
Journal of Automata, Languages and Combinatorics u (v) w, x–y
c© Otto-von-Guericke-Universität Magdeburg

LEARNING REGULAR TREE LANGUAGES FROM
CORRECTION AND EQUIVALENCE QUERIES

Cătălin Ionuţ T̂ırnăucă

Research Group on Mathematical Linguistics, Rovira i Virgili University
Plaça Imperial Tàrraco 1, 43005, Tarragona, Spain

e-mail: catalinionut.tirnauca@estudiants.urv.cat

and

Cristina T̂ırnăucă1

Research Group on Mathematical Linguistics, Rovira i Virgili University
Plaça Imperial Tàrraco 1, 43005, Tarragona, Spain

e-mail: cristina.bibire@urv.cat

ABSTRACT

Inspired by the results obtained in the string case, we present in this paper the ex-
tension of the correction queries to regular tree languages. Relying on Angluin’s and
Sakakibara’s work, we introduce the algorithm LRTLC and we show that regular tree
languages are learnable from equivalence and correction queries when the set of contexts
is ordered by a Knuth-Bendix order. Moreover, a subclass of regular tree languages,
called injective languages, is learned without equivalence queries. This can be extended
for other subclasses and may have some practical relevance in fields like machine trans-
lation, pattern and speech recognition, building XML documents.

Keywords: regular tree languages, learning from queries, weight function, correcting
context

1. Introduction

The field of grammatical inference was practically introduced by Gold in 1967 [8],
when he suggested that learning is an infinite process about making guesses of gram-
mars, and which does not terminate in a finite number of steps but only converges
in the limit. Twenty years later, Angluin [1] proposes another popular learning crite-
rion: exact identification using queries. The algorithm, called L∗, allows the Learner
to ask questions about a regular language from an oracle (also called MAT - mini-
mally adequate teacher) and halts in polynomial time with a correct description of
the language.

1This work was possible thanks to a FPU Fellowship (AP2004-6968) from the Spanish Ministry
of Education and Science

2 C. I. T̂ırnăucă, C. T̂ırnăucă

The first attempt to extend this inference method to context-free grammars (CFGs)
belongs to Angluin as well. In the same paper [1] she designs the algorithm Lcf and
shows that in this framework context-free languages (CFLs) are learnable. But the
learnability is proved under powerful restrictions. Among them, we mention two
important ones: the grammar should be in Chomsky normal form and the set of
nonterminal symbols, along with the start symbol, are assumed to be known by the
Learner.

We consider that the problem of inferring CFGs is worth studying from both prac-
tical and theoretical points of view. Regarding practical applications, the learnability
of a CFG that produces a set of patterns [6] constitutes an important issue for peo-
ple working in pattern recognition. Also, the ability to infer (in fact to approximate
since the problem of natural languages’ context-freeness is subject to a long and still
unsolved debate) CFGs for natural languages would enable a speech recognizer to
adapt its internal grammar according to the particularities of an individual speaker
[9]. The problem seems to be interesting also from a theoretical point of view because,
although CFLs are well-understood, there are various and serious restrictions in the
process of learning them. A very good survey of the problem of learning CFLs can
be found in [10].

In 1992 Sakakibara [14] extends the algorithm proposed by Angluin to skeletal
regular tree automata which are a variation of finite automata that take skeletons as
input. Intuitively, skeletons (introduced in [11]) are derivation trees of strings in a
grammar in which internal nodes are unlabeled. Such a tree reveals only the syntactic
structure associated with a string with respect to a CFG but not the concrete rules
generating it.

The interest in learning regular tree languages is justified by the nice relationship
which exists between these languages and CFLs: the yield of any regular tree lan-
guage is a CFL. In 2003, Drewes and Högberg [4] improve Sakakibara’s algorithm,
generalizing L∗ to regular tree languages. The advantages of this approach consist in
avoiding the dead states and minimizing the observation table as much as possible.

Successful language learning algorithms model how humans acquire languages.
This view, though questionable, was one of the principal motivations for the early
work in grammatical inference. Inspired by how children learn, Becerra-Bonache,
Dediu and T̂ırnăucă propose in [3] the algorithm LCA with an alternative to mem-
bership queries: instead of a yes/no answer, the teacher returns a correcting string.
They choose as a correction for the string s, the smallest string s′ (in the lex-length
order) such that ss′ belongs to the target language. Even though the worst case
complexity of the two algorithms is the same, LCA runs more efficient on average,
mainly because of the embedded information contained in the correction queries.

In this paper we propose an extension of L∗ which generalizes the correction queries
introduced in [3] from correcting strings to correcting contexts. Though our algo-
rithm, restricted to skeletal tree languages, can be also applied to context-free string
languages, we focus on regular tree languages in what follows.

We prove that deterministic bottom-up tree recognizers can be learned from cor-
rection and equivalence queries, and that equivalence queries are not needed in the
process of learning the class of injective languages (languages for which any two non

Learning regular tree languages from correction and equivalence queries 3

equivalent trees have distinct corrections). The last result has relevance in practice
since one can imagine the Teacher as a human expert who might not have an au-
tomata representation for the language but is still able to return the correction based
only on his domain-specific knowledge.

The order we choose for comparing trees (contexts) to obtain the minimal one is a
Knuth-Bendix order based on the weights associated to the symbols of the alphabet.
The minimal context may correspond to the most probable choice in a real-life setting,
like speech recognition or even machine translation if we imagine an extension of our
algorithm to transducers.

The paper is organized as follows. In the next section we recall some basic notions
regarding trees, tree recognizers and Knuth-Bendix orders. Section 3 presents the
observation table as the main data structure of the learning algorithm and introduces
correction queries. It contains the description of two algorithms: the Learner and the
Teacher, together with the proof of their correctness, the analysis of time complexity
and a running example. Section 4 is dedicated to an application: a subclass of regular
tree languages, called injective languages, is learned without equivalence queries. We
finish with some concluding remarks and future extensions of the algorithms presented
here.

2. Preliminaries

In this paper we follow standard definitions and notations in formal language theory.
A wealth of further information about this area can be found in [12, 13].

2.1. Trees

The trees considered here are finite, their nodes are labeled by symbols, and the
branches leaving any given node have a specified order.

A ranked alphabet Σ is a finite set of symbols each of them having a given non-
negative integer arity. For any m ≥ 0, the set of m-ary symbols in Σ is denoted by
Σm. In examples we may write Σ = {f1/m1, . . . , fk/mk} to indicate that Σ consists
of the symbols f1, . . . , fk with the respective ranks m1, . . . ,mk. In what follows Σ is
always a ranked alphabet.

The set TΣ of Σ-terms is the smallest set T such that

• Σ0 ⊆ T , and
• f(t1, ..., tm) ∈ T whenever m > 0, f ∈ Σm and t1, ..., tm ∈ T .

Such terms are regarded as representations of trees, and we call them Σ-trees. Any
u ∈ Σ0 represents a tree with only one node labeled with u. Similarly, f(t1, ..., tm)
is interpreted as a tree formed by adjoining the m trees represented by t1, ..., tm to a
new f labeled root. The trees t1, ..., tm are said to be the direct subtrees of the tree.
Subsets of TΣ are called Σ-tree languages. We will generally speak about trees and
tree languages without specifying the alphabets.

Given a set T of Σ-trees, we denote by TΣ the set of all trees f(t1, ..., tm) such
that f ∈ Σm for some m ≥ 0, and t1, . . . , tm ∈ T .

4 C. I. T̂ırnăucă, C. T̂ırnăucă

The height hg(t) and the set of subtrees sub(t) of a Σ-tree t are defined such that

• hg(t) = 0, sub(t) = {t} for t ∈ Σ0, and

• hg(t) = max{hg(t1), . . . , hg(tm)}+ 1, sub(t) = {t} ∪ sub(t1) ∪ . . . ∪ sub(tm) for
t = f(t1, . . . , tm), m > 0 and f ∈ Σm.

Let ξ be a special symbol with arity 0 and not in Σ. A Σ ∪ {ξ}-tree in which ξ
appears exactly once is called a Σ-context, or just a context. The set of all Σ-contexts
is denoted by CΣ. If p, p′ ∈ CΣ, then p · p′ = p′(p) is the Σ-context obtained from p′

by replacing the ξ in it with p. Similarly, if t ∈ TΣ and p ∈ CΣ, then t · p = p(t) is
the tree obtained when the ξ in p is replaced with t (we also say that the context p is
applied to t).

