCE), do not employ IP addresses nor TCP ports. This
makes a single layer-2 domain compulsory. A traditional
Ethernet design with flat addressing in an Exascale system
would require CAM forwarding tables with hundreds of thou-
sands of MAC entries. That is impractical with traditional
switch hardware (which typically ranges from 4K to 64K
entries), not only because of table capacity limitations, but
also of power and latency concerns. Models of power con-
sumption of Content-Addressable Memory [15] (CAM) or
Ternary Content-Addressable Memory [16] (TCAM) tables
shows power scales roughly proportionally with table size.
In particular, the main power consumption in TCAMs comes
from its matchline logic, which grows linearly with the number
of entries. The consumption of these tables typically reaches
several tens of Watts [16], [17], being the most hungry
modules besides ports SerDes [18].

DC interconnection networks traditionally rely on some
form of tree or Folded-Clos topology. Implementation costs
and energy consumption restrictions suggest the use of alter-
native, direct topologies with low diameter, such as Flattened
Butterflies or Dragonflies. Compared to Folded-Clos, these
topologies employ a lower number of switches and links for a
given network size, leading to a lower power consumption
in switches logic and link SerDes, and lower installation
cost. However, minimal paths in these topologies are heavily
congestion-prone, requiring non-minimal adaptive routing.

Finally, communication phases are much shorter in HPC
applications than in DC workloads (especially in DC user-
facing applications). This makes controller-based per-flow
traffic engineering (adaptive routing) unfeasible.

III. SCALABILITY MECHANISMS IN ETHERNET NETWORKS

Traditional Ethernet employs flat routing based on the hosts
MAC addresses. Switches’ CAM forwarding tables employ an
entry for each endpoint in the network. Conversational MAC
address learning in traditional Ethernet switches [12] fills these
tables dynamically when network conversations start, avoiding
entries for destinations without communication. However, this
reactive mechanism implies that frames destined to unknown
entries are flooded across the whole network to make sure
they reach their destination. Indeed, the major disadvantage
of a flat addressing is the required size of the switches’ MAC
address table; when it overflows, traffic to MACs in excess
are flooded as if they were unknown destinations.

Overlay mechanisms have been proposed to build large
layer-2 fabrics. TRILL [19] and FabricPath [20] employ MAC-
in-MAC encapsulations to reduce the forwarding table use.
In these hierarchical implementations, ingress switches encap-
sulate the original Ethernet frame in a new frame using the
destination switch ID for the destination MAC field; egress
switches remove the outer header to recover the original frame.
Switches in the core of these networks only need to hold CAM
entries for the network switches, not the network hosts. By
contrast, access switches still require an entry for each host



MAC address: 46 bits (plus 2 reserved bits)

Per-group addressing (3-level hierarchy):

Per-switch addressing (2-level hierarchy):

hostID (46 bits)

Per-switch addressing (2-level hierarchy):

hostID (8 bits)switchID (38 bits)

groupID (18 bits) switchID (20 bits) hostID (8 bits)

Fig. 2. Hierarchical addressing alternatives.

involved in a conversation. This could explode to the whole
network size in the worst case. Conversational learning is also
employed by default in these proposals, what implies that
unknown (or overflown) entries are flooded. VXLAN [21],
which is a MAC-over-UDP/IP overlay encapsulation, also
relies on conversational learning and does not reduce the
maximum size of access switch tables.

The previous approaches rely on searches on CAM tables
for a match of the complete MAC address. By contrast,
OpenFlow switches employ TCAM tables allowing for partial
matches and hierarchical MAC organizations. PortLand [22]
and MOOSE [23] introduce layer-2 hierarchical routing, by
organizing hosts in groups sharing a common MAC prefix
and setting a single routing rule for all hosts in the same
destination group. A unique pseudo-MAC (PMAC) address
is assigned to each host, encoding its location in the network.
Access switches dynamically modify the MAC field of the
frames received from or sent to its own nodes (MAC to PMAC
and PMAC to MAC), so the network only detects PMACs and
destination hosts maintain the illusion of unmodified MAC.

Our scalability solution will rely on hierarchical MAC
addresses, since they require a limited number of proactive
forwarding rules and do not flood traffic. The number of flow
entries depends on the definition of groups. Subsection III-A
analyzes the rules required for different address hierarchies
and topologies, and Subsection III-B studies rule compaction.

A. Scalability analysis of hierarchical addressing

The minimum size for an address block corresponds to the
set of hosts connected to the same switch (similar to TRILL
and FabricPath), because smaller partitions do not provide any
reduction in rules. In addition, larger groups can be formed by
addressing several switches with a common group prefix, and
forwarding traffic according to such group prefix. This three-
level hierarchy (host, switch and group) reduces the number of
flow rules because a single rule is required for remote groups.
Figure 2 depicts these options; the specific number of bits of
each field may vary according to the controller policy.

The number of flow rules required is discussed next, using
the following notation: G is the number of groups (G = 1 for a
two-level hierarchy); S is the number of access switches (with
directly-connected hosts) per group; and T is the number of
hosts on each access switch. The number of rules R required
in each access switch is:

R = (G− 1) + (S − 1) + T (1)

TABLE I
NUMBER OF PORTS DEDICATED TO HOSTS AND NETWORK SCALABILITY

IN DIFFERENT TOPOLOGIES, USING SWITCHES WITH P PORTS.

Topology
Hosts per

access
switch, T

Hosts per
network
switch

Scalability
(max hosts, H)

3-Level Folded-Clos ≈ P/2 ≈ P/5 P 3/4

2D Flattened Butterfly ≈ P/3 ≈ P/3 ≈ (P/3)3

3D Flattened Butterfly ≈ P/4 ≈ P/4 ≈ (P/4)4

Dragonfly ≈ P/4 ≈ P/4 ≈ 4× (P/4)4

4D Flattened Butterfly ≈ P/5 ≈ P/5 ≈ (P/5)5

The network size will be determined by the topology and
switch size. The proportion of switch ports used to connect
hosts depends on the topology. Table I represents this value for
several topologies: 3-level Folded-Clos, Flattened Butterflies
and Dragonflies. Folded-Clos are indirect topologies with
transit switches to which no host directly connects, so the
overall proportion of host ports in the network is lower than
in access switches. Flattened Butterflies and Dragonflies are
recent direct topologies which are used in commercial HPC
systems. Since direct topologies do not have transit switches,
the proportion is the same in both cases. The values of the
table roughly determine the number T of hosts on each switch,
for a given switch size. The number of hosts is given by
H = G× S × T , with G = 1 for the two-level hierarchy.

