
LEARNING DFA FROM CORRECTIONS1

Leonor Becerra-Bonache, Cristina Bibire, Adrian Horia Dediu

Research Group on Mathematical Linguistics, Rovira i Virgili University
Pl. Imperial Tarraco 1, 43005, Tarragona, Spain

e-mail: {leonor.becerra,cristina.bibire,adrianhoria.dediu}@estudiants.urv.es

ABSTRACT

This paper is focused on learning deterministic finite automata (DFA) within the framework of query
learning. We present an efficient algorithm for learning DFA, based on Angluin’s algorithm to identify
DFA from membership and equivalence queries. We improve Angluin’s results using a new type of
query called correction query. Therefore, our learning algorithm has access to a teacher able of
answering two type of queries: correction and equivalence queries. It can learn any DFA from an
adequate teacher in polynomial time. We prove that it is possible to learn DFA from corrections and
that the number of queries are reduced considerably.

Keywords: computational learning theory, query learning, learning DFA, membership query, equiva-
lence query, correction query

1. Introduction

In the last four decades three important formal models have been developed within Computa-
tional Learning Theory: Gold’s model of identification in the limit [5], the query learning model
of Angluin [1, 2], and the PAC learning model of Valiant [12]. All these models have been vividly
investigated in the field of Grammatical Inference.

The problem of identifying DFA from examples have been studied quite extensively (see, e.g.,
[3, 9]). There are several interesting results based on different techniques: identification of DFA
from queries in polynomial-time, identification of subclasses of DFA from positive data, iden-
tification from erroneous examples, etc. One of the main positive results in the computational
learning framework is that DFA can be learned from membership and equivalence queries.

Learning from queries was introduced by Angluin [1]. In query learning, there is a teacher
(oracle) that knows the language and has to answer correctly specific kind of queries asked by the
learner. The learnability of DFA has been successfully studied in the context of query learning.
In [1], Angluin gave an algorithm for learning DFA from membership and equivalence queries.
She was the first who proved learnability of DFA via queries. Later, Rivest and Schapire in 1993
([10]), Hellerstein et al. in 1995 ([6]) or Balcázar et al. in 1996 ([4]) developed more efficient
versions of the same algorithm trying to increase the parallelism level, to reduce the number of
equivalence queries, etc.

In all the mentioned versions of the Angluin’s algorithm, when the learner asks about a word
in the language, the teacher’s answer is very simple, yes or no. We consider that this hypothesis
is oversimplified for a normal learning process. Our goal is to model a more natural way of

1This work was possible thanks to a FPU Fellowship from the Spanish Ministry of Education and Science; Spe-
cial thanks to professor Victor Mitrana for valuable advices and a careful review; also many thanks to anonymous
reviewers for their remarks and suggestions.

2 L. Becerra-Bonache, C. Bibire, A.H. Dediu

answering. When we consider how a child learns a language with the help of an adult, we can
see that several aspects of the process of children’s language acquisition could be represented
in the query learning model. For instance, in that stage in which children overgeneralize, the
adults correct them, children apply the corrections to their previous knowledge of the language
in order not to repeat again the same errors. Our idea is to reflect this process in the query
learning model.

We introduce an extension of membership queries called correction queries. Our algorithm
is similar to Angluin’s algorithm, the main difference consist of the kind of answers the learner
receives. Due to the increased complexity of teacher’s answers, we obtained a faster learning pro-
cess; the increased speed is based on the reduced number of queries (correction and equivalence
queries) between the learner and the teacher until the discovering of the language.

The paper is organized as follows. Formal preliminaries and several basic remarks are pre-
sented in Section 2. In Section 3 we describe the observation table as the main data structure of
the algorithm, we give a proof for the correctness of our algorithm and we present the algorithm
along with the time analysis. Section 4 contains a running example and comparative results
with Angluin’s algorithm whereas in Section 5 we present several concluding remarks.

2. Preliminaries

In this paper we follow standard definitions and notations in formal language theory. We find
supplementary information for this domain in [7, 8, 11].

Let Σ be a finite set of symbols called the alphabet and let Σ∗ be the set of strings over Σ.
A language L over Σ is a subset of Σ∗. The elements of L are called words or strings. Let α, β,
γ be strings in Σ∗ and |α| be the length of the string α. λ is a special string called the empty
string and has length 0. Given a string α = βγ, β is the prefix of α and γ is the suffix of α.

A deterministic finite automata (DFA) is a 5-tuple A = (Q,Σ, δ, q0, F) where Q is the (finite)
set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states
and δ is a partial function that maps Q × Σ to Q which can be extended to words by doing
δ(q, λ) = q and δ(q, αa) = δ(δ(q, α), a), ∀q ∈ Q, ∀α ∈ Σ∗, ∀a ∈ Σ. A word α is accepted by
A if δ(q0, α) ∈ F . The set of words accepted by A is denoted by L(A) and is called a regular
language.

We say that a DFA A = (Q,Σ, δ, q0, F) is complete if for all q in Q and a in Σ, δ(q, a) is
defined (that is δ is a total function). For any DFA A, there exists DFA A′ (also called the
canonical DFA), such that L(A) = L(A′) and the number of states of A′ is minim. Without loss
of generality, we assume that the target DFA which is to be learned is a canonical DFA.

