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Abstract

We investigate two of the language classes intensivelyiesiubly the algorith-
mic learning theory community in the context of learninghwgbrrection queries.
More precisely, we show that any pattern language can beréufen polyno-
mial time in length of the pattern by asking just a linear nembf correction
gueries, and that-reversible languages are efficiently learnable withiis get-
ting. Note that although the class of all pattern languagésarnable with mem-
bership queries, this cannot be done in polynomial time. dédwer, the class of
k-reversible languages is not learnable at all using meshiggqueries only. Fur-
thermore, we present results on a newly introduced classmgilages, namely the
class of injective languages.

Keywords: correction query, pattern languages, k-reversible laggsiainjective
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1 Introduction

Without any doubt, there is no formal model that can captlraspects of hu-
man learning. Nevertheless, the overall aim of researahersing in algorithmic
learning theory has been to gain a better understanding aff arning really is.
Actually, the field itself has been introduced as an attemgbinstruct a precise
model for the notion of “being able to speak a language” [@Gpl6

Among the most celebrated models (Gold’s moddkeafning from examples
[Gol67], Angluin’squery learningmodel [Ang87], Valiant's?PAC learningmodel
[Val84]), the best one for describing the child-adult iatetion within the process
of child acquiring his native language is the one proposddmg87]. Therethe
learnerreceives information about a target concept by asking ge@fia specific
kind (depending on the chosen query model type) which wiltraéhfully an-
swered bythe teacherAfter at most finitely many queries, the learner is required
to return its hypothesis, and this should be the correct one.

The first query learning algorithni.() was able to identify any minimal com-
plete deterministic finite automaton (DFA) in polynomiah&, using membership
gueries (MQs) and equivalence queries (EQs) [Ang87]. Méwdlewother types
of queries have been introduced: subset, superset, disgsim and exhaustive
queries [Ang88], structured MQs [Sak9@}c, and also various target concepts
have been investigated: non-deterministic finite autoriéa&94], context-free
grammars [Sak90], two-tape automata [Yok96], regular laeguages [DHO7,
TTO7], etc.

Still, none of the above mentioned queries reflects one itapbiaspect of
children language acquisition, namely that, althoughdrchit are not explicitly
provided negative information, they are corrected wheg thake mistakes. Fol-
lowing this idea, L. Becerra-Bonache, A.H. Dediu and @ndua introduced in
[BBDTO6] a new type of a query, the so-calledrrection query(CQ), and showed
that DFAs are learnable in polynomial time using CQs and EQsiti@aing the
investigation on CQs, C.1hau@ and S. Kobayashi found necessary and sulffi-
cient conditions for an indexable class of recursive laggsao be learnable with
CQs only [TKO7]. Also, they showed some relations existintyeen this model
and other well-known (query and Gold-style) learning medel

In contrast with the approach in [TKO7], where the learngbit studied re-
gardless time complexity, we focus in this paper on algorghor identifying
language classes in polynomial time. Thus, the rest of tipemia structured as
follows. Preliminary notions and results are presentedaatiSn 2. Then, we
give polynomial time algorithms for learningreversible languages (Section 3)
and injective languages (Section 4) with CQs. Section 5 ausitn algorithm for
learning pattern languages, along with discussions almuciness, termination
and time analysis. In Section 6 we present some other resultise learnability
with MQs of the classes investigated in the previous sesti@oncluding remarks
and further research topics are presented in Section 7.
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2 Préeiminaries

Familiarity with standard recursion theoretic and langu#georetic notions is
assumed, see [HU79, MVMPO4].

Let X be a finite alphabet of symbols. By* we denote the set of all finite
strings of symbols fromx. A languages any set of strings ovet. The length of
a stringw is denoted byw|, and the concatenation of two stringgandv by uv
oru - v. The empty string (i.e., the unique string of length 0) isated by\. If
w = uwv for someu, v € X*, we say that: is aprefixof w andv is asuffixof w.