The minimum number of entries for a given size is obtained
in Equation 1 with G ≈ S. However, the number of switches
assigned to each group might depend on the network topology;
Figure 3 represents the three topologies considered. In the
three-level Folded-Clos in Figure 3a, nodes are organized in
several ‘pods’ which are connected via core switches with
twice as many ‘pods’ as access switches per pod. Its natural
division is one group per ‘pod’. The 2D FB in Figure 3b has
as many rows as columns, with an all-to-all connection per
row and column. Matching a row to a group leaves S = G.
With more dimensions, the same assignment of one group per
row leaves G > S. Finally, the DF topology in Figure 3c is
naturally organized in groups, but their amount is significantly
larger than the number of switches per group.

Considering this organization, Figure 4 depicts the number
of flow rules required to support a given topology and size,
considering both flat, 2-level and 3-level hierarchical ad-
dress organizations. ‘Flat addressing’ represents the traditional
CAM-based implementation with one entry per host and it
is included for comparison. The scalability (number of hosts
in the horizontal axis) only depends on the switch size and
topology; the number of flow rules (vertical axis) also depends
on the use of per-switch or per-group addressing.

The size of TCAM tables in commodity Ethernet switches
usually ranges from 4K to 32K entries [24]. As observed in
the plot, using 3-level hierarchical addressing and DF or 3D
FB, it is possible to reach more than the 300,000 estimated
hosts for future Exascale HPC systems using a layer-2 network
fabric requiring less than 4K rules.



Host A MAC: 
:::: :00010100

Host B MAC:
:::: :01110111

Host C MAC:
:::: :10010100

Host D MAC:
:::: :11110111

Group 0

(a) 3 level Folded-Clos with k=4 ports
routers. Only one ‘pod’ is shown, the
third upper level and the rest of pods
are omitted for simplicity.

Group 2

Group 0

Group 1

SW 0

(b) 2D Flattened Butterfly highlight-
ing one switch and their links. Each
row corresponds to a group.

G1

Group 0

G2 G7 G8G3 G4 G5 G6

SW 0

(c) Dragonfly with 9 groups, G0−G8. Only group G0 is detailed.

Fig. 3. Different topologies being considered.

B. Scalability analysis with TCAM rules compaction

This subsection explores the use of wildcards for table
compaction for the three previous topologies. Equation 1
considered one flow rule for each possible destination (host,
switch or group). However, when several destinations share
the same output link, they might be merged into a single rule
depending on their addresses.

The minimum number of TCAM entries in a switch equals
its port count, since at least one entry is required to output
frames on each port. This lower bound is reached naturally in
the 2D FB topology with per-group addressing. This occurs
because each switch is directly linked to its own T endhosts,
the (S−1) other switches in its own group (different columns)
and the remaining (G − 1) groups (different rows) without
overlap. This is highlighted in Figure 3b for switch ‘SW 0’.
For three or more dimensions, a similar reduction is feasible,
by simply assigning the switch location coordinates (X,Y, Z)
to different sub-fields in the header as presented in Figure 5
and using wildcards in the corresponding sub-fields. Thus, a
FB of any dimension can reach the minimum number of rules.

Figure 3a presents an excerpt of a Folded-Clos, showing
one ‘pod’ and the uplinks to core routers (level three of the
network). Routing in the Folded-Clos is up-down. The uplink
followed to core routers is independent of the destination, since
all core routers are ancestors of all pods (the same applies to
neighbor switches in the pod). Thus, a hash of the source
fields can be used for static balancing of the uplinks, as in the
example presented in the figure. Again this leads to a number
of rules equal to the switch ports.

On the contrary, in the DF topology it is not possible to

4
8

16
32
64

128
256
512
1K
2K
4K
8K

16K
32K
64K

162K

1K 4K 10K 25K 100K 300K 1M 4M 10  100

T
C

A
M

 e
n
tr

ie
s 

(R
)

Network endpoints with full bisection bandwidth (H)

Fla
t a

ddressi
ng

3L Folded-Clos Per-Switch
Dragonfly Per-Switch

2D Flattened Butterfly Per-Switch
3D Flattened Butterfly Per-Switch
4D Flattened Butterfly Per-Switch

3L Folded-Clos Per-Group
Dragonfly Per-Group

2D Flattened Butterfly Per-Group
3D Flattened Butterfly Per-Group
4D Flattened Butterfly Per-Group

Fig. 4. Number of TCAM entries required for varying network size and
topology, using per-switch or per-group addressing. The points correspond to
the maximum network size using switches with 8, 16, 24, 48 or 96 ports.

groupID switchID hostID

3D Flattened Butterfly addressing:

Generic per-group addressing (3-level hierarchy):

X switch coordinate hostIDZ switch coord. Y switch coord.

Fig. 5. Hierarchical addressing in 3D Flattened Butterflies considering
forwarding rule compaction.

reduce the number of rules to the number of switch ports.
To illustrate it, consider the leftmost switch in Group 0 in
Figure 3c. It requires one rule for each of its T hosts, one
rule for each of the S − 1 direct neighbours in the group,
and one rule for each directly connected remote group, which
equals the port count. However, it also requires additional rules
to reach the groups connected to other switches in its group.
At least, this would imply S − 1 additional rules if all the
rules associated to a given output port could be compacted.
However, in the general case this is not possible because the
addresses of the remote groups are not necessarily aligned, as
in the example in the cited figure: using wildcards to compact
rules for remote groups 1 and 2 would also match group 3.