A state q is called a live state if there exist strings α and β such that δ(q0, α) = q and
δ(q, β) ∈ F . The set of all the live states is called the liveSet(A). A state that is not in the
liveSet is called a dead state. The set of all dead states is called the deadSet(A). Note that for
a canonical A DFA the deadSet(A) has at most one element.

For a string α ∈ Σ∗, we denote the left quotient of L by α by TailL(α) = {β|αβ ∈ L} =
{β|δ(q0, α) = q, δ(q, β) ∈ F}, where A = (Q,Σ, qo, δ, F) is an automaton accepting L.

In a standard query learning algorithm, the learner interacts with a teacher called minimally
adequate teacher, who knows the target language (a regular language L over a known alphabet)
and is assumed to answer correctly. The goal of the algorithm is to come up with a DFA
accepting L. The teacher has to answer two types of queries:

• Membership queries (MQ). The learner asks if a string α is in L, and the teacher answers
YES or NO.

• Equivalence queries (EQ). The learner produces a DFA A and asks whether L(A) is equal
with the target language L; the teacher answers YES if the learner automaton is isomorphic

Learning DFA from corrections 3

with the target automaton, NO otherwise. If the answer is NO a string α in the symmetric
difference of the L(A) and L is returned. This returned string is called counterexample.

See [1, 2] for detailed explanations of the model.
We are going to introduce a new type of query called correction query (CQ). It is an extension

of the MQ; the difference consists in the type of answer that we receive from the teacher. Instead
of a yes/no answer, a string called the correctingString is returned to the learner.

The correctingString of α with respect to L is the minimum word (in the lexicographic order,
denoted by ¹) of the set TailL(α). In the case that TailL(α) = ∅ we set the correctingString
of α w.r.t. L to ϕ, where ϕ is a symbol which does not belong to the alphabet Σ. With these
considerations, for the sake of simplicity in notations, we use C instead of correctingString.
Hence, C is a function from Σ∗ to Σ∗ ∪ ϕ. Note that C(α) = λ if and only if α ∈ L.

Remark 1 If α, β, γ are strings in Σ∗ such that C(α) = β · γ then C(α · β) = γ.

Remark 2 For any α, β ∈ Σ∗, if TailL(α) = ∅ then TailL(α · β) = ∅.

Remark 3 The following results hold:

1. For any α ∈ Σ∗ such that C(α) 6= ϕ we have C(α · C(α)) = λ.

2. Let α, β ∈ Σ∗. If C(α) = ϕ, then C(αβ) = ϕ but the converse does not hold.

3. Learning with Correction Algorithm (LCA)

We describe the learning algorithm LCA and we show that it efficiently learns an initially
unknown regular set from any adequate teacher. Let L be the unknown regular set and let Σ
be the alphabet of L.

3.1. Observation Tables

This information is organized into an observation table consisting of three parts: a nonempty
finite prefix-closed set S of strings, a nonempty finite suffix-closed set E of strings, and the
restriction of the mapping C to the set ((S ∪ SΣ) · E). The observation table will be denoted
(S, E,C).

An observation table can be visualized as a two-dimensional array with rows labeled by
elements of S∪SΣ and columns labeled by elements of E with the entry for row s and column e
equal to C(s ·e). If s is an element of (S∪SΣ) then row(s) denotes the finite function from E to
Σ∗ ∪ {ϕ} defined by row(s)(e) = C(s · e). By rows(S) we understand the set {row(s) | s ∈ S}.

The algorithm LCA uses the observation table to build a deterministic finite automaton. Rows
labeled by the elements of S are the candidates for states of the automaton being constructed,
and columns labeled by the elements of E correspond to distinguishing experiments for these
states. Rows labeled by elements of SΣ are used to construct the transition function.

Closed, consistent observation tables. An observation table is called closed if for every t in
(SΣ − S) there exists an s in S such that row(t) = row(s). An observation table is called
consistent if for any s1, s2 in S such that row(s1) = row(s2), we have row(s1 · a) = row(s2 ·
a), ∀a ∈ Σ.

If (S, E, C) is a closed, consistent observation table, we define a corresponding automaton
A(S, E,C) = (Q,Σ, δ, q0, F), where Q, q0, F and δ are defined as follows:

Q = {row(s) | s ∈ S}
q0 = row(λ)
F = {row(s) | s ∈ S and C(s) = λ}

4 L. Becerra-Bonache, C. Bibire, A.H. Dediu

δ(row(s), a) = row(s · a)
It can be easily shown that deadSet(A) = {row(s) | s ∈ S and C(s) = ϕ} (from Remark 3 we

know that C(s) = ϕ ⇒ C(s · a) = ϕ, ∀a ∈ Σ).
To see that this is a well defined automaton, note that since S is a nonempty prefix-closed set,

it must contain λ, so q0 is defined. Also, since E is a nonempty suffix-closed set, it must contain
λ. Thus, if s1 and s2 are elements of S such that row(s1)=row(s2), then C(s1) = C(s1 · λ) =
row(s1)(λ) and C(s2) = C(s2 · λ) = row(s2)(λ) are defined and equal to each other, hence F
is well defined. To see that δ is well defined, suppose s1 and s2 are elements of S such that
row(s1) = row(s2). Then since the observation table A(S,E, C) is consistent, for each a in A,
row(s1 · a) = row(s2 · a), and since it is closed, this common value is equal to row(s) for some
s in S.