A setS is said to beprefix-closedf for all stringsw« in S and allv prefixes of
u, the stringu is also inS. The notion ofsuffix-closedset is defined similarly.

By ¥=* we denote the st € X* | |w| < k}, by Pref(L) the sef{u | Jv €
¥* such thatw € L} of all prefixes of a languagé C ¥*, and by Tail; (u) =
{v | wv € L} the left-quotient ofZ. andu. Thus, Tail,(u) # 0 if and only if
u € Pref(L).

A deterministic finite automatois a 5-tupled = (@, X, 9, qo, ') whereqQ is
a finite set ofstates Y. is a finite alphabety, € @ is theinitial state,F’ C @ is the
set offinal statesando is a partial function, calletransition function that maps
@ x ¥ to Q. This function can be extended to strings by writir{g, A\) = ¢, and
d(q,u-a) =0(0(q,u),a), forallg € Q,u € ¥*anda € . A stringu is accepted
by Aif (g0, u) € F. The set of strings accepted Byis denoted by.(.A) and is
called aregular language The number of states of an automatdns also called
thesizeof A. ADFA A = (Q, %, 0, qo, F') is completeif for all ¢ in @ anda in
¥, (g, a) is defined, i.e.§ is a total function. For any regular languafethere
exists a minimum state DFA;, such thatl.(A,) = L (see [HU79], pp. 65-71).

A stateq is calledreachableif there existsu € ¥* such that)(qy, u) = ¢ and
co-reachablef there existsu € >* such thati(q,u) € F. A reachable state that
is not co-reachable is calledsank state. Note that in a minimum DFA there is at
most one sink state, and all states are reachable.

Given alanguagé, one can define the following relation on strings:=;, u-
if and only if for all w in ¥*, u; - u € L & us - u € L. Itis easy to show that,
is an equivalence relation on strings, and thus it dividess#t of all finite strings
into one or more equivalence classes. We denot@:hy(or simply [u|, when
there is no confusion) the equivalence class of the stifige., {v' | v’ =1 u}),
and by>*/=, the set of all equivalence classes inducedsyon .

The Myhill-Nerode Theorem states that the number of egeina classes of
=, (also called thendexof L) is equal to the number of states.d4f. As a direct
consequence, a languages regular if and only if the index of is finite.

Assume thakl is a totally ordered set and let., be the lexicographical order
onX*. Then, thdex-length order< on X* is defined by < v if either |u| < |v],
or elselu| = |v| andu <., v. In other words, strings are compared first according
to length and then lexicographically.

If f: A — Bis a function, byf(X) we denote the seff(z) | z € X}.
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Moreover, we say thaf andg are equal if they have the same domainand
f(z) =g(x) forallz € A.

2.1 Query Learning

Let C be a class of recursive languages o¥ér We say that is anindexable
classif there is an effective enumeratign; );>, of all and only the languages ¢th
such that membership is uniformly decidable, i.e., theeedgemputable function
that, for anyw € >* andi > 1, returns 1 ifw € L;, and 0 otherwise. Such an
enumeration will subsequently be callediadexingof C. In the sequel we might
say thatC = (L;);>1 is an indexable class and understand th& an indexable
class andL;);>; is an indexing of’.

In the query learning model a learner has access to an otstleértthfully
answers queries of a specified kind.glery learnerM is an algorithmic device
that, depending on the reply on the previous queries, eithaputes a new query,
or returns a hypothesis and halts.

More formally, letC = (L;);>1 be an indexable clas3/ a query learner, and
let L € C. We say thatM learnsL using some type of queries if it eventually
halts and its only hypothesis, saycorrectly describeg, i.e.,L; = L. So, M
returns its unique and correct gueésater only finitely many queries. Moreover,
M learnsC using some type of queries if it learns everye C using queries of
the specified type. In the sequel we consider:

Membership queriesThe input is a stringy and the answer is ‘yes’ or ‘no’,
depending on whether or netbelongs to the target language

Correction queries The input is a stringv and the answer is the smallest
string (in lex-length order) of the séfuil; (w) if w € Pref(L), and the special
symbold ¢ ¥ otherwise. We denote the correction of a stringvith respect to
the languagd. by C' (w).