Figure 6 shows the number of rules for the topologies
considered. In the case of the DF, the maximum and minimum
number of rules is presented; the actual number will be in-
between and will vary from switch to switch. In the other
cases, the lower limit is reached. Even in the worst case of
the DF with more than 1 million nodes, the number of rules
is relatively low and fits in existent OpenFlow switches.

IV. SERVICE ANNOUNCEMENT AND MAC ADDRESS
REWRITING

This section identifies a problem generated by dynamic
rewriting of MAC addresses and introduces an alternative
mechanism to automate host MAC configuration. The scala-
bility solution in Section III requires rewriting MAC addresses
to include location information. Previous proposals implement
dynamic rewriting of the frame headers in access switches



4

8

16

32

64

128

256

512

1.2K

1K 4K 10K 25K 100K 300K 1M 4M 10  100

T
C

A
M

 e
n
tr

ie
s 

(R
)

Network endpoints with full bisection bandwidth (H)

3L Folded-Clos (compact)
Dragonfly (no compaction)

Dragonfly (lower  bound)

2D Flattened Butterfly (compact)
3D Flattened Butterfly (compact)
4D Flattened Butterfly (compact)

Fig. 6. Number of TCAM entries after compaction. The points correspond
to the maximum network size using switches with 8, 16, 24, 48 or 96 ports.

T
im

e

HOST A BOOTS

DMP CHANGE HOST 
MAC TO: 

02:00:00:01:00:01

DPM Query
Ethertype = 0x88b5

MAC_SRC = 00:22:04:77:14:4E
MAC_DST = 00:22:04:77:14:4E

HOST B BOOTS

DPM Response
Ethertype = 0x88b5

MAC_SRC = 02:00:00:01:00:02
MAC_DST = 00:22:04:77:14:4E DMP CHANGE HOST 

MAC TO: 
02:00:00:01:00:02

HOST A
MAC: 00:20:12:77:14:4E

port=1

HOST B
MAC: 00:22:04:77:14:4E

SwitchID
02:00:00:01:00

port=2

DPM Query
Ethertype = 0x88b5

MAC_SRC = 00:20:12:77:14:4E
MAC_DST = 00:20:12:77:14:4E

DPM Response
Ethertype = 0x88b5

MAC_SRC = 02:00:00:01:00:01
MAC_DST = 00:20:12:77:14:4E

Fig. 7. Sequence of packets when two hosts boot using DMP.

[22], [23]. However, this interferes with layer-2 service an-
nouncement mechanisms, used for example in Open-MX.

Distributed discovery mechanisms rely on requests from
the service users (such as ARP for IP-to-MAC mapping)
or announcements from the service provider (e.g. Open-MX
computing nodes announcing their availability). In the first
case, requests can be intercepted by the access switches and
derived to a central fabric manager, as done in PortLand [22]
and SEATTLE [25] to attend ARP requests. In the second
case, by contrast, broadcast and multicast messages announce
the service to all nodes so a similar centralized solution is
not feasible. Furthermore, MAC rewriting interferes with these
announcements. In fact, Open-MX announcements include
the source node MAC address in the data field, so receivers
of this frame record the original, unmodified address and
communication never happens.

Two alternative solutions are introduced next. The first
one modifies the service discovery protocol, with receivers
recording the MAC address in the announcement frame header,
rather than the data field. This is compatible with on-the-fly
address rewriting and is possible in Open-MX because it is
open-source, but it might be unfeasible with proprietary stacks.

The second alternative modifies the MAC address in the
hosts configuration, rather than modifying it in the frame
headers. Since individually modifying each host’s address is
unfeasible with hundreds of thousands of nodes, a control
protocol has been designed to automatically configure the host

MAC at boot time. This protocol has been denoted Dynamic
MAC Protocol (DMP) and is depicted in Figure 7. When a host
boots, it asks for a MAC address by sending a DMP request
using a specific EtherType value. Its own switch identifies this
query and sends the frame back, overwriting the source address
field with the new hierarchical MAC address, as discussed in
Section III. One rule per connected host is required in addition
to the routing rules discussed in the previous section. This
approach does not restrict the use of the host MAC address in
the announcement payload nor the use of hierarchical routing.

Both alternatives have been implemented and verified in a
computer using Open vSwitch and 4 virtual machines. In these
tests OpenFlow 1.0.0 [26] has been used with the optional
feature “Modify-Field” to change the header MAC field. The
EtherType value 0x88b5 reserved for experimental purposes
has been used on DMP packets in the tests.

V. MULTIPATH ADAPTIVE ROUTING

This section explores adaptive routing in Ethernet networks.
Oblivious multipath routing employs a fixed function for
load balancing, typically a hash of some header fields. Such
approach is used in traditional link aggregation (LAG) or
equal-cost multipath (ECMP) routing. Its disadvantage is that
the paths might receive a different load, leading to subop-
timal throughput. By contrast, adaptive routing dynamically
balances the load of each path. An adaptive routing imple-
mentation is more complex since it requires an estimation of
the network load and instantiating additional routing entries.

An initial analysis in subsection V-A will conclude that
per-flow load estimation latency is too large for typical HPC
applications. Section V-B introduces conditional OpenFlow
rules triggered by flow-control messages. This is applied to
both ECMP in subsection V-C and to non-minimal routing in
subsection V-D. A discussion is presented in subsection V-E.

A. Latency requirements for adaptive routing in HPC and
controller-based estimation of per-flow offered load

Several traces of applications from the NAS Parallel Bench-
marks [27] have been analyzed, from runs with 64 MPI
processes using 64 nodes of a cluster. Figure 8 shows a
visualization of four iterations of the CG kernel. Blue sections
represent computation phases, orange sections represent com-
munication ones and yellow lines are point-to-point messages.
Four iterations of the algorithm last 6.48 ms (the timescale is
indicated in the bottom of the figure in small font), resulting
in changes of traffic in less than 2 ms. A similar visual
analysis of other benchmark applications gives rise to the
values in Table II. Iterations range from 2 to 58 ms, meaning
that traffic changes are even quicker. By contrast, typical DC
applications can suffer from congestion periods lasting for
several seconds [28].