The important fact about this automaton is the following.

Theorem 1 If (S, E, C) is a closed and consistent observation table, then the automaton
A(S, E,C) is consistent with the finite function C. Any other automaton consistent with C
but inequivalent to A(S,E, C) must have more states.

The theorem is proved by a sequence of straightforward lemmas.

Lemma 2 Assume that (S,E, C) is a closed and consistent observation table. For the automa-
ton A(S, E,C) and for every s in S ∪ SΣ, δ(q0, s) = row(s).

This lemma can be proved by induction on the length of s. The reader is referred to [1] for
details.

Lemma 3 Assume that (S, E,C) is a closed and consistent observation table. Then the au-
tomaton A = A(S, E, C) is consistent with the function C. That is, for every s in S ∪ SΣ and
e in E, the following statements hold:

1. C(s · e) = ϕ ⇔ δ(q0, s · e) ∈ deadSet(A),

2. C(s · e) = t ⇔ (δ(q0, s · e · t) ∈ F and ∀t′ ∈ Σ∗ (δ(q0, s · e · t′) ∈ F ⇒ t ¹ t′)).

Proof. We will use in the proof the following remark

Remark 4 For each s in S ∪ SΣ, there exists s′ in S such that δ(q0, s · e) = δ(q0, s
′) and

C(s · e) = C(s′) for all e ∈ E.

1. Let s be in S ∪ SΣ and e in E. Let s′ in S be such that δ(q0, s · e) = δ(q0, s
′) and C(s · e)

= C(s′). Then, C(s · e) = ϕ ⇔ C(s′) = ϕ ⇔ row(s′) ∈ deadSet(A) ⇔ δ(q0, s
′) ∈ deadSet(A) ⇔

δ(q0, s · e) ∈ deadSet(A).
2. Let s be in S ∪ SΣ, e in E and C(s · e) = t. We distinguish two cases: t = λ and t ∈ Σ+.
Case I) In the case t = λ, we have to prove that C(s · e) = λ if and only if δ(q0, s · e) ∈ F (it

is clear that ∀t′ ∈ Σ∗ δ(q0, s · e · t′) ∈ F ⇒ λ ¹ t′ since λ is smaller than any other string).
Lets take s′ in S such that δ(q0, s ·e) = δ(q0, s

′) and C(s ·e) = C(s′). C(s ·e) = λ ⇔ C(s′) = λ
⇔ row(s′) ∈ F ⇔ δ(q0, s

′) ∈ F ⇔ δ(q0, s · e) ∈ F .
Case II) Lets take t = a1 · a2 · · · an with ai ∈ Σ, ∀i ∈ {1, 2, ...n} and n ≥ 1.
From Remark 4, we can find the strings {s0, s1, ..., sn} as in the sequel:
s in S ∪ SΣ, e in E ⇒ ∃ s0 ∈ S such that δ(q0, s0) = δ(q0, s · e) and C(s0) = C(s · e).
s0 · a1 in S ∪SΣ, λ in E ⇒ ∃ s1 ∈ S such that δ(q0, s1) = δ(q0, s0 · a1) and C(s1) = C(s0 · a1).
s1 · a2 in S ∪SΣ, λ in E ⇒ ∃ s2 ∈ S such that δ(q0, s2) = δ(q0, s1 · a2) and C(s2) = C(s1 · a2).
. . .
sn−1 · an in S ∪ SΣ, λ in E ⇒ ∃ sn ∈ S such that δ(q0, sn) = δ(q0, sn−1 · an) and C(sn) =

C(sn−1 · an).

Learning DFA from corrections 5

δ(q0, s · e · t) = δ(q0, s · e ·a1 ·a2 · · ·an) = δ(δ(q0, s · e), a1 ·a2 · · ·an) = δ(δ(q0, s0), a1 ·a2 · · ·an) =
δ(q0, s0 ·a1 ·a2 · · ·an) = δ(δ(q0, s0 ·a1), a2 · · ·an) = δ(δ(q0, s1), a2 · · ·an)) = . . . = δ(δ(q0, sn−1), an)
= δ(q0, sn−1 · an) = δ(q0, sn).

We start by showing that C(s · e) = t implies δ(q0, s · e · t) ∈ F .
C(s · e) = t ⇒ C(s0) = a1 · a2 · · · an ⇒ C(s0 · a1) = a2 · · · an ⇒ C(s1) = a2 · · · an ⇒ C(s1 · a2)

= a3 · · · an ⇒ C(s2) = a3 · · · an ⇒ . . . ⇒ C(sn−1 · an) = λ ⇒ C(sn) = λ ⇒ row(sn) ∈ F ⇒
δ(q0, sn) ∈ F ⇒ δ(q0, s · e · t) ∈ F .