The collections of all indexable classédor which there is a query learner
M such thatM learnsC using MQs (CQs) is denoted byem @ (Cor(@), respec-
tively).

3 Learning k-Reversible Languages with CQs

Angluin introduced the class @freversible languages (henceforth denoted-by
Rev) in [Ang82], and showed that it is inferable from positiveta@an the limit.
We study its learnability in the context of learning with C@ad show that there
is a polynomial time algorithm which identifies any languagéhe class:- Rev
after asking a finite number of CQs.

Although the original definition ok-reversible languages uses the notion of
k-reversible automata, we will give here only a purely largpitheoretic charac-
terization.



Theorem 1 (Angluin, [Ang82]). Let L be a regular language. Theh is k-
reversible if and only if whenever vw, u,vw are in L and|v| = k, Taily (ujv) =
Tail  (ugv).

Note that for the O-reversible languages we have:

Theorem 2 (Angluin, [Ang82]). Let L be a regular language. Then is 0-
reversible if and only if wheneverv anduyv are in L, Taily,(uy) = Tailg,(us).

Let X be an alphabet, antl C >* be the targek-reversible language. For any
stringu in ¥*, we define the functionow(u) : =% — ¥* U {0} by row(u)(v) =
Cr(uv). We show that each equivalence clas&iif=, is uniquely identified by
the values of functiomow on X=*.

Proposition 3. Let L. be ak-reversible language. Then, for all;, u, € >*,
uy =g, ug if and only ifrow(u,) = row(us).

Proof. Let us first notice that for all regular languagésand for anyk € IN,
uy =g ug = row(uy) = row(usy) (by the definition of function-ow), so we just
have to show thatow(u;) = row(us) = u; =, us.

Indeed, suppose there exist, us € >* such thatrow(u;) = row(us) and
u; %1, ue. Hence, there must exist such that either

e uyw € L andusw & L; or
o wyw ¢ L andusw € L.
Let us assume the former case (the other one is similar).

1) If jw| < k, thenw € ¥=F, and sinceow(u;) = row(uy) we get in particu-
lar row(uy)(w) = row(us)(w), that isCy (ujw) = Cr(ugw). Butuyw € L
impliesC',(u;w) = A, and saC,(usw) = A which is in contradiction with
usw & L.

2) If |lw| > k, then there must exist v’ € ¥* such thatv = vw’ and|v| = k.
Moreover, by assumption,vw’ € L andusvw’ & L, SOuv Zj ugv.
On the other hand sinceow(u;) = row(uy) andv € X=F, we have
row(uy)(v) = row(uz)(v), that isCr(u;v) = Cr(ugv) = ov'. Because
wv - w' € L, Tailp(uv) # 0 and henc&'; (uq v) € ¥*. SincelL € k-Rev,
wov’ € Lyugvv” € L and|v| = k, we getTaily(uyv) = Taily(ugv) (Cf.
Theorem 1) which is in contradiction withy v Z;, usv.

]

This result tells us that iid;, = (Q, X, §, qo, F') is the minimal complete au-
tomaton for thek-reversible languagé, then the values of functiorow(u) on
Y=F uniquely identify the staté(q, u).



3.1 TheAlgorithm

The algorithm follows the lines of.*. We have arobservation tablg€here and
there denoted byS, F, C')) in which lines are indexed by the elements of a prefix-
closed setS, columns are indexed by the elements of a suffix-closed/seind
the element of the table situated at the intersection of dirneith columnuv is
Cr(uv). We start withS = {\} andE = ¥=*, and then increase the size®by
adding elements with distinct row values. An importantetiénce between our
algorithm andL* is that in our case the sét is never modified during the run
of the algorithm (inL*, £ contains only one element in the beginning, and it is
gradually enlarged when needed).