Let p be a context in CΣ. Then depth(p) and trees(p) are defined as follows:

• depth(p) = 0, trees(p) = ∅ for p = ξ, and

• depth(p) = depth(p′) + 1, trees(p) = trees(p′) ∪ {t1, . . . , ti−1, ti+1, . . . , tm}
for p = f(t1, . . . , ti−1, ξ, ti+1, . . . , tm) · p′ with m > 0, f ∈ Σm, t1, . . . , ti−1,
ti+1, . . . , tm ∈ TΣ, 1 ≤ i ≤ m, and p′ ∈ CΣ.

2.2. Finite Tree Recognizers and Regular Tree Languages

A deterministic bottom-up Σ-tree recognizer, or tree recognizer, for short, is a quadru-
ple A = (Q,Σ, δ, F), where Σ is a ranked alphabet, Q is a finite set of states such that
Q ∩ Σ = ∅, F ⊆ Q is a set of final states, and the transition function δ is a family of
maps δm(m ≥ 0,Σm 6= ∅) such that:

• δ0 : Σ0 → Q, and

• δm : Qm × Σm → Q for m > 0.

Then for t ∈ TΣ, one can inductively define δ(t) as follows:

• δ(t) = δ0(t) for t ∈ Σ0, and

• δ(t) = δm(δ(t1), . . . , δ(tm), f) for m > 0, f ∈ Σm and t = f(t1, . . . , tm).

The set T (A) = {t ∈ TΣ | δ(t) ∈ F} is the tree language recognized (accepted)
by A. Such a tree language is a regular tree language. Let A = (Q,Σ, δ, F) and
A′ = (Q′,Σ, δ′, F ′) be deterministic bottom-up Σ-tree recognizers. One can say that
A and A′ are equivalent if they accept the same tree language, and A is isomorphic
to A′ if there exists a bijection φ : Q → Q′ such that φ(F) = F ′ and

• φ(δ0(c)) = δ′0(c) for every c ∈ Σ0, and

• φ(δm(q1, . . . , qm, f)) = δ′m(φ(q1), . . . , φ(qm), f) for every m > 0, f ∈ Σm and
every q1, . . . , qm ∈ Q.

Let A be a tree recognizer. A state q is called reachable if there exists a tree t ∈ TΣ

such that δ(t) = q. A reachable state q is co-reachable if there exists a context p ∈ CΣ

such that δ(t · p) ∈ F , where t is any tree in TΣ such that δ(t) = q. A state which is
reachable but not co-reachable is said to be a sink state.

Learning regular tree languages from correction and equivalence queries 5

Lemma 1 (Replacement lemma) Let A = (Q,Σ, δ, F) be a deterministic bottom-
up Σ-tree recognizer. For t, t′ ∈ TΣ and p ∈ CΣ, if δ(t) = δ(t′), then δ(t · p) = δ(t′ · p).

For a given tree language T ⊆ TΣ, the equivalence relation ≡T on TΣ is defined
by: for any s, t ∈ TΣ, s ≡T t if for all contexts p ∈ CΣ, s · p ∈ T ⇔ t · p ∈ T . One
can notice that ≡T is a congruence (i.e. an equivalence relation which is preserved
by contexts: for t, t′ ∈ TΣ, if t ≡T t′, then t · p ≡T t′ · p for all contexts p ∈ CΣ).

It is known that each regular tree language T is accepted by a minimal tree rec-
ognizer, unique up to isomorphism, that can be constructed from any given tree
recognizer A of T by first deleting all non-reachable states and then merging all pairs
of equivalent states. For details, we refer to [7], pp. 87 - 94. Note that for a minimal
tree recognizer A there is at most one sink state and all the states are reachable.

Example 1 Let Σ = {f/3, g/2, a/0, b/0}, and consider the tree language

T = {t ∈ TΣ | t = g(a, b) · [f(a, ξ, b)]n, n ≥ 0},

where [f(a, ξ, b)]n = ξ and [f(a, ξ, b)]n = [f(a, ξ, b)]n−1 · f(a, ξ, b), n ≥ 1.
Let us now construct a tree recognizer A = (Q,Σ, δ, F) such that T (A) = T . For

this, we need a set Q of four states: qa, qb, qs and qf . The transition function δ is
defined as follows:

• δ0(a) = qa, δ0(b) = qb,
• δ2(qa, qb, g) = qf ,
• δ3(qa, qf , qb, f) = qf ,
• δ2(qx, qy, g) = qs for x = b, y = a and x = y, x ∈ {a, b}, and
• δ3(qx, qy, qz, f) = qs for all remaining cases.

If we take F = {qf}, it is clear that T (A) = T . The (accepting) computation on
the input t = f(a, f(a, g(a, b), b), b) is δ(t) = δ3(qa, δ3(qa, δ2(qa, qb, g), qb, f), qb, f) =
δ3(qa, δ3(qa, qf , qb, f), qb, f) = δ3(qa, qf , qb, f) = qf . Also, it is easy to see that qs is a
sink state and qf , qa and qb are co-reachable.

2.3. Knuth-Bendix Orders

Let Σ be a ranked alphabet and < be a strict order on Σ. Let w : Σ → IR+
0 be a

weight function, where IR+
0 denotes the set of non-negative real numbers. A weight

function w is called admissible for < if it satisfies the following conditions:

1. There exists w0 ∈ IR+
0 \{0} such that w(c) ≥ w0 for all c ∈ Σ0.

2. If g ∈ Σ1 and w(g) = 0, then g is the greatest element in Σ, i.e. f ≤ g for all
f ∈ Σ.

The weight function w is extended to a function w : TΣ → IR+
0 as follows:

w(t) =
∑
f∈Σ

w(f) · |t|f ,

6 C. I. T̂ırnăucă, C. T̂ırnăucă

where |t|f denotes the number of occurrences of the symbol f in t. Thus, w(t) simply
adds up the weights of all occurrences of symbols from Σ in t.

The Knuth-Bendix order <kbo on TΣ induced by < and w is defined as follows. For
t, t′ ∈ TΣ, we have t <kbo t′ if w(t) < w(t′), or w(t) = w(t′) and one of the following
two properties holds:

1. There exist symbols f ∈ Σm (m ≥ 0) and g ∈ Σn (n ≥ 0) such that f < g and
t = f(s1, . . . , sm), t′ = g(t1, . . . , tn).

2. There exist a symbol f ∈ Σm (m > 0) and an index i, 1 ≤ i ≤ m, such that
t = f(t1, . . . , ti, . . . , tm), t′ = f(s1, . . . , si, . . . , sm), s1 = t1, . . ., si−1 = ti−1 and
ti <kbo si.

One can see that (TΣ, <kbo) is an ordered set, and <kbo is a strict total order. For
t, t′ ∈ TΣ, t ≤kbo t′ if t <kbo t′ or t = t′.

The Knuth-Bendix order <kbo can be extended from TΣ to CΣ in a natural way.
Thus, < will be a strict order on Σ ∪ {ξ} such that ξ < f for all f ∈ Σ, and we set
w(ξ) = w0.

Remark 1 The following properties hold:

1. ξ is the smallest context.
2. For any p1, p2 ∈ CΣ, if p1 <kbo p2, then p1 · p <kbo p2 · p and p · p1 <kbo p · p2 for

every p ∈ CΣ.
3. For any t1, t2 ∈ TΣ, if t1 <kbo t2, then t1 · p <kbo t2 · p for every p ∈ CΣ.
4. For any t ∈ TΣ and any p ∈ CΣ\{ξ}, t <kbo t · p.
5. For any p, p′ ∈ CΣ with p′ 6= ξ, p <kbo p′ · p.

Actually, we chose a Knuth-Bendix order for our algorithm just to illustrate that
an order with the desired properties does exist. The algorithm will still work with
any other order for which all the properties from Remark 1 hold. More details can
be found in [2], pp. 111-133.

3. Learning Regular Tree Languages from Corrections

The notion of learning from queries was introduced by Angluin in [1]. The aim was to
learn an unknown regular language L (more precisely, to construct the minimal DFA
recognizing L). The same approach may be used for trees, as it has been shown in
[4, 14]. With the help of MAT, the Learner is supposed to identify the target regular
tree language being allowed to use two types of queries: membership and equivalence
queries.