Next we will show that if we take t = a1 · a2 · · · an to be the smallest string in lexicographic
order such that δ(q0, s · e · t) ∈ F then C(s · e) = t. We know that the set {t | δ(q0, s · e · t) ∈ F}
is not empty because we proved it contains the string C(s · e). Because δ(q0, s · e · t) = δ(q0, sn)
and δ(q0, s · e · t) ∈ F it follows δ(q0, sn) ∈ F ⇔ row(sn) ∈ F ⇔ C(sn) = λ.

But C(sn) = C(sn−1 · an) ⇒ C(sn−1 · an) = λ ⇒ an ∈ TailL(sn−1). We will show that this
implies C(sn−1) = an. Suppose that there exists a string xn ≺ an such that C(sn−1) = xn.
Then we found a string t′ strictly smaller than t such that δ(q0, s · e · t′) ∈ F , which contradicts
the choice we have made for t. We can take t′ to be a1 · a2 · · · an−1 ·x. Therefore δ(q0, s · e · t′) =
δ(q0, s · e · a1 · · · an−1 · x) = δ(δ(q0, s · e · a1 · · · an−1), x) = δ(δ(q0, sn−1), x) = δ(q0, sn−1 · x) ∈ F
and because C(sn−1) = x, it follows that δ(q0, sn−1 · x) ∈ F .

But C(sn−2 · an−1) = C(sn−1) = an. For a similar reason as above this implies C(sn−2) =
an−1 · an (otherwise t′′ = a1 · · · an−2 · x, where x = C(sn−2), x ≺ an−1 · an is a string strictly
smaller than t such that δ(q0, s · e · t′′) is in F).

Reasoning in the same manner we obtain that C(s0) = a1 ·a2 · · ·an which implies C(s · e) = t.
This concludes the proof of the lemma. 2

Lemma 4 Assume that (S, E,C) is a closed, consistent observation table. Suppose the automa-
ton A(S,E, C) has n states. If A′ = (Q′, Σ, δ′, q′0, F

′) is any automaton consistent with C that
has n or fewer states, then A′ is isomorphic with A(S,E,C).

Proof. We define the relation φ ⊆ Q×Q′ as follows. For all s ∈ S, row(s) φ q′ ⇔ q′ = δ′(q′0, s).
Lets take s1, s2 ∈ S such that there exists q′, row(s1) φ q′ and row(s2) φ q′. We will show that

this implies row(s1) = row(s2). row(s1) φ q′ ⇔ q′ = δ′(q′0, s1), row(s2) φ q′ ⇔ q′ = δ′(q′0, s2),
so δ′(q′0, s1) = δ′(q′0, s2). Suppose by contrary that row(s1) 6= row(s2) ⇒ ∃e ∈ E such that
row(s1)(e) 6= row(s2)(e) ⇔ C(s1 · e) 6= C(s2 · e)).

We distinguish two cases: C(s1 · e) = ϕ, C(s2 · e) 6= ϕ and C(s1 · e), C(s2 · e) 6= ϕ.
Case I) C(s1 ·e) = ϕ, C(s2 ·e) = t 6= ϕ. Because A′ is consistent with C we have δ′(q′0, s1 ·e) ∈

deadSet(A′), δ′(q′0, s2 · e · t) ∈ F ′.
δ′(q′0, s1) = δ′(q′0, s2) ⇒ δ′(δ′(q′0, s1), e) = δ′(δ′(q′0, s2), e) ⇒ δ′(q′0, s1 · e) = δ′(q′0, s2 · e) ⇒

δ′(q′0, s2 ·e) ∈ deadSet(A′) ⇒ δ′(q′0, s2 ·e · t) ∈ deadSet(A′), which contradicts δ′(q′0, s2 ·e · t) ∈ F ′.
Case II) C(s1 · e) = t1, C(s2 · e) = t2, t1 6= t2 and t1, t2 6= ϕ.
Because A′ is consistent with C we have δ′(q′0, s1 · e · t1) ∈ F ′, δ′(q′0, s2 · e · t2) ∈ F ′ and t1, t2

are the smallest strings with this property.
δ′(q′0, s1) = δ′(q′0, s2) ⇒ δ′(δ′(q′0, s1), e · t1) = δ′(δ′(q′0, s2), e · t1) ⇒ δ′(q′0, s1 · e · t1) = δ′(q′0, s2 ·

e · t1) ⇒ δ′(q′0, s2 · e · t1) ∈ F ⇒ t2 ¹ t1. In a similar way it can be shown that t1 ¹ t2, from
which we draw the conclusion that t1 = t2, which leads to a contradiction.

We have shown that the relation φ is an injection. This implies that |Q| ≤ |φ(Q)|. But from
our hypothesis we know that |Q′| ≤ |Q|. So |Q| ≤ |φ(Q)| ≤ |Q′| ≤ |Q| implies |Q| = |φ(Q)| =
|Q′|, which makes our relation φ a function.

Because the function φ is injective and has the domain and range finite and of the same
cardinality, it follows immediately that φ is surjective and hence bijective.