We say that the observation tallg, £, C) is closedif for all v € S and
a € %, there exists/ € S such thatrow(u') = row(ua). Moreover,(S, E, C')
is consistentf for all u;,us € S, row(u;) # row(uy) (Which is equivalent to
uy Z ug, Ortofug] # [us]). Itis clear that if the tablésS, E, C') is consistent and
S has exactlyn elements (where is the index ofL), then the strings ir$ are in
bijection with the classes af*/—, .

For any closed and consistent taljle £, C') we construct the automaton
A(S,E,C) =(Q,%,6,q, F) as follows: Q = {[u] | v € S}, ¢ = [N, F =
{[u] | w € SandCp(u) = A}, andd([u], a) = [ua] forallu € S anda € X.

To see that this is a well defined automaton, note that sshisea non-empty
prefix-closed set, it must contai) soq is defined. Becausg is consistent, there
are no two elements;, u, in S such thatfu;] = [uy]. Thus,F is well defined.
Since the observation tab{é, £, C) is closed, for each € S anda € %, there
existsu’ in S such thatrow(ua) = row(u’) (hencefua] = [u']), and because
it is consistent, this.’ is unique. Saoj is well defined. It is easy to check that
6(qgo,u) = [u] forall win S U S,

We present a polynomial time algorithm that learns amgversible language
L after asking a finite number of CQs.

Algorithm 1 An algorithm for learning the clags Rev with CQs
1 S:={\}, E:=3%5F
closed := TRUE
update the table by asking CQs for all stringdinv | u € SU SY, v € E}
repeat
if (Ju € S anda € X such thatow(ua) & row(S)) then
addua to S
update the table by asking CQs for all stringgima’v | ¢’ € ¥,v € E}
closed := FALSE
end if
until closed
: output A(S, E, C) and halt.

el
= Qo




Note that since the algorithm addsSmnly elements with distinct row values,
the table(S, E, C) is always consistent. We will see that as long&is< n, it is
not closed.

Lemmad. If |S| < n, then(S, E,C) is not closed.

Proof. Let us assume that there exists < n such that.S| = m and the table
(S, E,C)isclosed. Letd = (Q, %, 6, qo, F') be the automatord (S, E, C) andAy
=(Q', 2,9, q,, F') the minimal complete automaton acceptiig

We define the functiop : @ — Q' by p([u]) := '(¢y, v). Note thaty is
well defined because there are no two stringsus, in S such thatu;| = [us].
Moreover, it is injective since([u1]) = ¢([us]) implies &' (g), u1) = 6'(qp, u2)
which is equivalent tdu;] = [us]. We show thatp is a morphism of automata
from A(S, E,C) to Ay, that is: ¢(q0) = ¢ ¢(F) C F', andp(([u],a)) =
8 (¢([u]),a) forallu € S anda € 3.

Clearly, ©(q0) = ¢([\]) = (g}, ) = ¢. Let us now takdu] in F. Since
o([u]) = 8 (¢, u) andCp(u) = A (thatis,u € L), it follows thaty([u]) € F”.
Finally, ¢(0([u], a)) = ¢([ua]) = ¢([v]) for somewv in S such thafua] = [v] (the
table is closed), and'(¢([u]),a) = §'(8' (g, u),a) = §'(g), ua). It is enough to
see thatp([v]) = §'(¢(, v) = §' (¢}, ua) (becausgv] = [ua] and. Ay is the minimal
automaton accepting) to conclude the proof.

We have constructed an injective morphism frotrto .4;, such that@| =
m < n = |Q|. Since both4 and.A, are complete automata, this leads us to a
contradiction. O]

In the following sections we show that the algorithm runsafypomial time,
and that it terminates with the minimal automaton for thgeatanguage as its
output.