For the rest of the paper, let us fix an arbitrary ranked alphabet Σ, let T ⊆ TΣ

be the regular tree language to be learned, and let AT be the minimal deterministic
bottom-up Σ-tree recognizer which accepts T . The MAT knows the target language
and is assumed to answer correctly to the following types of queries:

• Membership query (MQ). Given some tree t in TΣ, the Teacher will check
whether or not t ∈ T .

Learning regular tree languages from correction and equivalence queries 7

• Equivalence query (EQ). Given a tree recognizer A, the Teacher will check
whether A is equivalent to AT . If the answer is “no” a tree counterexample
t ∈ (T (A)\T) ∪ (T\T (A)) (in the symmetric difference of T (A) and T) is re-
turned.

3.1. Correcting Contexts

We introduce a new type of query called correction query (CQ). It is an extension
of the membership query; the difference consists in the type of the answer that we
receive from the Teacher. Instead of a yes/no answer, a context called correcting
context is returned to the Learner.

The motivation for using correction queries comes from linguistics as one can see in
[3]. The main idea is that a child can learn faster if he is helped in a proper manner,
not only responding by yes or no to his questions, but also trying to correct him if
he makes a mistake. In this way he can add the new information to the previous
knowledge in order to infer the correct grammar more easily.

For a tree t ∈ TΣ, the frontier derivative language of T with respect to t is the set
t−1T = {p ∈ CΣ | t · p ∈ T} = {p ∈ CΣ | δ(t · p) ∈ F}, where A = (Q,Σ, δ, F) is any
deterministic bottom-up Σ-tree recognizer accepting the tree language T . One can
speak about the frontier derivative language of a state q as being t−1

q T , where tq ∈ TΣ

is such that δ(tq) = q.
The correcting context of a tree t ∈ TΣ with respect to the tree language T and the

Knuth-Bendix order <kbo on CΣ, denoted Cor T (t), is the minimal context of the set
t−1T . In case that no such context exists (i.e., t−1T = ∅) we say Cor T (t) = θ, where
θ is a symbol which does not belong to Σ ∪ {ξ}. Hence, Cor T is a function from TΣ

to CΣ ∪ {θ}. Note that Cor T (t) = ξ if and only if t is in T , and for all s, t ∈ TΣ,
s ≡T t implies Cor T (s) = Cor T (t), but the converse does not hold.

Remark 2 For t ∈ TΣ and p1, p2 ∈ CΣ, if Cor T (t) = p1 · p2, then Cor T (t · p1) = p2.

Proof. If Cor T (t) = p1 · p2, then p1 · p2 is the smallest context from CΣ such that
t · p1 · p2 ∈ T , and hence p2 ∈ (t · p1)−1T . But p2 must be the smallest context with
this property since otherwise we reach a contradiction with the minimality of p1 · p2

(cf. Remark 1). We conclude that Cor T (t · p1) = p2. 2

Remark 3 If t is a tree in TΣ such that t−1T = ∅, then (t ·p)−1T = ∅ for all contexts
p in CΣ.

Proof. Suppose by contradiction that there exists a context p ∈ CΣ such that
(t · p)−1T 6= ∅. Then for any p′ ∈ (t · p)−1T , we have t · p · p′ ∈ T , and hence
p · p′ ∈ t−1T . We reach a contradiction with t−1T = ∅. 2

Remark 4 For any tree t in TΣ, the following statements hold:

1. If Cor T (t) 6= θ, then Cor T (t · Cor T (t)) = ξ.
2. If Cor T (t) = θ, then Cor T (t · p) = θ for all p ∈ CΣ, but the existence of a

context p ∈ CΣ with Cor T (t · p) = θ does not imply that Cor T (t) = θ.

8 C. I. T̂ırnăucă, C. T̂ırnăucă

Proof. Let t be an arbitrary tree in TΣ.

1. If Cor T (t) = p 6= θ, then t · p ∈ T which implies t · p · ξ ∈ T , and hence
ξ ∈ (t ·p)−1T . Because ξ is the smallest possible context, we obtain immediately
that Cor T (t · Cor T (t)) = ξ.

2. If Cor T (t) = θ, then t−1T = ∅ which implies, using Remark 3, (t · p)−1T = ∅
for all p ∈ CΣ, and hence Cor T (t · p) = θ. Let us now consider the recognizer
A = (Q, Σ, δ, F) from Example 1. If we take t = f(a, g(a, b), b) and p = g(ξ, b),
it is clear that Cor T (t · p) = θ, but Cor T (t) = ξ 6= θ.

2

3.2. Observation Tables

Let U be a set of trees in TΣ and P a set of contexts in CΣ. Then, U is called
subtree-closed if t ∈ U implies that all subtrees of t are elements of U . The set P is
called ξ-prefix closed with respect to U if p ∈ P\{ξ} implies that there exists p′ in P
such that p = f(t1, . . . , ti−1, ξ, ti+1, . . . , tm) · p′ for m > 0, f ∈ Σm and t1, . . . , ti−1,
ti+1, . . . , tm ∈ U . Let Composed(U) be the set {f(t1, . . . , ti−1, ξ, ti+1, . . . , tm) |
m > 0, f ∈ Σm, t1, . . . , ti−1, ti+1, . . . , tm ∈ U}.

For the tree language T , an observation table (S, E, Cor) consists of a non-empty
finite subtree-closed set S of trees, a non-empty finite set E of contexts which is ξ-
prefix closed with respect to S, and the restriction Cor of the mapping Cor T to the
set {s · e | s ∈ S ∪ SΣ, e ∈ E}, denoted by (S ∪ SΣ)E. The interpretation of Cor is
that, for any s ∈ S ∪ SΣ and e ∈ E, Cor(s · e) = p iff p ∈ CΣ is the minimal context
such that s · e · p is accepted by the target tree recognizer AT .

Observation table
E

. . . e . . .
...

...
S s . . . Cor(s · e) . . .

...
...

...
...

SΣ\S f(s1, s2, . . . , sm) . . . Cor(f(s1, s2, . . . , sm) · e) . . .
...

...

Table 1: The structure of an observation table (S,E,Cor)

Using an approach similar to that of Angluin [1], an observation table can be given
as a two-dimensional array with rows labeled by elements of S ∪SΣ, columns labeled
by elements of E, and the entry for row s and column e equal to Cor(s · e). It is
a well-known fact that the Myhill-Nerode theorem can be extended to regular tree
languages which means that every state of the minimal recognizer can be uniquely

Learning regular tree languages from correction and equivalence queries 9

identified by its frontier derivative language. Practically, asking this set as a correction
is quite difficult since most of the times it is infinite. The choice that we made (to
ask for the minimal context of that set) is justified by practical reasons: there is an
efficient algorithm which can compute it. Moreover, the elements in E help us to
distinguish between two different states which have the same minimal context (for
example, if there are two trees s1, s2 ∈ S belonging to different equivalence classes for
which CorT (s1) = CorT (s2), E should, at some point, contain a context e such that
CorT (s1 · e) 6= CorT (s2 · e)).

The algorithm LRTLC will use the observation table to build a tree recognizer.
Rows labeled by the elements of S are candidates for states of the recognizer being
constructed, and columns labeled by the elements of E correspond to distinguishing
experiments for these states. Rows labeled by elements of SΣ are used to construct
the transition function. An useful intuitive image is presented in Table 1.

If s is an element of S ∪ SΣ, rows denotes the finite function from E to CΣ ∪ {θ}
defined by rows(e) = Cor(s · e) and represents the observed behavior of the tree s.
By rows(S) we understand {rows | s ∈ S}.

Definition 1 (closed, consistent and complete observation table) An obser-
vation table (S, E, Cor) is called:

• closed if for every s in SΣ, there exists s′ in S such that rows = rows′ ;
• consistent if for any s1 and s2 in S such that rows1 = rows2 , we have

rowf(t1,...,ti−1,s1,ti+1,...,tm) = rowf(t1,...,ti−1,s2,ti+1,...,tm) for all m > 0, f ∈ Σm,
t1, . . . , ti−1, ti+1, . . . , tm ∈ S and 1 ≤ i ≤ m;

• complete if for any p in {Cor(s · e) | s ∈ S, e ∈ E}, we have trees(p) ⊆ S.