We will show that φ is an automata isomorphism, that is:

1. φ(q0) = q′0. φ(q0) = φ(row(λ)) = δ′(q′0, λ) = q′0.

6 L. Becerra-Bonache, C. Bibire, A.H. Dediu

2. φ(F) = F ′. q′ ∈ φ(F) ⇔ ∃s ∈ S such that row(s) ∈ F and φ(row(s)) = q′ ⇔ ∃s ∈ S such
that C(s) = λ and δ′(q′0, s) = q′ ⇔ ∃s ∈ S, δ′(q′0, s) ∈ F ′, δ′(q′0, s) = q′ ⇔ q′ ∈ F ′.
In the proof we used the fact that C(s) = λ ⇔ δ′(q′0, s) which can be easily deduced from
the preceding lemma.

3. φ(δ(row(s), a)) = δ′(φ(row(s)), a), ∀s ∈ S, ∀a ∈ Σ. φ(δ(row(s), a)) = φ(row(s · a)) =
φ(row(s′)) = δ′(q′0, s

′), where s′ ∈ S such that row(s′) = row(s · a).
δ′(φ(row(s)), a) = δ′(δ′(q′0, s), a) = δ′(q′0, s · a).
Since δ′(q′0, s

′) and δ′(q′0, s · a) have identical row values, namely row(s′) and row(s ·
a), they must be the same state of A′, so that we conclude that φ(δ(row(s), a)) =
δ′(φ(row(s)), a), ∀s ∈ S, ∀a ∈ Σ.

This concludes the proof of Lemma 4. 2

Now, the proof of Theorem 1 follows, since Lemma 3 shows that A(S,E, C) is consistent
with C, and Lemma 4 shows that any other automaton consistent with C is either isomorphic
to A(S,E, C) or contains at least one more state. Thus, A(S, E, C) is the unique smallest
automaton consistent with C.

3.2. The Learner LCA

Briefly we recall that the learning algorithm consists actually in a ”learner” algorithm commu-
nicating with a ”teacher” algorithm. The teacher knows a target language and the learner wants
to discover it. In this description, the teacher is represented as a passive entity, while the learner
calls the teacher’s methods and properties in order to discover the target language.

The learner algorithm uses as its main data structure the observation table that we described
in the previous subsection. Initially S = E = λ. To determine C, LCA asks CQs for λ and each
a in Σ. This initial observation table may or may not be closed and consistent.

The main loop of LCA tests the current observation table (S,E, C) in order to see if it is
closed and consistent. If (S, E,C) is not closed, then LCA adds a new string to S and updates
the table asking CQs for missing elements. If (S,E, C) is not consistent, then LCA adds a new
string to E and updates the table using CQs for missing elements.

When the learner’s automaton is closed and consistent the learner asks an EQ. The teacher’s
answers can be ”yes” (in which case the algorithm terminates with the output A(S, E, C)) or
”no”(in which case a counterexample is provided, all its prefixes are added to S and the table
is updated using CQs).

For the proof of the Termination of LCA the reader is referred to [1].
Correctness of LCA. If the teacher answers always correctly then LCA terminates. Recall

that the teacher’s last answer to an EQ is yes, the learner’s automaton is isomorphic with the
target automaton.

Time analysis of LCA. The total running time of LCA can be bounded by a polynomial in
n and m (n is the number of states in the minimum automaton accepting L; m is the maximum
length of any counterexample string presented by the teacher). For the details of the proof, the
reader is referred to [1].

As a learner’s optimization, we can mention the creation of a special table knownV alues. In
this table the learner can add the current teacher’s answer t indexed by the student’s query s
and in the same time the answers for all the strings resulted from the concatenation of s with
each suffix of t. Another optimization may be performed for the dead state; when for a given
query the teacher answers with ϕ then for all the suffixes of that query the answers are already
known and equal to ϕ.

If we compare LCA with L∗ algorithm we can observe that in Angluin’s algorithm the number
of elements in E is upper bounded by n. Due to the fact that in Angluin’s observation table

Learning DFA from corrections 7

the answers are coded in binary, to get n different states we need at least log2n elements in
E. In the LCA algorithm this limitation does not exist so potentially |E| might be even 1 and
this lower bound has implications in the general number of asked questions. Let us denote by
` the average length for teacher’s answers to Correction Queries. The LCA algorithm behaves
like having an average lookahead of length `. Supplementary we may consider that the number
of already known answers from the previous questions is increased with a factor of ` and as a
general result we get CQ ≤ MQ/`. In Table 1 we summarize the comparative properties for the
L∗ and LCA algorithms (recall that n is the number of states, m is the maximal length of an
EQ answer, k = |Σ|, and ` is the average length of a CQ).

Table 1: Comparative properties for the L∗ and LCA algorithms
Property L∗ LCA

|E| log2n ≤ |E| ≤ n 1 ≤ |E| ≤ n

Size of EQ answers m m

MQ/CQ type {yes/no} {λ/corrStr}, |corrStr| ' `

General number of MQ/CQ ≤ (k + 1)(n + m(n− 1))n ≤ MQ/`

The algorithm LCA is described in Figure 1.