3.2 Correctnessand Termination

We have seen that as long i < n, the table is not closed, so there will al-
ways be an: in S and a symbok in 3 such thatrow(ua) & row(S). Since the
cardinality of the seft is initially 1, and increases by 1 with each “repeat-until”
loop (lines 4-10), it will eventually be, and hence the algorithm is guaranteed to
terminate.

We claim that wher}S| = n, the observation tabléS, E, C') is closed and
consistent, andd(S, £, C) is isomorphic ta4,. Indeed, if|S| = n then the set
{[u] | w € S} has cardinalityr, since the elements ¢f have distinct row values.
Thus for allu € S anda € X, row(ua) € row(S) (otherwise[ua] would be the
(n + 1) equivalence class af*/—, ), and hence the table is closed.

To see thatA(S, E,C) and A, are isomorphic, let us takel(S, £, C) =
(Q,%,6,q0, F), AL = (Q', %, ¢, q, F'), and the functiorp : Q — ' defined by
o([u]) == 0'(qp, uw) for all w € S. As in the proof of Lemma 4, it can be shown
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thaty is a well-defined and injective automata morphism. Sincévleeautomata
have the same number of statesis also surjective, and hence bijective. Let us
now show thatp(F') = F'. Indeed, take; € F”. Becausep is bijective, there
existsu in S such thaty([u]) = ¢. It follows immediately that'(q), v) € F’, and
henceu € L. Thus,CL(u) = A and[u] € F. Clearly,¢([u]) = ¢ € ¢(F). So,

F' C ¢(F), and sincep(F) C F’, p(F) = F’" which concludes the proof.

3.3 TimeAnalysisand Query Complexity

Let us now discuss the time complexity of the algorithm. WHtie cardinality of
S is smaller them, the algorithm searches for a stringn S and a symbodk in X
such thatrow(ua) is distinct from allrow(v) with v € S. This can be done using
atmostS|?-|3|- | E| operations: there até| possibilities for choosing (and the
same number fov), |%| for choosinga, and|E| operations to comparmw(ua)
with row(v). If we take|X| = [, the total running time of the “repeat-until” loop
can be bounded by? +2%+. ..+ (n—1)?)-1- (1+1+1*+...+1*). Note that by
“operations” we mean string comparisons, since they arerngdéiy acknowledged
as being the most costly tasks.

On the other hand, to construet(.S, £, C') we needn comparisons for de-
termining the final states, and anothér- || - |E| operations for constructing
the transition function. This means that the total runningetof the algorithm is
bounded byr + [ - U721 neFNEED hat isO(n?),

As for the number of queries asked by the algorithm, it candumbed by SU
SY| - |F| (i.e., by the size of the final observation table), so the yaemplexity
of the algorithm isO(n).

4 |Injective Regular Languages

Another example of languages efficiently learnable with GQke so-called class
of injective languagesWe say that a regular languageC X* isinjectiveif for all
uy, us € X%, uyp =g ug if and only if Cp (uy) = Cp(ug). We present an algorithm
which learns any injective languadeafter asking a finite number of CQs.

4.1 TheAlgorithm

Let Znj be the class of all injective regular languages over the fatpabet,
and letL be the target language. We use again an observation taléegihe there
denoted by(S, C)), with the only difference that the sét has only one element
(E = {\}), so we do not have to mention it explicitly. Moreover, irsteof the
functionrow(u) we can just use its value ik, namelyC/ (u).

The notions of closed and consistent observation tableadnesdl accordingly:
a table(S, C) is closedif for all v € S anda € %, C(ua) € Cr(S), and it
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is consistentf for all u;,us € S, Cp(uy) # Cr(uz). When(S,C) is closed
and consistent, we can construct the corresponding auborsts, C') as in the
previous section. The following algorithm correctly idéies L after asking a
finite number of CQs.

