
Cristina Tı̂rnăucă | Timo Knuutila

Efficient Language Learning with
Correction Queries

TUCS Technical Report
No 822, May 2007

Efficient Language Learning with
Correction Queries

Cristina Tı̂rnăucă
Research Group on Mathematical Linguistics, Rovira i VirgiliUniversity
Pl. Imperial T̀arraco 1, Tarragona 43005, Spain
cristina.bibire@estudiants.urv.es

Timo Knuutila
Department of Information Technology, University of Turku
Joukahaisenkatu 3-5 B, FI-20014 Turku, Finland
timo.knuutila@it.utu.fi

TUCS Technical Report

No 822, May 2007

Abstract

We investigate two of the language classes intensively studied by the algorith-
mic learning theory community in the context of learning with correction queries.
More precisely, we show that any pattern language can be inferred in polyno-
mial time in length of the pattern by asking just a linear number of correction
queries, and thatk-reversible languages are efficiently learnable within this set-
ting. Note that although the class of all pattern languages is learnable with mem-
bership queries, this cannot be done in polynomial time. Moreover, the class of
k-reversible languages is not learnable at all using membership queries only. Fur-
thermore, we present results on a newly introduced class of languages, namely the
class of injective languages.

Keywords: correction query, pattern languages, k-reversible languages, injective
languages, polynomial time algorithms

TUCS Laboratory
TUCS Laboratory

1 Introduction

Without any doubt, there is no formal model that can capture all aspects of hu-
man learning. Nevertheless, the overall aim of researchersworking in algorithmic
learning theory has been to gain a better understanding of what learning really is.
Actually, the field itself has been introduced as an attempt to construct a precise
model for the notion of “being able to speak a language” [Gol67].

Among the most celebrated models (Gold’s model oflearning from examples
[Gol67], Angluin’squery learningmodel [Ang87], Valiant’sPAC learningmodel
[Val84]), the best one for describing the child-adult interaction within the process
of child acquiring his native language is the one proposed in[Ang87]. There,the
learnerreceives information about a target concept by asking queries of a specific
kind (depending on the chosen query model type) which will betruthfully an-
swered bythe teacher. After at most finitely many queries, the learner is required
to return its hypothesis, and this should be the correct one.

The first query learning algorithm (L∗) was able to identify any minimal com-
plete deterministic finite automaton (DFA) in polynomial time, using membership
queries (MQs) and equivalence queries (EQs) [Ang87]. Meanwhile, other types
of queries have been introduced: subset, superset, disjointness and exhaustive
queries [Ang88], structured MQs [Sak90],etc., and also various target concepts
have been investigated: non-deterministic finite automata[Yok94], context-free
grammars [Sak90], two-tape automata [Yok96], regular treelanguages [DH07,
TT07], etc.

Still, none of the above mentioned queries reflects one important aspect of
children language acquisition, namely that, although children are not explicitly
provided negative information, they are corrected when they make mistakes. Fol-
lowing this idea, L. Becerra-Bonache, A.H. Dediu and C. Tı̂rnăuc̆a introduced in
[BBDT06] a new type of a query, the so-calledcorrection query(CQ), and showed
that DFAs are learnable in polynomial time using CQs and EQs. Continuing the
investigation on CQs, C. Tı̂rnăuc̆a and S. Kobayashi found necessary and suffi-
cient conditions for an indexable class of recursive languages to be learnable with
CQs only [TK07]. Also, they showed some relations existing between this model
and other well-known (query and Gold-style) learning models.

In contrast with the approach in [TK07], where the learnability is studied re-
gardless time complexity, we focus in this paper on algorithms for identifying
language classes in polynomial time. Thus, the rest of the paper is structured as
follows. Preliminary notions and results are presented in Section 2. Then, we
give polynomial time algorithms for learningk-reversible languages (Section 3)
and injective languages (Section 4) with CQs. Section 5 contains an algorithm for
learning pattern languages, along with discussions about correctness, termination
and time analysis. In Section 6 we present some other resultson the learnability
with MQs of the classes investigated in the previous sections. Concluding remarks
and further research topics are presented in Section 7.

1

2 Preliminaries

Familiarity with standard recursion theoretic and language theoretic notions is
assumed, see [HU79, MVMP04].

Let Σ be a finite alphabet of symbols. ByΣ∗ we denote the set of all finite
strings of symbols fromΣ. A languageis any set of strings overΣ. The length of
a stringw is denoted by|w|, and the concatenation of two stringsu andv by uv
or u · v. The empty string (i.e., the unique string of length 0) is denoted byλ. If
w = uv for someu, v ∈ Σ∗, we say thatu is aprefixof w andv is asuffixof w.