Procedure Learning with Correction Algorithm

1) Initialize S and E with λ;
2) Ask correction queries for λ and each a ∈ Σ;
3) Construct the initial observation table (S, E, C);
4) Repeat
5) Repeat
6) if Not tableClosed(S, E, C) then
7) find s in (SΣ− S) such that row(s) /∈ rows(S);
8) add s to S; //actually remove first s from SΣ
9) extend SΣ accordingly and C to (S ∪ SΣ)E using correction queries;

10) if Not tableConsistent(S, E, C) then
11) find s1,s2 ∈ S, a ∈ Σ and e ∈ E such that
12) row(s1) = row(s2), and C(s1 · a · e) 6= C(s2 · a · e);
13) add a · e to E;
14) extend C to (S ∪ SΣ)E using correction queries;
15) until tableClosed and tableConsistent;
16) construct Learner′s conjecture -> learnerAuto, learnerF inalStates;
17) foundAutomaton:= teacher.askEquiv(learnerAuto, learnerF inalStates);
18) If Not foundAutomaton then
19) strCounterEx:=teacher.counterExample;
20) for each s ∈ Pref(strCounterEx)
21) if s /∈ S then
22) add s to S;
23) extend SΣ accordingly and C to (S ∪ SΣ)E using correction queries;
24) until foundAutomaton;

Figure 1: Procedure Learning from Corrections

Remark 5 The teacher’s compute corrections algorithm is still polynomial, performed only
once at the beginning, for each state computes the tail starting from the final states.

4. Running Example and Comparative Results

In all our examples we consider that the initial state is always counted as being the state q0.
In order to simplify the automata description we use only the state number as labels for states.

8 L. Becerra-Bonache, C. Bibire, A.H. Dediu

We also introduce the linear transition table that is a normal transition table with all the lines
written on the same row. From a linear transition table we can restore a normal transition table
if we know the cardinality of the alphabet. The final states are deduced from the observation
table as being the states having λ on the first column of E (the one corresponding to the
experiment λ).

We explain how our algorithm runs by tracing the evolution of the observation table for a
language over the alphabet Σ = {0, 1}, L1 = (0 + 110)+. We can see a minimal automaton
associated with the mentioned language in Figure 2. We observe that the linear transition table
for this automaton is (1, 2, 1, 2, 3, 4, 3, 3, 1, 3) and the set of final states is F = {1}. In the
theoretical part of the article we use ϕ as the response of the teacher for the empty set to avoid
confusions. For the running example we find more suggestive to use directly ∅ instead.

Q0 Q1

Q4

Q2 Q3

0

1

0

1

1

0

1

0

0,1

Figure 2: Minimal automaton associated to the language L1 = (0 + 110)+

Initially the learner starts with the following observation table described as Table 2.
We can observe that the information for the string ”0” and the experiment ”λ” is known from

the corresponding query for row(λ): because the correction for the string ”λ” is the string ”0”,
after an input string ”0” we are in a final state, so we need the string ”λ” to reach a final state.
We can also see that the table is not closed because row(0) does not belong to rows(S). We add
the string ”0” to S, ”0 · 0” and ”0 · 1” to SΣ−S, and the corresponding rows to the observation
table. The algorithm proceeds in a similar manner with row(1) and after two ”not closed” steps
we get the Table 3.

Now we see that the current observation table is not closed since row(10) does not belong to
rows(S). Again the algorithm adds the string ”10” to S, ”10 · 0” and ”10 · 1” to SΣ − S, and
the corresponding rows to the observation table. We can see all these operations in Table 4.

As an optimization, the learner infers the teacher answers for row(100) and row(101) as being
transitions from a dead state.

In this moment, we can see that the observation table is closed and consistent and it follows an
EQ. We added the state information for each row and the automaton that the learner discovered
until this moment has: the linear transition table (1, 2, 1, 2, 3, 0, 3, 3), the final states set F = {1}
and the representation given in Figure 3.

Table 2: S = {λ}, E = {λ}
T1 λ

1 λ {0}
2 0 {λ}(λ,λ)

3 1 {10}

Table 3: S = {λ, 0, 1}, E = {λ}
T2 λ

1 λ {0}
2 0 {λ}(λ,λ)

3 1 {10}
4 00 {λ}
5 01 {10}
6 10 ∅
7 11 {0}(1,λ)

Learning DFA from corrections 9

Table 4: S = {λ, 0, 1, 10}, E = {λ}
T3 λ State

1 λ {0} q0

2 0 {λ}(λ,λ) q1 ∈ F

3 1 {10} q2
4 10 ∅ q3

5 00 {λ} q1 ∈ F

6 01 {10} q2

7 11 {0}(1,λ) q0

8 100 ∅(10,λ) q3

9 101 ∅(10,λ) q3

Q0 Q1

Q2 Q3

0

1

0

1

1

0

0,1

Figure 3: Observation Table 4 and the associated automaton

The teacher’s answer to the EQ is negative and the learner gets as a counterexample the
string 11110. Adding the counterexample and all its prefixes to S we get the Table 5.