Algorithm 2 An algorithm for learning the clasén; with CQs
1: S:={\}
closed .= TRUE
update the table by asking CQs for all stringsSiv S
repeat
if (Ju € S,a € ¥ such thatU; (ua) ¢ Cr(S)) then
addua to S
update the table by asking CQs for all stringgima’ | o’ € ¥}
closed := FALSE
end if
until closed
: output.A(S, C') and halt.

ol
B Qo

Notice that the algorithm is essentially the same as the oné&é&rningk-
reversible languages, and its correction is based on théHatfor all injective
languages, the correcting string feuniquely identifies the statgqo, u), where
A =(Q,%,6,q, F).

4.2 TimeAnalysisand Query Complexity

The worst case complexity of Algorithm 2 is again(¥in?), since the main loop
requires at most1® + 2% + ... + (n — 1)?) - [ operations, and the automaton
can be constructed using at maest- n2 comparisons (that is, in total, at most
n + MUEE) g operations).

The number of CQs asked by the algorithm is bounded:(dy+ /), which
means that the query complexity is linear in the size of theimmal complete

automaton accepting the target language.

4.3 OntheRelation of Znj with k- Rev

Since for learning the clasgn; we used a simpler version of the Algorithm 1 for
learningk-Rev, one may think that the clagsy; is included ink-Rev. We show
that this is not the case.

Proposition 5. For anyk > 0, the classeg-Rev andZnj are incomparable.

Proof. We first show that for alk > 0, there exists an injective language which
is notk-reversible. For this, consider the finite langudge= {ab*b, b*2, ab*a}.
The automatonélL}c is represented in Figure 1.
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Figure 1: The minimal automaton far,

We have:C: (ab’) = b*"a andCp (bb°) = b "bfor alli € {0,... k}, Cpa (N)
= aba, Opi(abta) = Cpa(abtb) = Cpi (0"+?) = A, andC (u) = 0 for all other
stringsu. So, there are no two non-equivalent strings with the samecion.
Thus, L} isinZnj.

On the other hand, if we assume that is in k-Rev, then by Theorem 1,
wheneveru, vw, upvw are in L}, and|v| = k, Tailpy (wiv) = Tailp (u2v). But
a-b"-bb-b*-bareinLj and|b*| = k, s0Tail s (a - b") = Tail, (b b*), that is
{a,b} = {b}, a contradiction.

Now let us take the language, = {a**! ba* ab*1} (for anyk > 0). The
automatonALi is represented in Figure 2.

Figure 2: The minimal automaton fdr;

The languagéd.? is not injective, since there exist two strings u, such that
Cprz2(w) = Cp2(uz) anduy #p2 us (if we takeu, = a, u = b, thenTail 2 (a) =
{ak YPr} A4 {ak} = Tazle(b) soa Zp2 bandCpz(a) = Cr2(b) = a”).

Because only**! andba* have a common suffix of length at le@sichecking
the k-reversibility of Lj, reduces to showing thafail 2 (") = Tail 2 (ba")
(which is obviously true, since both equal}). O
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So, for anyk > 0, the classek- Rev andZnj are incomparable. We next show
thatO-Rev is a proper subclass @n;.

Proposition 6. The class ORev is strictly included inZn;.

Proof. Let L be a O-reversible language, and assume that therewgxist in >*
such thatu, §—£L Uo andCL(U,l) = CL(U,Q) = U. Clearly,u isin X* (If u = 6 then
Taily(uy) = Taily(uz) = O which contradicts:; #; uy). Because:; u andusyu
are both inL, by Theorem 2Tail; (uy) = Taily(uz). This implies thaty, =;, us
which contradicts our assumption. Sois injective.

Now let us consider the language finitg = {a?, ab?, b*} with the minimal
automatonA,, represented in Figure 3.

Figure 3: The minimal automaton far,

The languagd., is injective since any two non-equivalent strings haveedhff
ent corrections@z,(\) = a?,Cr,(a) = a,Cr,(b) = b*,Cr,(a?) = \,Cr, (b?) =
b,Cr,(ba) = 0), and not O-reversible becaud&il.,(a) # Tail.,(b) although
a - b*> andb - b? are both inL,. O

5 Pattern Languages

Initially introduced by Angluin (in [Ang79]) to show that ¢éne are non-trivial
classes of languages learnable from text, in the limit, thesoof pattern languages
has been intensively studied in the context of languageailegever since.