Several mechanisms rely on controller-based estimations of
per-flow offered load in order to adapt routing [29]–[31]. How-
ever, their reaction time exceeds 70 ms in the best case, due
to monitoring intervals and remote controller communication.
Planck [32] captures traffic samples to react in the order of



Fig. 8. Visualization of CG using 64 MPI processes. The timeframe shown
comprises 6.48 ms for 4 iterations.

TABLE II
APPROXIMATE ITERATION TIME OF NPB APPLICATIONS.

Application/kernel Iteration time

CG 1.6 ms
BT 29 ms
FT 58 ms
IS 10 ms
LU 52 ms
MG 11 ms
SP 22 ms

Port1PAUSE

PAUSE

PAUSE

PAUSE

PAUSE

mac dst=host A
mac dst=host B

mac dst=group1
mac dst=group2
mac dst=group3
mac dst=group4
mac dst=group5
mac dst=group6
mac dst=group7
mac dst=group8

in_port=1
in_port=2

P3Pause=F
P4Pause=F
P5Pause=F
P5Pause=F
P6Pause=F
P6Pause=F
P7Pause=F
P7Pause=F

High
High

High
High
High
High
High
High
High
High

Low
Low

Match pattern Condition Priority
TCAM Table - Forwarding

outport=1
outport=2

output=3
output=4
output=5
output=5
output=6
output=6
output=7
output=7

output=3
output=4

Action

Port2

Port3

Port4

Port5

Port6PAUSE

Port7PAUSE

Switch 0 – Group 0

Host A

Host B

G1

G2

Switch 1

Switch 2

Switch 3

Fig. 9. Switch architecture with conditional flow rules. When the condition
fails (when the output port is paused) the high-priority minimal routing rule
is ignored, leading to the use of a low-priority rule.

few milliseconds. However, it requires a significant monitoring
infrastructure and relies on TCP sequence numbers to estimate
flow rates, making it specific for traditional DC environments.
As far as we know, no other monitoring mechanisms achieve
reaction times similar to Planck, making controller-centric
traffic engineering unfeasible in HPC environments. Therefore,
reactive flow rules instantiated by the controller are not well
suited to adapt switch routing to changing HPC traffic.

B. Proactive conditional OpenFlow rules

To solve the aforementioned problem, we propose the idea
of conditional flow rules. These rules are proactively instan-
tiated by the controller, and they are deactivated locally by
the switch on network events, such as link-level flow control
pauses. Using this idea, traffic is diverted to alternative paths
when a preferred one gets blocked due to congestion.

Figure 9 depicts the idea of conditional flow rules with the
required changes to the flow table. Besides ordinary rules, the
system relies on two sets of rules, default and alternative, with

different priority. Both ordinary and default rules correspond
to the ones determined in Section III for hierarchical routing,
and have high priority. Default rules are conditional, dependant
on the pause status of their associated output port (highlighted
in the figure). Alternative rules employ lower priority. Com-
monly, both default rules and their corresponding alternative
backup rules match for a given frame, but default rules are
used because of their higher priority. However, when a given
output port receives a PAUSE, the corresponding default rules
are deactivated, so alternative rules start to be used, diverting
traffic.

With this proposal, default paths are used until their queues
become completely full. Both default and alternative rules are
proactively instantiated by the controller after topology discov-
ery. Their application for minimal or non-minimal multipath
routing is discussed in the next subsections.

C. Conditional OpenFlow rules for minimal routing

Conditional OpenFlow rules can be applied to topologies
with multiple minimal paths by assigning a default rule to
each of the default paths, and one or more alternative rules
(for each alternative minimal path, with different levels of low
priority) to paths already assigned to other default rules.

In the case of the Folded-Clos with compact routing rules,
one default rule is assigned to each uplink using per-source
hashing (per-destination hashing is equally possible). Up to k−
1 additional alternative rules can be assigned to the same per-
source hash, for the k − 1 remaining uplinks. This multiplies
the number of uplink rules in a factor up to k.

In N -dimensional FBs there exist up to N potential outputs
for a given destination, for the N options for the first hop.
Interestingly, in this case multipath routing can be imple-
mented without increasing the number of rules with respect to
the compact case. Higher-level rules (e.g., to reach a remote
group) will be conditional with high priority, while lower-level
rules (e.g., destination switch index) will have low priority and
employ wildcards on the group bits.

D. Conditional OpenFlow rules for non-minimal routing

Several direct topologies proposed for HPC environments
can suffer heavy congestion under adversarial traffic patterns.
In a DF, when all the nodes in a group communicate with
nodes in another group, the global link between them needs
to pass all the traffic and quickly saturates. Since there is
no path diversity in a Dragonfly, the options introduced in
the previous subsection do not apply. The same occurs in
a FB using Dimension-Ordered Routing when all end hosts
connected to a switch send traffic to the same destination
switch. In such cases, non-minimal routing can balance traffic
by using longer paths. Valiant routing [33] selects a random
intermediate switch in the network, sends traffic to this switch
and then to the final destination. Adaptive non-minimal routing
mechanisms select between minimal or Valiant routing in these
networks [8], [9], [34].
Non-minimal routing using conditional OpenFlow rules relies
on diverting traffic to a given intermediate destination when



G1

Group 0

G2 G7 G8G3 G4 G5 G6

Host A Host B

Non-minimal path from Host A
Non-minimal path from Host B

          Minimal path to Group 5

(a) Dragonfly

Group 2

Group 0

Group 1

SW 2

Host B

Host A

Host C

Minimal path 
to Switch 2

Non-minimal 
path from 

Host A

Non-minimal 
path from 

Host B and C

(b) Flattened Butterfly

Fig. 10. Non-minimal routing in a Dragonfly (a) and Flattened Butterfly (b)
networks using conditional OpenFlow rules.

the corresponding minimal path is congested. The intermediate
destination cannot be selected randomly without intervention
from the controller, so a given Valiant intermediate switch will
be statically assigned to each source node.