This table is not consistent, since row(λ) equals row(11) but C(λ · 1 · λ) 6= C(11 · 1 · λ). In
this moment we have to add 1 · λ to E (Table 6).

Table 5:
S = {λ, 0, 1, 10, 11, 111, 1111, 11110},
E = {λ}

T4 λ

1 λ {0}
2 0 {λ}(λ,λ)

3 1 {10}
4 10 ∅
5 11 {0}(1,λ)

6 111 ∅
7 1111 ∅(111,λ)

8 11110 ∅(111,λ)

9 00 {λ}
10 01 {10}
11 100 ∅(10,λ)

12 101 ∅(10,λ)

13 110 {λ}(1,λ)

14 1110 ∅(111,λ)

15 11111 ∅(111,λ)

16 111100 ∅(111,λ)

17 111101 ∅(111,λ)

Table 6:
S = {λ, 0, 1, 10, 11, 111, 1111, 11110},
E = {λ, 1}

T5 λ 1 State

λ {0} {10}(1,λ) q0

0 {λ}(λ,λ) {10}(01,λ) q1 ∈ F

1 {10} {0}(1,λ) q2

10 ∅ ∅(10,λ) q3

11 {0}(1,λ) ∅(111,λ) q4

111 ∅ ∅(111,λ) q3

1111 ∅(111,λ) ∅(111,λ) q3

11110 ∅(111,λ) ∅(111,λ) q3

00 {λ} {10} q1 ∈ F

01 {10} {0}(01,λ) q2

100 ∅(10,λ) ∅(10,λ) q3

101 ∅(10,λ) ∅(10,λ) q3

110 {λ}(1,λ) {10} q1 ∈ F

1110 ∅(111,λ) ∅(111,λ) q3

11111 ∅(111,λ) ∅(111,λ) q3

111100 ∅(111,λ) ∅(111,λ) q3

111101 ∅(111,λ) ∅(111,λ) q3

The automaton of the learner now corresponds to the teacher’s automaton, so the answer to
the EQ is positive. We notice that during the whole algorithm’s execution, the learner asked
only 2 EQs (the last one was successful) and 8 CQs.

We compare the results obtained by our algorithm with the classical algorithm proposed by
Angluin [1]. We used several test languages and we summarize the obtained results in Table 7.

Table 7: Comparative results for different languages using Angluin’s algorithm and LCA algorithm
Language description Angluin CQ

Id Alphabet Linear transition table Final states EQs MQs EQs CQs

L1 {0, 1} (1, 2, 1, 2, 3, 4, 3, 3, 1, 3) {1} 3 44 2 8

L2 {0, 1} (1, 2, 0, 3, 3, 0, 2, 1) {0} 2 19 1 6

L3 {a, b} (1, 2, 3, 4, 4, 4, 1, 4, 4, 4) {2, 3} 2 23 2 10

L4 {0, 1, a, b} (1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, {3, 5} 4 108 2 48

0, 0, 4, 2, 2, 2, 2, 5, 0, 0, 3, 3)

L5 {0, 1} (1, 2, 3, 4, 5, 6, 7, 8, {1, 2, 4, 8} 3 24 3 8

9, 10, 11, 12, 13, 14, 15, 0)

L6 {0, 1} (1, 2, 3, 2, 2, 2, 4, 2, 5, 2, 1, 2) {5} 3 65 1 7

10 L. Becerra-Bonache, C. Bibire, A.H. Dediu

5. Concluding Remarks

We propose a new paradigm for the computational learning theory, namely learning from cor-
rections. Our algorithm based on Angluin’s L∗ learning algorithm for regular languages uses an
observation table with correcting strings instead of 0s and 1s. Due to this approach, we use a
smaller number of queries and in this way the learning time is reduced. In our running examples,
the number of EQs are always less or equal than in Angluin’s ones and the number of CQs is
significantly smaller than the number of MQs.

One of the reasons of this reduction is that an answer to a CQ contains embedded much more
information. Another advantage of our approach is that we can differentiate better between
states.

Among the improvements previously discussed, we would like to mention here the adequacy
of CQs in a real learning process. They reflect in a more accurate manner the process of
children’s language acquisition. We are aware that this kind of formalism is for an ideal teacher
who knows everything and always gives the correct answers and for practical applications our
working hypothesis should be adjusted.

For the future we will try to improve our algorithm using additional information such as
multiple correct answers and to reduce the number of EQ to 0. In fact these EQ are quite
un-natural for real learning environments. We will also try to extend this result to Context Free
and Mildly Context Sensitive Languages.

References

[1] D. Angluin, Learning regular sets from queries and counterexamples. Information and
Computation 75 (1987), 87–106.

[2] D. Angluin, Queries and concept learning. Machine Learning 2 (1988), 319–342.
[3] D. Angluin, C.H. Smith, Inductive inference: Theory and methods. Comput. Surveys 15

(1983), 237–269.
[4] J. L. Balcázar, J. D́ıaz, R. Gavaldá, O. Watanabe, Algorithms for learning finite

automata from queries: A unified view. Chapter in Advances in Algorithms, Languages, and
Complexity. D.-Z. Du and K.-I. Ko (eds.), Kluwer Academic Publishers, 1997, 73-91.