In other words a table is closed if the observed behavior of every element of SΣ can
already be seen from the behaviors of elements of S. It is consistent if, for every two
trees in S which have the same observed behavior, the corresponding trees in SΣ (the
ones obtained by applying a depth one context with subtrees in S) must also have the
same behaviors. A table is complete if all the implicit information which arises from
the use of the correcting contexts is used (all the subtrees of the correcting contexts
should be in the set S since they form a finite set, namely the set of the minimal trees
which will be candidates for the states of the recognizer to be constructed).

If (S, E, Cor) is a closed, consistent and complete observation table, one can define
the corresponding tree recognizer A(S, E, Cor) = (Q, Σ, δ, F) as follows:

• Q = {rows | s ∈ S},
• F = {rows | s ∈ S and Cor(s) = ξ},
• δ0(c) = rowc for every c ∈ Σ0, and
• δm(rows1 , . . . , rowsm

, f) = rowf(s1,...,sm) for every m > 0, f ∈ Σm and
s1, . . . , sm ∈ S.

It is clear that A(S, E,Cor) has at most one sink state qθ = rows, where Cor(s) =
θ. (Note that if Cor(s) = θ, by Remark 4 and the above construction of the recognizer,
Cor(s · e) = θ for all e ∈ E).

10 C. I. T̂ırnăucă, C. T̂ırnăucă

To see that this is a well-defined (deterministic) tree recognizer, note that if
s1 and s2 are elements of S such that rows1=rows2 , then Cor(s1) = Cor(s1 · ξ)
and Cor(s2) = Cor(s2 · ξ) are defined and equal to each other since E contains
ξ. Hence, F is well-defined. Since the observation table (S, E, Cor) is consis-
tent, rowf(t1,...,ti−1,s1,ti+1,...,tm) = rowf(t1,...,ti−1,s2,ti+1,...,tm) for m > 0, f ∈ Σm,
t1, . . . , ti−1, ti+1, . . . , tm ∈ S, and because it is closed, this common value is equal
to rows for some s in S. Thus δ is well-defined.

A recognizer A = (Q,Σ, δ, F) is consistent with the function Cor if for every s in
S ∪ SΣ and e in E, the following statements hold:

1. Cor(s · e) = θ ⇔ δ(s · e) is a sink state.

2. Cor(s · e) = p ⇔ δ(s · e · p) ∈ F and p is the smallest context with this property.

The important fact about the recognizer A(S, E, Cor) is the following.

Theorem 2 If (S, E,Cor) is a closed, consistent and complete observation table,
then the tree recognizer A(S, E,Cor) is consistent with Cor. Any other tree recognizer
consistent with Cor but not isomorphic with A(S, E, Cor) must have more states.

The theorem is proved by a sequence of straightforward lemmas.

Lemma 3 Assume that (S, E, Cor) is a closed, consistent and complete observation
table. For the recognizer A(S, E, Cor) and for every s in S ∪ SΣ, δ(s) = rows.

Proof. It is clear from the definition of A(S, E,Cor). 2

Lemma 4 Assume that (S, E, Cor) is a closed, consistent and complete observation
table. For each s in S ∪ SΣ and e in E, there exists s′ in S such that δ(s · e) = δ(s′)
and Cor(s · e) = Cor(s′).

Proof. Let s be an element from S ∪ SΣ. We prove our lemma by induction on the
depth of e. When e is ξ, by Lemma 3 we have δ(s) = rows. Since (S, E,Cor) is a closed
table, there exists s′ ∈ S such that rows′ = rows which implies Cor(s′) = Cor(s) and
δ(s′) = δ(s).

Next, suppose that the result holds for all e in E of depth at most h, and let e be
an element of E which has the depth h + 1. Since E is ξ-prefix closed with respect
to S, there exists e′ ∈ E of depth h such that e = f(t1, . . . , ti−1, ξ, ti+1, . . . , tm) · e′
for some m > 0, f ∈ Σm and t1, . . . , ti−1, ti+1, . . . , tm ∈ S. Because (S, E,Cor) is
closed, we can take s′ in S such that rows=rows′ (hence, Cor(s · e) = Cor(s′ · e) and
δ(s) = δ(s′)).

Then, δ(s · e) = δ(s · f(t1, . . . , ti−1, ξ, ti+1, . . . , tm) · e′)
= δ(s′ · f(t1, . . . , ti−1, ξ, ti+1, . . . , tm) · e′), by the replacement lemma
= δ(f(t1, . . . , ti−1, s

′, ti+1, . . . , tm) · e′).
By the induction hypothesis on e′, there exists s′′ in S such that δ(s′′) =

δ(f(t1, . . . , ti−1, s
′, ti+1, . . . , tm) · e′), Cor(s′′) = Cor(f(t1, ..., ti−1, s

′, ti+1, ..., tm) · e′)
which implies δ(s · e) = δ(s′′) and Cor(s · e) = Cor(s′′). 2

Learning regular tree languages from correction and equivalence queries 11

Lemma 5 Assume that (S, E, Cor) is a closed, consistent and complete observation
table. Then the recognizer A = A(S, E, Cor) is consistent with the function Cor.

Proof. Let s be in S ∪ SΣ and e in E. From Lemma 4 we know that there exists s′

in S such that δ(s · e) = δ(s′) and Cor(s · e) = Cor(s′). So, it is enough to prove that
for all s′ in S, we have:

1. Cor(s′) = θ ⇔ δ(s′) is a sink state.

2. Cor(s′) = p ⇔ δ(s′ · p) ∈ F and p is the smallest context with this property.

For the first statement, it is enough to see that Cor(s′) = θ if and only if rows′

is a sink state, and by Lemma 3, if and only if δ(s′) is a sink state. For the second
one, we will first show that Cor(s′) = p implies δ(s′ · p) ∈ F . If p = ξ, the result is
immediate. Suppose p equals p1 · p2 · . . . · pn with pi ∈ CΣ having the node labeled ξ
at depth exactly 1 for all i ∈ {1, 2, . . . , n} and n ≥ 1.

From the definition of trees(p) it is clear that trees(pi) ⊆ trees(p) for every i in
{1, 2, . . . , n}. But (S, E, Cor) is complete, so trees(p) ⊆ S, and hence trees(pi) ⊆ S.
Using the fact that depth(pi) = 1, we obtain that pi belongs to Composed(S). Then,
because the table (S, E, Cor) is closed, we can inductively find the subset of trees
{s1, . . . , sn} ⊆ S, as it is shown in the sequel:

s′ ∈ S, p1 ∈ Composed(S) ⇒ ∃ s1 ∈ S such that δ(s′ · p1) = δ(s1), Cor(s′ · p1) =
Cor(s1)

s1 ∈ S, p2 ∈ Composed(S) ⇒ ∃ s2 ∈ S such that δ(s1 · p2) = δ(s2), Cor(s1 · p2) =
Cor(s2)

. . .
sn−1 ∈ S, pn ∈ Composed(S) ⇒ ∃ sn ∈ S such that δ(sn−1 · pn) = δ(sn) and

Cor(sn−1 · pn) = Cor(sn).
Clearly, δ(s′ ·p) = δ(sn) (using the replacement lemma). Starting from Cor(s′) = p

and applying several times Remark 2, we obtain Cor(sn) = ξ which is equivalent to
δ(sn) ∈ F , and furthermore with δ(s′ · p) ∈ F .

Next, we will show that if we take p = p1 · p2 · . . . · pn to be the smallest context
in Knuth-Bendix order such that δ(s′ · p) ∈ F , then Cor(s′) = p. We know that the
set {p | δ(s′ · p) ∈ F} is not empty because we proved that it contains the context
Cor(s′).

We know that δ(s′ · p) = δ(sn) and δ(sn) ∈ F implies Cor(sn) = ξ. But Cor(sn) =
Cor(sn−1 · pn), so Cor(sn−1 · pn) = ξ, and hence pn ∈ s−1

n−1T . We will show that this
implies Cor(sn−1) = pn. Suppose that there exists a context rn <kbo pn such that
Cor(sn−1) = rn. Then, we show that there exists a context p′ strictly smaller than
p such that δ(s′ · p′) ∈ F which contradicts the choice we have made for p. We can
take p′ to be p1 · p2 · . . . · pn−1 · rn. Therefore, δ(s′ · p′) = δ(s′ · p1 · . . . · pn−1 · rn) =
δ(sn−1 · rn), and because Cor(sn−1) = rn, it follows that δ(sn−1 · rn) ∈ F .