Figure 10a shows the application of conditional non-
minimal routing to DFs. In this topology, global links are the
most congestion-prone ones. Each switch will employ several
high-priority rules for minimal routing as discussed in Section
III-B. Of these, rules for remote groups will be conditional.
T additional low-priority rules are included to forward traffic
from injection ports to remote groups (note that the input port
can be checked in OpenFlow rules). When the conditional
minimal rule is deactivated, these additional rules forward
traffic directly to global links, towards a remote intermediate
group. From that point, minimal routing is employed. Since a
balanced DF has as many end hosts per switch (T ) as global
ports [9], one non-minimal output can be assigned to each
endhost, effectively balancing traffic. This mechanism requires
T additional rules.

The application to FBs is similar, as depicted in Figure 10b.
In this case, each switch is connected to S− 1 remote groups
but there are T = S hosts per switch to archive a balanced
design [8], so one of the hosts will not have a non-minimal
path assigned (or one of them will be repeated).

E. Discussion

The use of topologies with cycles together with lossless
link-level flow control introduces deadlock issues in the net-
work, which need to be handled in pair with routing. For
Folded-Clos, simple Up-Down routing avoids deadlock issues.
Several custom proposals for HPC rely on multiple Virtual
Channels (VCs) traversed in ascending order, based on a

previous work [35]. In particular, N VCs are required for fully
adaptive routing in N−dimensional FBs (typically N = 2 or
N = 3) and just 3 VCs are required for DFs (which can
be reduced to 2 in our adaptive implementation, since there
are at most 2 local hops and 2 global hops). These VCs can
be mapped directly to two different Ethernet Class-of-Service
(CoS) levels and different switch buffers, leaving enough CoS
levels to differentiate other types of traffic. CoS updates can
be embedded in existent OpenFlow rules.

The proposed adaptive routing decision relies on snooping
flow control messages. Alternative implementations might rely
on explicit congestion notifications, such as in IEEE 802.1Qau.

Adaptive routing mechanisms can increase traffic through-
put at the cost of out-of-order delivery. It is the responsibility
of the transport protocol to detect and reorder network traffic
in such cases. We do not focus on such protocols in this paper.

The use of a statically pre-selected Valiant path differs from
the original random definition. Additional non-minimal paths
(with varying levels of low priority) can be included, at the
cost of an increased number of rules.

VI. EVALUATION

This section evaluates the network power consumption for
different topologies and TCAM organizations and evaluates
the performance of conditional Openflow rules.

A. Topology power comparison

We compare the power consumption of the three topolo-
gies analyzed across the paper (Folded-Clos, FB, DF). We
consider a network supporting ≈ 300, 000 hosts with full
bisection bandwidth, built using 72 port Ethernet switches.
Power calculations consider 40 Gbps ports and worst-case 64-
byte packets. The energy required for reading and writing
a 64-byte packet from the buffer memories is 4.5048 nJ
and 4.4993 nJ respectively, following the calculations in a
previous work [18]. Optical ports consume ≈ 0.6 Watts (4
lanes of 150 mW each) and the electrical ones, used to connect
hosts in access switches, 20% less [36]. A fixed value of
30 Watts has been considered for the CPU and logic. The
power consumption for OpenFlow 1.5 TCAMs (which can
match more than 1,000 header bits) are modeled with the tool
presented in [16] considering 32 nm CMOS technology.

The number of switches differs per topology. In Folded-
Clos a 4-stage topology is required for the desired size. The
design relies on basic ‘pods’ with 36 switches in the first and
second levels and 1,296 hosts. 1,296 stage-3 switches connect
36 ‘pods’ in a stage-3 group, which is replicated 6.5 times to
reach 29,484 switches and 303,264 hosts. The FB requires 4
dimensions, with switches organized in a 15 × 15 × 15 × 6
array to reach 20,250 switches and 303,750 hosts. Finally,
the DF employs 463 groups of 36 switches and 648 hosts,
leading to 16,668 switches and 300,024 hosts. These networks
do not reach the maximum size of each topology; in all cases,
additional links in spare switch ports are considered to provide
full bisection bandwidth.



 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

CAM
-Flat

TCAM
-Flat

Per-Switch

Per-Group

Com
pact

CAM
-Flat

TCAM
-Flat

Per-Switch

Per-Group

Com
pact

CAM
-Flat

TCAM
-Flat

Per-Switch

Per-Group

Com
pact

  
  
  
Po

w
e
r 

co
n
su

m
p
ti

o
n
 (

M
W

a
tt

s)

Optical SerDes Electrical SerDes Port Buffers

DragonflyFlattened ButterflyFolded-Clos

~ 34,6 23,7 19,3
CPU & Logic              TCAM

Fig. 11. Network power consumption dissection.

TABLE III
SIMULATION PARAMETERS.

Parameter Value

Topology Dragonfly
Switch port count 31 ports

Link speed 40 Gbps
Packet size 1,000 bytes

Switch frequency 1 GHz
Switch latency 200 ns

Local/Global link latency 40/400 ns (8/80 m)
CoS levels used (deadlock avoidance) 2

Switches per group 16 switches
Groups 129 groups

Total end hosts 16,512 hosts

Both CAM and the four TCAM organizations from Section III
are compared: ‘flat’ represents a traditional Ethernet with per-
host addressing, ‘Per-Switch’ and ‘Per-Group’ are 2-level and
3-level hierarchical routing respectively. In the Folded-Clos,
the 3-level organization considers a ‘pod’ to share a common
group prefix. In FB, a group is the set of routers in the first
dimension whereas in the DF, each group is mapped to a DF
group. Finally ‘Compact’ is the TCAM compaction presented
in Section III-B.