A setS is said to beprefix-closedif for all stringsu in S and allv prefixes of
u, the stringv is also inS. The notion ofsuffix-closedset is defined similarly.

By Σ≤k we denote the set{w ∈ Σ∗ | |w| ≤ k}, by Pref (L) the set{u | ∃v ∈
Σ∗ such thatuv ∈ L} of all prefixes of a languageL ⊆ Σ∗, and byTailL(u) =
{v | uv ∈ L} the left-quotient ofL andu. Thus,TailL(u) 6= ∅ if and only if
u ∈ Pref (L).

A deterministic finite automatonis a 5-tupleA = (Q, Σ, δ, q0, F) whereQ is
a finite set ofstates, Σ is a finite alphabet,q0 ∈ Q is theinitial state,F ⊆ Q is the
set offinal states, andδ is a partial function, calledtransition function, that maps
Q × Σ to Q. This function can be extended to strings by writingδ(q, λ) = q, and
δ(q, u ·a) = δ(δ(q, u), a), for all q ∈ Q, u ∈ Σ∗ anda ∈ Σ. A stringu is accepted
by A if δ(q0, u) ∈ F . The set of strings accepted byA is denoted byL(A) and is
called aregular language. The number of states of an automatonA is also called
thesizeof A. A DFA A = (Q, Σ, δ, q0, F) is completeif for all q in Q anda in
Σ, δ(q, a) is defined, i.e.,δ is a total function. For any regular languageL, there
exists a minimum state DFAAL such thatL(AL) = L (see [HU79], pp. 65-71).

A stateq is calledreachableif there existsu ∈ Σ∗ such thatδ(q0, u) = q and
co-reachableif there existsu ∈ Σ∗ such thatδ(q, u) ∈ F . A reachable state that
is not co-reachable is called asinkstate. Note that in a minimum DFA there is at
most one sink state, and all states are reachable.

Given a languageL, one can define the following relation on strings:u1 ≡L u2

if and only if for all u in Σ∗, u1 · u ∈ L ⇔ u2 · u ∈ L. It is easy to show that≡L

is an equivalence relation on strings, and thus it divides the set of all finite strings
into one or more equivalence classes. We denote by[u]L (or simply [u], when
there is no confusion) the equivalence class of the stringu (i.e.,{u′ | u′ ≡L u}),
and byΣ∗/≡L

the set of all equivalence classes induced by≡L onΣ∗.
The Myhill-Nerode Theorem states that the number of equivalence classes of

≡L (also called theindexof L) is equal to the number of states ofAL. As a direct
consequence, a languageL is regular if and only if the index ofL is finite.

Assume thatΣ is a totally ordered set and let≺lex be the lexicographical order
onΣ∗. Then, thelex-length order≺ onΣ∗ is defined by:u ≺ v if either |u| < |v|,
or else|u| = |v| andu ≺lex v. In other words, strings are compared first according
to length and then lexicographically.

If f : A → B is a function, byf(X) we denote the set{f(x) | x ∈ X}.

2

Moreover, we say thatf andg are equal if they have the same domainA, and
f(x) = g(x) for all x ∈ A.

2.1 Query Learning

Let C be a class of recursive languages overΣ∗. We say thatC is an indexable
classif there is an effective enumeration(Li)i≥1 of all and only the languages inC
such that membership is uniformly decidable, i.e., there isa computable function
that, for anyw ∈ Σ∗ andi ≥ 1, returns 1 ifw ∈ Li, and 0 otherwise. Such an
enumeration will subsequently be called anindexingof C. In the sequel we might
say thatC = (Li)i≥1 is an indexable class and understand thatC is an indexable
class and(Li)i≥1 is an indexing ofC.

In the query learning model a learner has access to an oracle that truthfully
answers queries of a specified kind. Aquery learnerM is an algorithmic device
that, depending on the reply on the previous queries, eithercomputes a new query,
or returns a hypothesis and halts.

More formally, letC = (Li)i≥1 be an indexable class,M a query learner, and
let L ∈ C. We say thatM learnsL using some type of queries if it eventually
halts and its only hypothesis, sayi, correctly describesL, i.e., Li = L. So,M
returns its unique and correct guessi after only finitely many queries. Moreover,
M learnsC using some type of queries if it learns everyL ∈ C using queries of
the specified type. In the sequel we consider:

Membership queries. The input is a stringw and the answer is ‘yes’ or ‘no’,
depending on whether or notw belongs to the target languageL.