But Cor(sn−2 · pn−1) = Cor(sn−1) = pn. In an analogous way as above we obtain
Cor(sn−2) = pn−1 · pn (otherwise p′′ = p1 · . . . · pn−2 · r, where r = Cor(sn−2),
r <kbo pn−1 · pn is a context strictly smaller than p such that δ(s′ · p′′) is in F).

Reasoning in the same manner we obtain Cor(s′) = p1 · p2 · . . . · pn which implies
Cor(s′) = p.

12 C. I. T̂ırnăucă, C. T̂ırnăucă

We showed that:

1. Cor(s′) = p implies δ(s′ · p) ∈ F .

2. If p is the smallest context such that δ(s′ · p) ∈ F , then Cor(s′) = p.

If Cor(s′) = p, then δ(s′ ·p) ∈ F (cf. 1). Now, assume p is not the smallest context
such that δ(s′ · p) ∈ F . Let us take p′ <kbo p to be the smallest context with this
property. Then, cf. 2, Cor(s′) = p′, and hence p = p′. This concludes the proof of
the lemma.

2

Lemma 6 Assume that (S, E, Cor) is a closed, consistent and complete observation
table. Suppose that the recognizer A(S, E, Cor) has n states. If A′ = (Q′,Σ, δ′, F ′) is
any recognizer consistent with Cor that has n or fewer states, then A′ is isomorphic
with A(S, E, Cor).

Proof. We define the relation φ ⊆ Q × Q′ as follows: for each s ∈ S, rows φ q′ ⇔
δ′(s) = q′.

Let us take s1, s2 ∈ S such that there exists q′ ∈ Q′, rows1 φ q′ and rows2 φ q′

(clearly, δ′(s1) = q′ = δ′(s2)). We will show that this implies rows1 = rows2 . Suppose
by contrary that rows1 6= rows2 . Then, there exists e ∈ E such that rows1(e) 6=
rows2(e), and so Cor(s1 · e) 6= Cor(s2 · e). We distinguish two cases: Cor(s1 · e) = θ,
Cor(s2 · e) 6= θ, and Cor(s1 · e), Cor(s2 · e) 6= θ.

Case I) Cor(s1 · e) = θ, Cor(s2 · e) = p 6= θ.
Because A′ is consistent with Cor, δ′(s1 · e) is a sink state and δ′(s2 · e · p) ∈ F ′.

But δ′(s1) = δ′(s2), and so δ′(s1 · e) = δ′(s2 · e). Hence, δ′(s2 · e) is a sink state. This
means that δ′(s2 · e · p) is a sink state which contradicts δ′(s2 · e · p) ∈ F ′.

Case II) Cor(s1 · e) = p1, Cor(s2 · e) = p2, p1 6= p2 and p1, p2 6= θ.
Because A′ is consistent with Cor, we have δ′(s1 · e · p1) ∈ F ′, δ′(s2 · e · p2) ∈ F ′

and p1, p2 are the smallest contexts with this property. But δ′(s1) = δ′(s2), and so
δ′(s1 · e · p1) = δ′(s2 · e · p1). Hence, δ′(s2 · e · p1) ∈ F ′ which implies p2 ≤kbo p1. In
a similar way it can be shown that p1 ≤kbo p2. We draw the conclusion that p1 = p2

which leads to a contradiction.
We have shown that the relation φ is an injection. This implies that |Q| ≤ |φ(Q)|.

From our hypothesis we know that |Q′| ≤ |Q|. So, |Q| ≤ |φ(Q)| ≤ |Q′| ≤ |Q| implies
|Q| = |φ(Q)| = |Q′| which makes our relation φ to be a function.

Because the function φ is injective and has the domain and range finite and of the
same cardinality, it follows immediately that φ is surjective, and hence bijective.

We will show that φ is an isomorphism from A to A′, that is, it preserves the
transition function and φ(F) = F ′:

1. We have q′ ∈ φ(F) ⇔ ∃s ∈ S such that rows ∈ F and φ(rows) = q′ ⇔ ∃s ∈ S
such that Cor(s) = ξ and δ′(s) = q′. Because A′ is consistent with Cor, this is
equivalent to ∃s ∈ S such that δ′(s) ∈ F ′ and δ′(s) = q′. Hence, q′ ∈ F ′.

2. Let c ∈ Σ0 ∩ S. We have φ(δ0(c))=φ(rowc)=δ′0(c).

Learning regular tree languages from correction and equivalence queries 13

3. Let us take m > 0, f ∈ Σm and t1, . . . , tm ∈ S. We want to show
that φ(δm(rowt1 , . . . , rowtm

, f)) = δ′m(φ(rowt1), . . . , φ(rowtm
), f). Indeed,

φ(δm(rowt1 , . . . , rowtm
, f)) = φ(rowf(t1,...,tm)) = φ(rows′) = δ′(s′) with s′ ∈ S

such that rows′ = rowf(t1,...,tm). Moreover, δ′m(φ(rowt1), . . . , φ(rowtm), f) =
δ′m(δ′(t1), . . . , δ′(tm), f) = δ′(f(t1, ..., tm)). Since δ′(s′) and δ′(f(t1, . . . , tm))
have identical row values, namely rows′ and rowf(t1,...,tm), they must be the
same state of A′, and hence we obtain that φ(δm(rowt1 , ..., rowtm

, f)) is equal
with δ′m(φ(rowt1), . . . , φ(rowtm

), f).

This concludes the proof of Lemma 6. 2

Now the proof of Theorem 2 follows since from Lemma 5 we know that A(S, E, Cor)
is consistent with Cor and Lemma 6 shows that any other recognizer consistent with
Cor is either isomorphic to A(S, E, Cor) or contains at least one more state. Thus,
A(S, E,Cor) is the unique minimal tree recognizer consistent with Cor.

3.3. The Learner LRTLC

The algorithm can be seen as an interaction between two actors: the Learner who
must identify the target language being allowed to use specific kinds of questions
(CQs and EQs), and the Teacher who knows this language and is assumed to answer
correctly to the questions.

Algorithm 1 Learning Regular Tree Languages from Corrections Algorithm LRTLC

1: Initialize S as {a} for an arbitrarily fixed a ∈ Σ0, and E as {ξ};
2: UPDATE(Tab);
3: repeat
4: repeat
5: while Tab is not closed do
6: Tab:=CLOSURE(Tab);
7: end while
8: while Tab is not consistent do
9: Tab:=CONSISTENCY(Tab);

10: end while
11: if Tab is not complete then
12: Tab:=COMPLETENESS(Tab);
13: end if
14: until Tab is closed and consistent
15: eq:=EQUIV(Tab);
16: until eq=”yes”
17: Return A(S, E, Cor);

In what follows we explain the steps performed by the Learner in order to identify
the target language. The Learner algorithm uses as its main data structure the
observation table that we described in the previous section. We denote an arbitrary
observation table (S, E, Cor) by Tab.

14 C. I. T̂ırnăucă, C. T̂ırnăucă

The Learner starts with an initial observation table Tab = (S, E,Cor), where for
an arbitrarily fixed a in Σ0, S = {a}, E = {ξ}, and the value Cor(a · ξ) is obtained
by asking a correction query. The procedure UPDATE receives as a parameter an
observation table and asks correction queries for all the entries in the table where
there is no information available. The goal of the inner loop is to construct a closed,
consistent and complete observation table.

Procedure CLOSURE(Tab)
find s in SΣ such that rows /∈ rows(S);
S := S ∪ {s};
UPDATE(Tab);
return Tab;

The procedure CLOSURE is very simple. It just searches for a tree s ∈ SΣ such
that rows /∈ rows(S) and adds it to S. After that it updates the table received as a
parameter.