Figure 11 presents power results. In all topologies, the use of
flat addressing with TCAMs is clearly unfeasible, since these
huge tables would consume more than 900 W per switch and
at least 15 MW overall. Per-switch addressing reduces these
values to be competitive with the original CAM approach,
but the overall consumption ranges around a MW. Per-group
addressing significantly reduces TCAM power, getting very
close to the optimal solution based on compaction. Once
TCAM power is minimized, the impact of topology (which
determines the number of switches) is what drives power
consumption. The DF topology, besides not being able to
fully compact TCAM flow entries, offers the best result. The
TCAM-compact DF setup reduces 54.1% of the original power
in the reference CAM-flat Folded-Clos, 17.0% from TCAM
compaction and 37.1% from topology changes.

B. Conditional OpenFlow performance

We employ the FOGSim network simulator [37] to evalu-
ate the performance of non-minimal adaptive routing using

 1.5

 2

 2.5

 3

 3.5

 10  20  30  40  50  60  70  80

A
ve

ra
g
e
 p

a
ck

e
t 

la
te

n
cy

 (
u
s)

Offered load (%)

Conditional OpenFlow
Per-packet adaptive (Piggyback)

Minimal routing
Per-packet Valiant

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70 80

A
v
e
ra

g
e
 p

a
ck

e
t 

la
te

n
cy

 (
u
s)

Offered load (%)

(a) Uniform traffic

2

2.5

3

3.5

4

4.5

5

10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 p

a
ck

e
t 

la
te

n
cy

 (
u
s)

Offered load (%)

(b) Adversarial traffic

Fig. 12. Average latency under uniform (a) and adversarial (b).

conditional OpenFlow rules in a power-efficient Dragonfly
network. The simulated network corresponds to the parameters
in Table III. The simulator mimics the behaviour of conditional
OpenFlow rules as described in Subsection V-B. We feed
the network with synthetic traffic, with each node injecting
frames according to a Bernoulli process with variable load.
Two traffic patterns have been considered: Uniform (UN),
in which the destination of each frame is any host in the
network, and Adversarial (ADV), in which the destination of
each frame is selected randomly between all nodes in the
next group. ADV is a traffic pattern which concentrates the
traffic on the single global link between two groups, so non-
minimal routing is required to obtain a proper result. We use
the adaptive piggyback (PB) routing mechanism [34] as a
reference; it implements per-packet adaptive routing relying
on state information for every global channel in its group
distributed among switches. Additionally, Minimal (MIN) and
Valiant (VAL) routing are the oblivious reference routing for
UN and ADV respectively.

Figure 12 shows average latency results. Under UN, Con-
ditional OpenFlow rules latency resembles the reference MIN
routing, since traffic distribution does not generate congestion
which triggers non-minimal routing. In PB part of the traffic is
sent non-minimally which increases latency. In contrast, under
ADV, OpenFlow average latency under small loads is larger
than VAL. This occurs because Conditional OpenFlow rules
rely on flow-level pauses, which implies that minimal paths
need to be saturated for non-minimal routing to occur. The
amount of traffic routed minimally experiences larger conges-
tion and increases average latency. Still, the average latency of
the proposed Conditional OpenFlow mechanism is competitive
against optimized custom HPC routing alternatives.

VII. RELATED WORK

This paper is focused on commodity Ethernet technology.
An alternative vendor-independent interconnection technology
frequent in HPC is Infiniband [11]. Infiniband switches provide
low-latency lossless interconnection, with paths defined by
a central ‘Subnet Manager’ analogously to OpenFlow con-
trollers. Infiniband subnetworks are limited to 48K endpoints
because logical addresses are 16 bits (with one fourth of the
address space reserved for multicast), but they have no other



inherent scalability limitations. A study of adaptive routing
strategies in Infiniband networks can be found in [38].

Section III has already discussed alternative mechanisms to
achieve scalability with commodity Ethernet switches, such
as VXLAN encapsulation [21] or layer-2 multipath overlays
such as SPB [39] , TRILL [19] and vendor variants such
as Brocade’s VCS [40] or Cisco’s FabricPath [20]. These
mechanisms still require to maintain large CAM tables with
as many entries as hosts in the network (in access switches),
and the required encapsulation can hinder path latency.

Adaptive routing has been considered in Section V. Pro-
posals that employ adaptive routing using SDN include Hed-
era [29], ElasticTree [41] or MicroTE [42]. All these proposals
rely on per-flow load estimation, with an excessive latency for
HPC applications as discussed in Section V. A more detailed
discussion on large flow recognition is presented in [43],
considering several alternatives based on packet sampling or
inline datapath measurement. By contrast, HPC implementa-
tions which support packet-by-packet adaptive routing have
been implemented in or proposed for multiple topologies,
such as Folded Clos [44], Flattened Butterflies [8], Dragon-
flies [9] or SlimFlies [45]. Their selection between minimal or
Valiant (non-minimal) paths typically relies on a comparison
between the credits of both outputs, which is not available
in Ethernet switches relying on pause flow control. Addition-
ally, such packet-by-packet adaptive routing is typically not
supported in commodity Ethernet switches since it permits
packet reordering which significantly interferes with TCP fast
retransmit [46]. Minkenberg et al. introduced in [47] the use of
multiple forwarding rules in DC bridges with flat addressing,
snooping congestion notification messages to switch among
them. Snooping congestion instead of flow control notifications
to prioritize OpenFlow conditional rules might help improve
performance under adversarial conditions; a detailed study is
left for future work.

Conditional OpenFlow rules were introduced in a different
context in AVANT-GUARD [48]. Their conditional flow rules
are triggered when a potential attack is discovered to enforce
the security policy. The proposed switch datapath is similar in
both cases, but our proposal needs to detect alternative triggers
such as Pause frames. We relied on multiple CoS levels with
conditional OpenFlow rules to avoid deadlock. Alternative
mechanisms rely on path restrictions, such as TCP-Bolt [49].