We assume a finite alphab¥tsuch that>| > 2, and a countable, infinite set
of variablesX = {z,vy, z, 21,11, 21,..., }. A patternz is any non-empty string
over ¥ U X. The pattern languagel(7) consists of all the words obtained by
replacing the variables im with arbitrary strings in-*. Let us denote byP the
set of all pattern languages over a fixed alphabhet
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We say that the patternis in normal form if the variables occurring inare
preciselyzy, ...,z and for every; with 1 < j < k, the leftmost occurrence of
xj in m is left to the leftmost occurrence of ;.

5.1 TheAlgorithm

Suppose that the target language is a pattern langl@ge wherer is in normal
form. Then the following algorithm outputs the patterrafter asking a finite
number of CQs.

Algorithm 3 An algorithm for learning the clasB8 with CQs
1: w:=Cr(A\),n := |w|
2: for i :=1tondo

3 7i] == null

4: end for

5: for i :=1tondo

6:  if (r[i] = null) then

7: choose:r € ¥\ {wli|} arbitrarily
8: v:=Cp(w[l...i—1]a),m = |v
o: if (Ju] = |w[i +1,...,n]|) then
10: wli] == x;

11: for all j € {1,...,m} for whichv[j] # w[i + j] do
12: i+ j] ==

13: end for

14: else

15: 7li] := wli]

16: end if

17:  endif

18: end for

19: outputm

5.2 Correctness and Ter mination

The correctness of the algorithm is based on the followingeolation. Ifw is
the smallest string (in lex-length order) i7) andn = |w|, then for alli in
{1,...,n} we have:

e if w[i] is a variabler such that is the position of the leftmost occurrence
of z in 7, then|Cp(wl[l,...,i — 1]a)| = |w[i + 1,...,n]| for any symbol
a € X; moreover, we can detect the other occurrences of the Variain
7 by just checking the positions where the stridggw|1, ..., — 1]a) and
wli + 1,...,n] do not coincide, where is any symbol in2\ {w]i]}
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e if 7[i] = a for somea in X, thenCy(w[l,...,i — 1]b) is eitherd, or longer
thenw(i + 1,...,n] forallb € ¥\{a}.

Obviously, the algorithm terminates in finite steps.

5.3 TimeAnalysisand Query Complexity

For each symbol in the pattern, the algorithm makes at mastl comparisons,
wheren is the length of the pattern. This implies that the total ingriime of the
algorithm is bounded by (n + 1), that isO(n?).

It is easy to see that the query complexity is linear in thgtlef the pattern,
since the algorithm does not ask more than 1 CQs.

6 Learningwith CQsversusLearningwith MQs

The notion of CQ appeared as an extension of the well-knownirgedsively
studied MQ. The inspiration for introducing them comes framreal life setting
(which is the case for MQs also): when children make mistaites adults do
not reply by a simple 'yes’ or 'no’ (the agreement is actuathplicit), but they
also provide them with a corrected word. Clearly, CQs can baghbas some
more informative MQs. So, itis only natural to compare the tearning settings
(learning with CQws. learning with MQs), and to analyze their expressive power.

The first step in this direction has already been dorfimalia and Kobayashi
showed in [TKO7] that learning with CQs is strictly more pofwéthan learning
with MQs, when we neglect the time complexity.

In this section we make a step further towards understarttimglifferences
and similarities between these two learning models by takito consideration
the efficiency of the learning algorithms, that is, the timenplexity. For this, we
need further terminology.

LetC = (L;);>1 be anindexable class. We say tias polynomially learnable
with MQs(or with CQ39 if there exists a polynomial time algorithm which leaths
using MQs (CQs, respectively). We denote the collectionldhdexable classes
C which are polynomially learnable with MQs BolMem Q) (PolCor(@ is defined
similarly).