Procedure CONSISTENCY(Tab)
find s1, s2 ∈ S, m > 0, f ∈ Σm, 1 ≤ i ≤ m, t1, . . . , ti−1, ti+1, . . . , tm ∈ S
and e ∈ E such that
rows1 = rows2 and
Cor(f(t1, . . . , ti−1, s1, ti+1, . . . , tm)·e) 6= Cor(f(t1, . . . , ti−1, s2, ti+1, . . . , tm)·e);

E := E ∪ {f(t1, . . . , ti−1, ξ, ti+1, . . . , tm) · e};
UPDATE(Tab);
return Tab;

The procedure CONSISTENCY searches for trees in S which have the same row
values, and hence seem to represent the same state of the automaton, but which have
a different behavior once we apply a context p in Composed(S).The procedure adds
a new experiment to E in order to distinguish between these two states.

Procedure COMPLETENESS(Tab)
while there exist s ∈ S and e ∈ E such that trees(Cor(s · e)) 6⊆ S do

for all t ∈ trees(Cor(s · e))\S
S := S ∪ {t};

end for
UPDATE(Tab);
COMPLETENESS(Tab);

end while
return Tab;

The procedure COMPLETENESS is recursive, but terminating. It is enough to
see that the contexts returned by the Teacher have a special feature. Each subtree of
those contexts is a minimal tree in its equivalence class. Because T is a regular tree
language, there are a finite number of equivalence classes, and hence the table can be
found not complete at most n times, where n represents the number of states of the
minimal recognizer AT .

Learning regular tree languages from correction and equivalence queries 15

The procedure EQUIV just asks the Teacher if the conjectured recognizer is equiv-
alent to the target tree recognizer. If the answer is no, it takes the counterexample
returned by the Teacher and adds it to S, along with all its subtrees. After that it
updates the observation table.

Procedure EQUIV(Tab)
construct A = A(S, E, Cor);
if A and AT are equivalent then return "yes";
else get a counterexample t;

for all t′ ∈ sub(t)
S := S ∪ {t′};

end for
UPDATE(Tab);
return "no";

end if

If the algorithm terminates, it obviously returns the correct recognizer. It is also
clear that LRTLC halts in finitely many steps since:

• whenever the table is found not closed or not consistent the number of distinct
rows in S increases by at least one;

• the procedure COMPLETENESS is performed at most n times;

• for any closed, consistent and complete observation table (S, E, Cor), if d de-
notes the number of different values of rows for s in S, then any recognizer
consistent with Cor must have at least d states (from the injectivity of function
φ defined in Lemma 6);

• LRTLC can make at most n − 1 incorrect conjectures since the size of the
conjectured recognizer is initially at least one and may not exceed n (whenever
the Teacher answers by a counterexample the number of distinct values of rows

for s in S increases by at least 1).

Hence, LRTLC always eventually finds a closed, consistent and complete obser-
vation table (S, E, Cor) and makes a conjecture A(S, E, Cor). Since LRTLC has to
make another conjecture as long as it is running, it must terminate by making a
correct conjecture.

Let us now discuss the time complexity of the algorithm LRTLC. In what follows
we denote by |M | the cardinality of the set M . The total running time of LRTLC
could be bounded by a polynomial in n (n is the number of states in AT) if the
Teacher always returns the minimal possible counterexample. However, there is no
restriction on the size of the counterexample. Hence, we have to use both n and the
maximum size of the counterexamples (denoted by m in the sequel) as parameters
when describing the complexity of the algorithm.

We will first show that all the procedures run in time polynomial in the size of
the observation table and that the final observation table is polynomial in n and m
(although it is exponential in the maximum rank of symbols).

16 C. I. T̂ırnăucă, C. T̂ırnăucă

One can notice that the procedures CLOSURE(Tab) and CONSISTENCY(Tab)
cannot be called more than n − 1 times since each of them increases the number of
distinct rows from S, and this number is initially one and cannot exceed n. The
same statement also holds for the procedure COMPLETENESS(Tab): it cannot be
called more than n times since the total number of minimal tree representatives for
the states coincides with the number of states. When the observation table is closed,
consistent and complete, the algorithm runs the procedure EQUIV(Tab), and this
can happen no more than n times since any counterexample adds at least one distinct
row to the set S.

To compute CLOSURE(Tab), we will have to consider each pair in S × (SΣ\S)
and compare the observed behaviors of the two trees (in the worst case). This task
can be done using O(|S| · |SΣ\S| · |E|) comparisons.

To compute CONSISTENCY(Tab), we first find the trees s, s′ in S such that
rows = rows′ . This requires, in the worst case, O(|S|2 · |E|) operations. Then, we
try to find m > 0, f ∈ Σm and t1, . . . , tm ∈ S such that rowf(t1,...,ti−1,s,ti+1,...,tm) 6=
rowf(t1,...,ti−1,s′,ti+1,...,tm). In the worst case the algorithm would have to perform
O(k · |S|r−1 · |E|) comparisons, where k is the size of the alphabet and r the maximum
arity of the symbols in Σ.

To compute COMPLETENESS(Tab), for all contexts in {Cor(s ·e) | s ∈ S, e ∈ E},
we need to see if their direct subtrees are also in S. This can be done in O(n(r− 1) ·
|S|2 · |E|) steps.

To compute EQUIV(Tab), we first construct A(S, E, Cor) in time polynomial in
the size of the observation table. A counterexample requires the addition of at most
m trees of size at most m to S, and this can happen at most n− 1 times.

For the procedure UPDATE(Tab) it is clear that the number of correction queries
asked coincides with the size of the final observation table. Regarding the dimen-
sions of S, SΣ\S and E, it is easy to see that the number of trees in S cannot exceed
2n+m(n−1) (it starts with one tree, the procedures CLOSURE and CONSISTENCY
together can add at most n − 1 trees, EQUIV at most m(n − 1) trees, and COM-
PLETENESS at most n trees), SΣ\S has at most k|S|r elements, and the number of
contexts in E cannot be greater than n.

Hence, the total running time of LRTLC can be bounded by a polynomial function
of m and n.

3.4. The Teacher

In this section we show that there exists an algorithm which can compute the answers
to correction queries in polynomial time in the size of the finite tree recognizer to be
learned. Actually, the Teacher can give the answer in linear time if some precom-
putation is done (see Algorithm 2, lines 1-6). We just have to precompute for each
state q its minimal context cq (this computation is polynomial in the size of the target
recognizer). The algorithm presented below first determines for each q the minimal
tree tq such that δ(tq) = q, and then computes the minimal context cq such that
δ(t · cq) ∈ F for all t ∈ TΣ with δ(t) = q, where AT = (Q,Σ, δ, F) is the minimal
tree recognizer for the target tree language T . When the Teacher receives a tree t as

Learning regular tree languages from correction and equivalence queries 17

an input, it is enough to compute δ(t) (which can be done in linear time) and return
cδ(t).

In the process of computing the minimal trees we have to consider only the
non-recursive rules, that is rules of the form δm(q1, . . . , qm, f) = q such that
q /∈ {q1, . . . , qm}. We show that recursive rules do not help in the process of finding
the minimal tree.

Algorithm 2 Computing Minimal Context Algorithm
1: for all q ∈ Q do
2: tq:=MinT(q, ∅);
3: end for
4: for all q ∈ Q do
5: cq:=MinC(q, ∅);
6: end for
7: for any input tree t submitted by the Learner do
8: q := δ(t);
9: return cq;

10: end for

Indeed, let us suppose we know that the minimal trees for the states q1, . . . , qi−1,
qi+1, . . . , qm are t1, . . . , ti−1, ti+1, . . . , tm, respectively, and we want to compute the
minimal tree for q using the rule δm(q1, . . . , qi−1, q, qi+1, . . . , qm, f) = q. It is clear
that the tree f(t1, . . . , ti−1, t, ti+1, . . . , tm) is always greater than the tree t, no matter
what are the weights of f, t1, . . . , ti−1, ti+1, . . . , tm, t (this is true even for the case in
which m = 1, w(f) = 0, t <kbo f(t)).