[5] E.M. Gold, Identification in the limit. Information and Control 10 (1967), 447–474.
[6] L. Hellerstein, K. Pillaipakkamnatt, V. Raghavan, D. Wilkins, How many queries

are needed to learn?. In: Proc. 27th Annual ACM Symposium on the Theory of Computing.
ACM Press, 1995, 190–199.

[7] J. Hopcroft, R. Motwani, J. Ullman, Introduction to automata theory, languages, and
computation. Addison Wesley, 2001.

[8] C. Mart́ın-Vide, V. Mitrana, Gh. Paun (eds.), Formal languages and applications.
Springer-Verlag, Berlin, 2004.

[9] D. Pitt, Inductive inference, DFAs, and computational complexity. In: Proc. AII-89
Workshop on Analogical and Inductive Inference. Lecture Notes in Computer Science 397,
Springer-Verlag, Berlin, 1989, 18–44.

[10] R.L. Rivest, R. E. Schapire, Inference of finite automata using homing sequences In-
formation and Computation. 103(2):299347, Apr. 1993.

[11] G. Rozenberg, A. Salomaa (eds.), Handbook of formal languages. Vol 1-3, Springer-
Verlag, Berlin, 1997.

[12] L.G. Valiant, A theory of the learnable. Communication of the ACM 27 (1984), 1134–
1142.

Learning DFA from corrections 11

Annex, Proofs of Remarks

Remark 1 If α, β, γ are strings in Σ∗ such that C(α) = β · γ then C(α · β) = γ.

Proof. Lets take α, β, γ ∈ Σ∗ such that C(α) = β · γ ⇒ α · β · γ ∈ L ⇒ γ ∈ TailL(α · β).
Assume that γ 6= C(α · β) ⇒ ∃ γ′ ∈ Σ∗ such that γ′ ≺ γ and C(α · β) = γ′ ⇒ α · β · γ′ ∈ L ⇒
β · γ′ ∈ TailL(α). But β · γ = C(α) ⇒ β · γ ¹ β · γ′ ⇒ γ ¹ γ′, which is a contradiction. Hence,
C(α · β) = γ 2

Remark 2 For any α, β ∈ Σ∗, if TailL(α) = ∅ then TailL(α · β) = ∅.
Proof. Lets take α, β ∈ Σ∗ such that TailL(α) = ∅. Suppose TailL(α · β) 6= ∅ and let γ be an
element of TailL(α · β). γ ∈ TailL(α · β) ⇒ (α · β) · γ ∈ L ⇒ β · γ ∈ TailL(α) ⇒ TailL(α) 6= ∅,
contradiction with our hypothesis. 2

Remark 3 The following results hold:

1. For any α ∈ Σ∗ such that C(α) 6= ϕ we have C(α · C(α)) = λ.

2. Let α, β ∈ Σ∗. If C(α) = ϕ, then C(αβ) = ϕ but the converse does not hold.

Proof. Let α be an arbitrary string in Σ∗.

1. Let β = C(α), β ∈ Σ∗. C(α) = β ⇒ β ∈ TailL(α) ⇒ α · β ∈ L ⇒ (α · β) · λ ∈ L ⇒ λ ∈
TailL(α · β) ⇒ C(α · β) = λ.

2. Suppose C(α) = ϕ and take any β ∈ Σ∗. We have C(α) = ϕ ⇔ TailL(α) = ∅ ⇒
TailL(α · β) = ∅ ⇔ C(α · β) = ϕ.
It is easy to see that for L = (ab)∗, C(aba · a) = ϕ but C(aba) 6= ϕ.

2

Remark 4 For each s in S ∪ SΣ, there exists s′ in S such that δ(q0, s · e) = δ(q0, s
′) and

C(s · e) = C(s′) for all e ∈ E.

Proof. The proof is by induction on the length of e.

• e = λ. (S, E,C) is a closed table, s ∈ S ∪ SΣ ⇒ ∃s′ ∈ S such that row(s′) = row(s) ⇒
(C(s′) = C(s) and δ(q0, s

′) = δ(q0, s)).

• Suppose the result holds for all e in E of length at most k, and let e be an element of E
of length k + 1. Then, since E is suffix-closed, e = a · e′ for some a in Σ and e′ in E. We
take s′ in S such that row(s)=row(s′) ⇒ C(s · e) = C(s′ · e).
δ(q0, s · e) = δ(δ(q0, s), a · e′)

= δ(row(s), a · e′), by the previous lemma,
= δ(row(s′), a · e′), since row(s) = row(s′),
= δ(δ(row(s′), a), e′),
= δ(row(s′ · a), e′), by the definition of δ,
= δ(δ(q0, s

′ · a), e′), by the previous lemma,
= δ(q0, s

′ · a · e′).
By the induction hypothesis on e′, there exist s′′ in S such that δ(q0, (s′ · a) · e′) = δ(q0, s

′′)
(which implies δ(q0, s · e) = δ(q0, s

′′)) and C(s′ · a · e′) = C(s · e) = C(s′′).

2