The power consumption of TCAM has been discussed in
Section III and table size minimization has been considered
across all the paper. Congdon et al dissect the power con-
sumption of an OpenFlow switch in [18], but they do not
consider the impact of the network topology. The impact of
topology has been considered in Energy-proportional datacen-
ter networks [36] that dynamically reduce link speed to adapt
to traffic load. However, they do not consider the impact of
forwarding table organization. An implementation for HPC
which relies on low-power Ethernet was presented in [50].
Similarly, ElasticTree [41] completely shuts down links and
modifies routing to save link power.

VIII. CONCLUSIONS

In this paper we have identified the requirements of HPC
interconnection networks compared to traditional Data Center
networks. We have explored proposals designed for scalable
DC networks using commodity switches in Exascale-level
HPC interconnects. Our results suggest that most of the
proposals do not properly apply to HPC systems, such as
network overlay technologies (VXLAN, TRILL) which require
large switch tables relying on flooding; online MAC rewriting
mechanisms which interfere with layer-2 service announce-
ment; or fine-grained per-flow load balancing mechanisms.

By contrast, our proposal relies on hierarchical rout-
ing based on location-dependent MAC addresses, TCAM
rules compaction, a dynamic mechanism to assign location-
dependent MAC addresses to hosts and conditional OpenFlow
rules for adaptive routing. The implementation is realistic and
requires minimal changes in OpenFlow switches. This set
of mechanisms permit the implementation of low-power net-
works based on Dragonflies and Flattened Butterflies topolo-
gies using commodity Ethernet switches. Our evaluations show
that performance is optimal under uniform traffic and remains
competitive against ad-hoc HPC routing mechanisms under
adversarial traffic, while providing energy savings up to 54%.

ACKNOWLEDGMENTS

This work has been supported by the Spanish Ministry of
Education, FPU grant FPU14/02253, the Spanish Science and
Technology Commission (CICYT) under contract TIN2013-
46957-C2-2-P, the European Union under Agreement DP7-
ICT-2011-288777 (Mont-Blanc 1) and DP7-ICT-2013-610402
(Mont-Blanc 2), and the JSA no. 2013-119 as part of the
IBM/BSC Technology Center for Supercomputing agreement.
The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions to improve the
quality of the paper and Alejandro Rico for their comments
on a draft of the manuscript.

REFERENCES

[1] “Top500 supercomputer ranking,” 2015. [Online]. Available: http:
//www.top500.org/

[2] B. Casemore, L. Rosenberg, R. Brothers, R. Costello, R. Mehra,
P. Jirovsky, and N. Greene, “Worldwide enterprise communications and
datacenter networks 2014: Top 10 predictions,” IDC report, 2014.

[3] Open Compute Project Community, “Open compute project net-
work specifications and designs,” http://www.opencompute.org/wiki/
Networking/SpecsAndDesigns, 2015.

[4] IEEE Standard for Local and metropolitan area networks–Media Access
Control (MAC) Bridges and Virtual Bridged Local Area Networks–
Amendment 17: Priority-based Flow Control, 802.1Qbb, IEEE Std.,
2011.

[5] “Montblanc european approach towards energy efficient high
performance.” [Online]. Available: http://www.montblanc-project.eu/

[6] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez,
and M. Valero, “Supercomputing with commodity CPUs: Are mobile
SoCs ready for HPC?” in Intl. Conf. on High Performance Computing,
Networking, Storage and Analysis (SC). ACM, 2013, pp. 40:1–40:12.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

http://www.top500.org/
http://www.top500.org/
http://www.opencompute.org/wiki/Networking/SpecsAndDesigns
http://www.opencompute.org/wiki/Networking/SpecsAndDesigns
http://www.montblanc-project.eu/


[8] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: A cost-efficient
topology for high-radix networks,” in International Symposium on
Computer Architecture (ISCA), 2007, pp. 126–137.

[9] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in International Symposium on Computer
Architecture (ISCA), 2008, pp. 77–88.

[10] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in 10th ACM SIGCOMM Conference on
Internet Measurement (IMC ’10), 2010, pp. 267–280.

[11] G. F. Pfister, “An introduction to the Infiniband architecture,” High
Performance Mass Storage and Parallel I/O, vol. 42, pp. 617–632, 2001.

[12] IEEE Computer Society, 802.1D: Standard for Local and metropolitan
area networks: Media Access Control (MAC) Bridges, IEEE Computer
Society Std., 1991.

[13] B. Goglin, “High-performance message-passing over generic ethernet
hardware with Open-MX,” Parallel Computing, vol. 37, no. 2, pp. 85–
100, 2011.

[14] Mellanox, “RoCE in the data center,” Mellanox, Tech. Rep., 2014.
[15] I. Y.-L. Hsiao, D.-H. Wang, and C.-W. Jen, “Power modeling and low-

power design of content addressable memories,” in IEEE Intl. Symp. on
Circuits and Systems (ISCAS), vol. 4, 2001, pp. 926–929 vol. 4.

[16] B. Agrawal and T. Sherwood, “Ternary CAM power and delay model:
Extensions and uses,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 16, no. 5, pp. 554–564, 2008.

[17] K. Kannan and S. Banerjee, “Compact TCAM: Flow entry compaction
in TCAM for power aware SDN,” in Distributed Computing and Net-
working, ser. Lecture Notes in Computer Science, D. Frey, M. Raynal,
S. Sarkar, R. Shyamasundar, and P. Sinha, Eds. Springer Berlin
Heidelberg, 2013, vol. 7730, pp. 439–444.

[18] P. Congdon, P. Mohapatra, M. Farrens, and V. Akella, “Simultaneously
reducing latency and power consumption in openflow switches,” Net-
working, IEEE/ACM Transactions on, vol. 22, no. 3, pp. 1007–1020,
June 2014.

[19] R. Perlman, “RBridges: transparent routing,” in INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE Computer and Com-
munications Societies, vol. 2, 2004, pp. 1211–1218 vol.2.

[20] Cisco, “Nexus 7000 FabricPath whitepaper version 2.0,” Cisco, Tech.
Rep., 2013.

[21] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,
M. Bursell, and C. Wright, Virtual eXtensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks
over Layer 3 Networks (RFC 7348), IETF Std., 2014.