Recall that if the correction for a given stringis A then the string is in the
language, and the oracle’s answer would be 'yes’; in all otlases, the string is
not in the language, and the answer would be 'no’. So, sineafttswer to any
CQ gives us also the answer to the corresponding MQ, it foliowsediately that
the classPolMem() is included inPolCor(@). We show that the inclusion is strict
using pattern languages as the separating case.

Theorem 7. The classP is in PolCorQ\ PolMem(Q).
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Proof. It is clear thatP is in PolCor( since Algorithm 3 is a polynomial time
algorithm which identifies any pattern language using COs Setion 5).

Assume now thaP is in PolMem(, and consider the class of singletadhof
fixed lengthn over the alphabet. Because every languade= {w} in S can
be written as a pattern language & L(w), wherew is a pattern without any
variables),S is also inPolMem(). But Angluin shows that, i is the cardinality
of the alphabet, then any algorithm which leafhgsing MQs needs to ask at least
k™ — 1 MQs ([Ang81]), which leads to a contradiction. n

Note that althouglP is not polynomially learnable with MQs, it is ifdem Q)
(see [Muk92], page 266). However, there are classes of &yegiinPolCor()
which cannot be learned at all (polynomially or not) using 8/@s we will see in
the sequel.

Theorem 8. The clasg:-Rev is in PolCorQ\ Mem(Q).

Proof. Since Algorithm 1 learns ang-reversible language using CQs in polyno-
mial time (see Section 3), it follows immediately thaiRev is in PolCor(@).

To show thatk-Rev is not in Mem(), we use Mukouchi’s characterization of
the classMem (@ in terms of pairs of definite finite tell-tales. A pdif’, F') is said
to be apair of definite finite tell-tales of; if:

(1) T; is afinite subset of;, F; is a finite subset o£*\ Z;, and

(2) forallj > 1, if L, is consistent with the paifT’, F') (thatis,7” C L; and
F C E*\LJ), thenLj = L;.

Mukouchi proves in [Muk92] that an indexable class= (L;);>; belongs to
Mem(@ if and only if a pair of definite finite tell-tales of; is uniformly com-
putable for any index.

So, let us assume thatRev is in Mem(@. Consider the alphabét such that
{a,b} C %, and the languagé = {a}. Clearly, L is in k-Rev for all £k > 0 and
hence a pair of definite finite tell-tal€g’, F') is computable for.. This means
thatT C L andF is a finite set included ii*\{a}. Let us taken = max{|w| |
w € F} and the languagé’ = {a,ba™b}. It is clear thatl’ is in k-Rev for all
k > 0, and that it is consistent witfi", F'). Moreover,L’ # L, which leads to a
contradiction. O

Note that the same kind of proof can be used to show Ihatis also in
PolCor@Q\ Mem@), and in this case the query complexity is actually linearti@n
other hand, very simple classes of languages cannot bestkarpolynomial time
using CQs. For example, if we talseto beS = (L, )wes-, WhereL,, = %\ {w},
then any algorithm would require at ledst- k + k% + ... + k™ CQs in order to
learnL,,, wheren = |w| andk = |X|.
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7 Concluding Remarks

We have investigated the learnability of some well-knowrglaage classes in the
guery learning setting. A sinthesis of the results obtaisguiesented in Figure 4.

Figure 4: CQ learning vs MQ learning

The class of pattern languages was known to be learnabléW@$ We gave
a polynomial time algorithm for learning using CQs, and showed that they can-
not be efficiently learned with MQs. Moreover, we proved thaieversible lan-
guages and injective languages are efficiently learnalite @@s, and not learn-
able (at all) with MQs.

For the future, we would like to see what happens with thenlgaitity results
obtained so far when we change the correcting string. A ptesdirection could
be to choose as correction the closest string in the edértist
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