Procedure MinT(q, P)
MinTree:=θ;
for all rules δm(q1, . . . , qm, f) = q in RP

t do
if MinT(qi, P ∪ {q}) 6= θ for all i ∈ {1, . . . ,m} then

t := f(MinT(q1, P ∪ {q}), . . . , MinT(qm, P ∪ {q}));
if MinTree = θ then MinTree:=t
else

if t <kbo MinTree then MinTree:=t
end if

end if
end if

end for
return MinTree;

Also, we have to eliminate the loops from our computation. For example, if we
want to compute the minimal tree for a state q using the rule δm(q1, . . . , qm, f) = q,
then in the recursive process of computing minimal trees for all states qi we have
to eliminate all rules which contain the state q. Otherwise, we will find ourselves in
a similar situation to the one described above. That is why we need to introduce

18 C. I. T̂ırnăucă, C. T̂ırnăucă

the set P of “not allowed” states. We construct the set RP
t by eliminating from

the set of all rules first the recursive ones and after that all the rules of the form
δm(q1, . . . , qm, f) = q, where at least one qi is in P .

The existence of a minimal tree for each state is guaranteed since the target rec-
ognizer is minimal, and hence all its states are reachable. The symbol θ is used to
indicate that the minimal tree has not been found yet or that there is no minimal tree
for that state in the given circumstances (we can think of the set P as a supplementary
restriction imposed on the search space).

In order to construct the minimal context for each state we also need to re-
move from the search space the rules which would generate cycles. More precisely,
suppose we know that the state q appears in the left hand side only in the rule
δm(q1, . . . , qi−1, q, qi+1, . . . , qm, f) = q′ and q′ appears in the left hand side of two
rules and one of them is δm(q′1, . . . , q

′, . . . , q′l, g) = q. It is clear that we should not
use this rule to compute the minimal context, first of all because we get into a loop,
and secondly because c <kbo g(tq

′
1 , . . . , f(tq1 , . . . , tqi−1 , ξ, tqi+1 , . . . , tqm−1), . . . , tq

′
l) · c

for any context c ∈ CΣ. In order to avoid this kind of loops we introduce the set RP
c

which contains only rules of the form δm(q1, . . . , qm, f) = q in which q /∈ P .

Procedure MinC(q, P)
if q ∈ F then MinContext:=ξ;
else

MinContext:=θ;
for all rules δm(q1, . . . , qi−1, q, qi+1, . . . , qm, f) = q′ in R

P∪{q}
c do

if MinC(q′, P ∪ {q}) 6= θ then
c := f(tq1 , . . . , tqi−1 , ξ, tqi+1 , . . . , tqm)·MinC(q′, P ∪ {q});
if MinContext= θ then MinContext:=c
else

if c <kbo MinContext then MinContext:=c;
end if

end if
end if

end for
end if
return MinContext;

It is also obvious that choosing to replace each state q by the minimal tree tq is
going to give us the smallest correcting context because if we take any other tree t,
then tq ·c <kbo t ·c for any context c ∈ CΣ. Choosing to stop the search once we found
a final state is justified by the properties of the Knuth-Bendix order. Continuing the
search on the same path would give us only bigger and bigger contexts.

The existence of a minimal context for all states except for the sink state is also
guaranteed since the target recognizer is minimal, and hence there is a most one state
which is not co-reachable (the sink state). The symbol θ is used here for similar
reasons: to indicate that either the minimal context has not been found yet, or that,
given the set of rules which can be applied, there is no minimal context for that state.

Learning regular tree languages from correction and equivalence queries 19

3.5. Running Example

In what follows we show how our algorithm works on an example. Let Σ =
{f/3, g/2, a/0, b/0} be a ranked alphabet and the following order < among the sym-
bols of the alphabet: a < b < g < f . The weight function w : Σ ∪ {ξ} → IR+

0 is
defined by: w(ξ) = w(a) = w(b) = 1, w(g) = 2 and w(f) = 3. Suppose the language
to be learned is T = {g(a, b) · [f(a, ξ, b)]n | n ≥ 0} ∪ {g(b, b) · [f(a, ξ, b)]n | n ≥ 0},
where [f(a, ξ, b) = ξ]0 and [f(a, ξ, b)]n = [f(a, ξ, b)]n−1 · f(a, ξ, b), n ≥ 1.

Clearly, T is a regular tree language and AT = (Q,Σ, δ, F) the minimal tree rec-
ognizer for T , where Q = {qa, qb, qs, qf}, F = {qf}, and the transition function δ is
defined as follows:

• δ0(a) = qa, δ0(b) = qb,

• δ2(qa, qb, g) = qf , δ2(qb, qb, g) = qf , δ2(qx, qa, g) = qs for x ∈ {a, b},
• δ3(qa, qf , qb, f) = qf , and δ3(qx, qy, qz, f) = qs for all remaining cases.

The algorithm starts by constructing the following observation table, where S =
{a} and E = {ξ} (actually S can contain any of the two symbols with arity 0, i.e., a
or b).

Observation table
E

ξ

S a g(ξ, b)
b g(ξ, b)

SΣ\S g(a, a) θ

f(a, a, a) θ

Table 2: The observation table for S = {a} and E = {ξ}

The observation table from Table 2 is not closed because rowg(a,a) /∈ rows(S), and
the algorithm proceeds by adding the tree g(a, a) to S. Updating the current table,
we get the observation table from Table 3.

Observation table
E

ξ

S a g(ξ, b)
g(a, a) θ

b g(ξ, b)
SΣ\S g(a, g(a, a)) θ

...
...

f(g(a, a), g(a, a), g(a, a)) θ

Table 3: The observation table for S = {a, g(a, a)} and E = {ξ}

20 C. I. T̂ırnăucă, C. T̂ırnăucă

This table is closed and consistent but not complete (we have g(ξ, b) ∈ Cor(S ·E),
and trees(g(ξ, b)) = {b} 6⊆ S). Hence, LRTLC adds the tree b to S and updates the
table (see Table 4).

Observation table
E

ξ

a g(ξ, b)
S b g(ξ, b)

g(a, a) θ

g(a, b) ξ

g(b, a) θ

SΣ\S g(b, b) ξ
...

...
f(g(a, a), g(a, a), g(a, a)) θ

Table 4: The observation table for S = {a, b, g(a, a)} and E = {ξ}

This table is not closed because rowg(a,b) /∈ rows(S) and not consistent: rowa =
rowb but rowg(a,a) = θ 6= ξ = rowg(a,b). The algorithm continues by adding the tree
g(a, b) to S and context g(a, ξ) to E. We get the observation table from Table 5.

Observation table E States
ξ g(a, ξ)

a g(ξ, b) θ qa

S b g(ξ, b) ξ qb

g(a, a) θ θ qs

g(a, b) ξ θ qf

g(b, a) θ θ qs

g(b, b) ξ θ qf

...
...

...
...

SΣ\S f(a, g(a, a), b) θ θ qs

f(a, g(a, b), b) ξ θ qf

...
...

...
...

f(g(a, b), g(a, b), g(a, b)) θ θ qs

Table 5: The observation table for S = {a, b, g(a, a), g(a, b)} and E = {ξ, g(a, ξ)}

The above observation table is closed, consistent and complete, and the conjectured
recognizer A(S, E,Cor) is isomorphic to AT . Hence, the Teacher’s answer to the EQ
will be ”yes”. The algorithm LRTLC outputs A(S, E, Cor) and halts.

Learning regular tree languages from correction and equivalence queries 21

4. The Class of Injective Languages

In this section we show that there exists an infinite class of tree languages learnable
from correction queries only, and we present a restricted version of LRTLC, namely
LRTLCinj .

Definition 2 (injective languages) A tree language T is injective (or T has the in-
jectivity property) if for any two trees t1, t2 in TΣ, t1 ≡T t2 ⇔ CorT (t1) = CorT (t2).
The subclass of regular tree languages which have the injectivity property is denoted
by Inj.

Note that one implication always holds: t1 ≡T t2 ⇒ CorT (t1) = CorT (t2). It is an
easy exercise to see that the tree language from Example 1 belongs to the class Inj
and the one from Section 3.5 does not.

Theorem 7 For any tree language T in Inj, the algorithm asks only one EQ when
learning.

Proof. For the two trivial languages T = ∅ and T = TΣ the proof is immediate.
Hence, let T be a non-trivial tree language in Inj and AT = (Q,Σ, δ, F) the minimal
tree recognizer accepting T with |Q| = n > 1.

We show by induction that, at any step k < n of the algorithm, the table (S, E,Cor)
has the following properties: E = {ξ}, |S| = k, and (S, E,Cor) is not closed but
consistent.