[22] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “PortLand: A scalable
fault-tolerant layer 2 data center network fabric,” in ACM SIGCOMM
Conference on Data Communication, ser. SIGCOMM ’09. New York,
NY, USA: ACM, 2009, pp. 39–50.

[23] M. Scott, A. Moore, and J. Crowcroft, “Addressing the scalability of
ethernet with MOOSE,” in Proc. DC CAVES Workshop, 2009.

[24] D. Kreutz, F. M. V. Ramos, P. Verı́ssimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” CoRR, vol. abs/1406.0440, 2014.

[25] C. Kim, M. Caesar, and J. Rexford, “SEATTLE: A scalable ethernet
architecture for large enterprises,” ACM Trans. Comput. Syst., vol. 29,
no. 1, pp. 1:1–1:35, 2011.

[26] Open Networking Foundation, “OpenFlow switch specification version
1.0,” December 2009. [Online]. Available: http://archive.openflow.org/
documents/openflow-spec-v1.0.0.pdf

[27] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga,
“The NAS parallel benchmarks, summary and preliminary results,” in
ACM/IEEE Conference on Supercomputing, ser. Supercomputing ’91.
New York, NY, USA: ACM, 1991, pp. 158–165.

[28] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: Measurements & analysis,” in 9th ACM
SIGCOMM Conference on Internet Measurement Conference. ACM,
2009, pp. 202–208.

[29] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in 7th
USENIX Conference on Networked Systems Design and Implementation
(NSDI). Berkeley, CA, USA: USENIX Association, 2010, pp. 19–19.

[30] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R. Curtis,
and S. Banerjee, “DevoFlow: Cost-effective flow management for high

performance enterprise networks,” in 9th ACM SIGCOMM Workshop on
Hot Topics in Networks. ACM, 2010, pp. 1:1–1:6.

[31] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: A hybrid
electrical/optical switch architecture for modular data centers,” in ACM
SIGCOMM Conference. ACM, 2010, pp. 339–350.

[32] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal,
J. Carter, and R. Fonseca, “Planck: Millisecond-scale monitoring and
control for commodity networks,” in ACM Conference on SIGCOMM.
ACM, 2014, pp. 407–418.

[33] L. Valiant, “A scheme for fast parallel communication,” SIAM journal
on computing, vol. 11, p. 350, 1982.

[34] N. Jiang, J. Kim, and W. J. Dally, “Indirect adaptive routing on large
scale interconnection networks,” in Intl. Symp. on Computer Architecture
(ISCA), 2009, pp. 220–231.

[35] K. Gunther, “Prevention of deadlocks in packet-switched data transport
systems,” Communications, IEEE Transactions on, vol. 29, no. 4, pp.
512 – 524, apr 1981.

[36] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy
proportional datacenter networks,” in International Symposium on Com-
puter Architecture (ISCA). ACM, 2010, pp. 338–347.

[37] M. Garcı́a, P. Fuentes, M. Odriozola, E. Vallejo, and R. Beivide.
(2014) FOGSim interconnection network simulator. [Online]. Available:
http://fuentesp.github.io/fogsim/

[38] A. Daryin and A. Korzh, “Early evaluation of direct large-scale in-
finiband networks with adaptive routing,” Supercomputing frontiers and
innovations, vol. 1, no. 3, pp. 56–69, 2015.

[39] IEEE 802.1aq committee, 802.1aq - Standard for Local and Metropoli-
tan Area Networks: Virtual Bridged Local Area Networks - Amendment
8: Shortest Path Bridging, IEEE Std., 2012.

[40] Brocade, “Brocade VCS fabric technical architecture,” Brocade Com-
munications Systems, Inc, Tech. Rep., 2012.

[41] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “ElasticTree: Saving energy in data
center networks,” in 7th USENIX Conference on Networked Systems
Design and Implementation (NSDI’10). Berkeley, CA, USA: USENIX
Association, 2010, pp. 17–17.

[42] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proceedings of the Seventh
COnference on Emerging Networking EXperiments and Technologies,
ser. CoNEXT ’11. New York, NY, USA: ACM, 2011, pp. 8:1–8:12.

[43] R. Krishnan, L. Yong, A. Ghanwani, N. So, and B. Khasnabish,
Mechanisms for Optimizing Link Aggregation Group (LAG) and Equal-
Cost Multipath (ECMP) Component Link Utilization in Networks (RFC
7424), IEEE OPSAWG Std., 2015.

[44] J. Kim, W. J. Dally, and D. Abts, “Adaptive routing in high-radix clos
network,” in SC ’06: Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing, 2006.

[45] M. Besta and T. Hoefler, “Slim Fly: A cost effective low-diameter
network topology,” in IEEE/ACM Intl. Conf. on High Performance
Computing, Networking, Storage and Analysis (SC14), 2014.

[46] Y. Wang, G. Lu, and X. Li, “A study of internet packet reordering,” in
Information Networking. Networking Technologies for Broadband and
Mobile Networks, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2004, vol. 3090, pp. 350–359.

[47] C. Minkenberg, M. Gusat, and G. Rodriguez, “Adaptive routing in
data center bridges,” in 17th IEEE Symposium on High Performance
Interconnects (HOTI), 2009, pp. 33–41.

[48] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and vigilant switch flow management in software-defined net-
works,” in ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’13. New York, NY, USA: ACM, 2013, pp. 413–424.

[49] B. Stephens, A. Cox, A. Singla, J. Carter, C. Dixon, and W. Felter,
“Practical DCB for improved data center networks,” in INFOCOM, 2014
Proceedings IEEE, 2014, pp. 1824–1832.

[50] K. Saravanan, P. Carpenter, and A. Ramirez, “Power/performance
evaluation of energy efficient ethernet (EEE) for High Performance
Computing,” in Performance Analysis of Systems and Software (ISPASS),
2013 IEEE International Symposium on, 2013, pp. 205–214.

http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://fuentesp.github.io/fogsim/