For k = 1, E = {ξ} and S = {a}, where a ∈ Σ0, it is clear that the table is
not closed since this would imply that the target recognizer has only one state which
contradicts the non-triviality of T .

Suppose that the result holds for all steps strictly smaller than k, and we want to
prove that the above three conditions are satisfied at step k (k < n). Since at step
k − 1 the set S had k − 1 trees and the table was not closed, it means that at step k
after procedure CLOSURE the set S has one more element (and hence k elements),
E continues to be {ξ}, and clearly the table is consistent. The only fact that needs
to be shown is that (S, E,Cor) is not closed.

Assume by contradiction that (S, E, Cor) is closed. Then, we can construct a
recognizer A′ = A(S, E, Cor) = (Q′,Σ, δ′, F ′) with |Q′| = k, as in Section 3.2 (note
that the observation table does not need to be complete in order to construct such a
recognizer).

We define φ : Q′ → Q by φ(rows):=δ(s). We prove that the following state-
ments hold: φ is well-defined and injective, φ(F ′) ⊆ F , φ(δ′m(rows1 , . . . , rowsm

, f)) =
δm(φ(rows1), . . . , φ(rowsm

), f) for m ≥ 0, f ∈ Σm, s1, . . . , sm ∈ S.
Clearly, φ is well-defined since there are no two trees s1 6= s2 in S such that rows1 =

rows2 . To see that φ is injective, let us take two distinct states in Q′, namely rows1

and rows2 . Because E = {ξ}, rows1 6= rows2 is equivalent to CorT (s1) 6= CorT (s2),
and since T has the injectivity property, this is equivalent to s1 6≡T s2 ⇔ δ(s1) 6=
δ(s2) ⇔ φ(rows1) 6= φ(rows2). Thus, φ is injective.

22 C. I. T̂ırnăucă, C. T̂ırnăucă

For any q in φ(F ′), there exists s in S such that rows ∈ F ′ and φ(rows) = q which
is equivalent to CorT (s) = ξ and δ(s) = q. Hence, q is in F .

We have δ′m(rows1 , . . . , rowsm , f) = rowf(s1,...,sm) = rows, where s ∈ S, and
hence φ(δ′m(rows1 , . . . , rowsm

, f)) = φ(rows) = δ(s). But δ(s) = δ(f(s1, . . . , sm))
because f(s1, . . . , sm) ≡T s since CorT (f(s1, . . . , sm)) = CorT (s) and the tree
language T is injective. So, φ(δ′m(rows1 , . . . , rowsm

, f)) = δ(f(s1, . . . , sm)) =
δm(δ(s1), . . . , δ(sm), f) = δm(φ(rows1), . . . , φ(rowsm), f).

Clearly, A′ is a complete recognizer (i.e., for all m ≥ 0, δ′m is a total function). Now
it is enough to see that we have constructed an injective morphism from A′ to AT

such that |Q′| = k < n = |Q| which leads us to a contradiction. Hence, (S, E,Cor) is
not closed.

We proved that the procedure CLOSURE(Tab) is called at least n − 1 times.
Obviously, this means that by that time S already has n different rows, and since it
cannot have more (the total number of states in the target recognizer is n), in step n
the table will be closed and consistent. After running the procedure COMPLETNESS
(which cannot add any new row because the table already contains n different rows),
the output recognizer will be the target one, and the answer to the EQ will be yes.

2

Corollary 8 The class Inj is learnable from correction queries only.

Proof. One can modify LRTLC to output the conjectured automaton A(S, E, Cor)
and halt when the table is closed, consistent and complete. From the previous theorem
it is clear that the algorithm will return the target automaton. 2

The restricted version of LRTLC for the subclass of injective languages is presented
in Algorithm 3.

Algorithm 3 Learning Injective Languages from Corrections Algorithm LRTLCinj

1: Initialize S as {a} for an arbitrarily fixed a ∈ Σ0, and E as {ξ};
2: UPDATE(Tab);
3: while Tab is not closed do
4: Tab:=CLOSURE(Tab);
5: end while
6: Return A(S, E, Cor);

5. Concluding Remarks

We introduced the notions of correcting contexts and complete observation tables,
and we showed that regular tree languages can be learned from correction and equiv-
alence queries. We considered that in the case of regular tree languages it was worth
describing how the Teacher reacts and returns counterexamples because this is not
trivial. Also, we proved that injective tree languages do not need equivalence queries
in order to be learned in this framework.

Learning regular tree languages from correction and equivalence queries 23

This new approach seems to be interesting not only from a theoretical point of view,
but also for the idea which is behind the algorithm, namely learning from corrections.
Let us imagine that the oracle is the world wide web. Clearly, we can think of ways
to implement corrections (not necessarily the one defined in this article). But for the
web to answer an equivalence query will be practically impossible. Another practical
reason for which eliminating the equivalence queries seems relevant is that it might
happen that we have access to language elements but not to the device which produces
the language.

Our algorithm, as well as the ones from [4, 14], has the disadvantage that it runs
in exponential time in the maximum rank of symbols from the alphabet. A possible
improvement could be obtained by adapting our idea of correcting contexts to the
algorithm presented in [5].

In the future we would like to study other types of correcting contexts (which would
allow different subclasses of regular tree languages to be learnable without equivalence
queries), and to extend LRTLC for inferring weighted tree automata which are very
useful tools for practitioners.

Finally, regular tree languages provide a versatile toolkit for building mathematical
models of various subjects like, for example, XML documents. In particular we are
interested in linguistic applications. The leading idea is that the input in such appli-
cations is formed by annotated trees. The annotations consist in semantic information
which facilitates the learning process. Such data are widely available and come from
many computational linguistic formal grammars such as tree adjoining grammars or
categorial grammars.

Acknowledgments

We are grateful to professors Magnus Steinby, Victor Mitrana and Zoltán Ésik for
valuable advices and a careful review. Also, many thanks to the anonymous reviewers
who helped us improving the present paper.

References

[1] D. Angluin, Learning regular sets from queries and counterexamples. Informa-
tion and Computation 75 (1987), 87–106.

[2] F. Baader, T. Nipkow, Term Rewriting and All That . Cambridge University
Press, New York, 1998.

[3] L. Beccera-Bonache, A. H. Dediu, C. T̂ırnăucă, Learning DFA from cor-
rection and equivalence queries. In: Y. Sakaibara, S. Kobayashi, K. Sato,
T. Nishino, E. Tomita (eds.), Proc., 8th Int. Colloq. on Grammatical Inference
(ICGI). LNAI 4201, Springer-Verlag, Berlin Heidelberg, 2006, 281–292.

[4] F. Drewes, J. Högberg, Learning a regular tree language from a teacher. In:
Z. Ésik, Z. Fülöp (eds.), Proc., 7th Int. Conf. on Developments in Language
Theory (DLT). LNCS 2710, Springer-Verlag, Berlin Heidelberg, 2003, 279–291.

24 C. I. T̂ırnăucă, C. T̂ırnăucă

[5] F. Drewes, J. Högberg, Query learning of regular tree languages: how to
avoid dead states. Theory of Computing Systems (2006). To appear.

[6] K. Fu, Syntactic Methods in Pattern Recognition. Academic Press, New York,
1974.

[7] F. Gécseg, M. Steinby, Tree Automata. Akadémiai Kiadó, Budapest, 1984.

[8] E. M. Gold, Language identification in the limit. Information and Control 10
(1967), 447–474.

[9] J. J. Horning, A study of grammatical inference. Techn. Rep. 139, Univ. of
Stanford, Dept. of Computer Science, 1969.

[10] L. Lee, Learning of context-free languages: a survey of the literature. Techn.
Rep. TR-12-96, Harvard University, 1996.

[11] L. S. Levy, A. K. Joshi, Skeletal structural descriptions. Information and
Control 39 (1978), 192–211.

[12] C. Mart́ın-Vide, V. Mitrana, G. Păun (eds.), Formal Languages and Appli-
cations. Studies in Fuzzyness and Soft Computing 148, Springer, Berlin, 2004.

[13] G. Rozenberg, A. Salomaa (eds.), Handbook of Formal Languages, vol. 3:
Beyond Words. Springer-Verlag New York, Inc., New York, 1997.

[14] Y. Sakakibara, Learning context-free grammars from structural data in poly-
nomial time. Theoretical Computer Science 76 (1990), 223–242.