Correction queries. The input is a stringw and the answer is the smallest
string (in lex-length order) of the setTailL(w) if w ∈ Pref (L), and the special
symbolθ 6∈ Σ otherwise. We denote the correction of a stringw with respect to
the languageL by CL(w).

The collections of all indexable classesC for which there is a query learner
M such thatM learnsC using MQs (CQs) is denoted byMemQ (CorQ , respec-
tively).

3 Learning k-Reversible Languages with CQs

Angluin introduced the class ofk-reversible languages (henceforth denoted byk-
Rev) in [Ang82], and showed that it is inferable from positive data in the limit.
We study its learnability in the context of learning with CQs,and show that there
is a polynomial time algorithm which identifies any languagein the classk-Rev

after asking a finite number of CQs.
Although the original definition ofk-reversible languages uses the notion of

k-reversible automata, we will give here only a purely language-theoretic charac-
terization.

3

Theorem 1 (Angluin, [Ang82]). Let L be a regular language. ThenL is k-
reversible if and only if wheneveru1vw, u2vw are inL and|v| = k, TailL(u1v) =
TailL(u2v).

Note that for the 0-reversible languages we have:

Theorem 2 (Angluin, [Ang82]). Let L be a regular language. ThenL is 0-
reversible if and only if wheneveru1v andu2v are inL, TailL(u1) = TailL(u2).

Let Σ be an alphabet, andL ⊆ Σ∗ be the targetk-reversible language. For any
stringu in Σ∗, we define the functionrow(u) : Σ≤k → Σ∗ ∪ {θ} by row(u)(v) =
CL(uv). We show that each equivalence class inΣ∗/≡L

is uniquely identified by
the values of functionrow onΣ≤k.

Proposition 3. Let L be a k-reversible language. Then, for allu1, u2 ∈ Σ∗,
u1 ≡L u2 if and only ifrow(u1) = row(u2).

Proof. Let us first notice that for all regular languagesL and for anyk ∈ IN ,
u1 ≡L u2 ⇒ row(u1) = row(u2) (by the definition of functionrow), so we just
have to show thatrow(u1) = row(u2) ⇒ u1 ≡L u2.

Indeed, suppose there existu1, u2 ∈ Σ∗ such thatrow(u1) = row(u2) and
u1 6≡L u2. Hence, there must existw such that either

• u1w ∈ L andu2w 6∈ L; or

• u1w 6∈ L andu2w ∈ L.

Let us assume the former case (the other one is similar).

1) If |w| ≤ k, thenw ∈ Σ≤k, and sincerow(u1) = row(u2) we get in particu-
lar row(u1)(w) = row(u2)(w), that isCL(u1w) = CL(u2w). But u1w ∈ L
impliesCL(u1w) = λ, and soCL(u2w) = λ which is in contradiction with
u2w 6∈ L.

2) If |w| > k, then there must existv, w′ ∈ Σ∗ such thatw = vw′ and|v| = k.
Moreover, by assumptionu1vw′ ∈ L and u2vw′ 6∈ L, so u1v 6≡L u2v.
On the other hand sincerow(u1) = row(u2) and v ∈ Σ≤k, we have
row(u1)(v) = row(u2)(v), that isCL(u1v) = CL(u2v) = v′. Because
u1v · w′ ∈ L, TailL(u1v) 6= ∅ and henceCL(u1v) ∈ Σ∗. SinceL ∈ k-Rev ,
u1vv′ ∈ L, u2vv′ ∈ L and |v| = k, we getTailL(u1v) = TailL(u2v) (cf.
Theorem 1) which is in contradiction withu1v 6≡L u2v.

This result tells us that ifAL = (Q, Σ, δ, q0, F) is the minimal complete au-
tomaton for thek-reversible languageL, then the values of functionrow(u) on
Σ≤k uniquely identify the stateδ(q0, u).

4

3.1 The Algorithm

The algorithm follows the lines ofL∗. We have anobservation table(here and
there denoted by(S,E,C)) in which lines are indexed by the elements of a prefix-
closed setS, columns are indexed by the elements of a suffix-closed setE, and
the element of the table situated at the intersection of lineu with column v is
CL(uv). We start withS = {λ} andE = Σ≤k, and then increase the size ofS by
adding elements with distinct row values. An important difference between our
algorithm andL∗ is that in our case the setE is never modified during the run
of the algorithm (inL∗, E contains only one element in the beginning, and it is
gradually enlarged when needed).

We say that the observation table(S,E,C) is closed if for all u ∈ S and
a ∈ Σ, there existsu′ ∈ S such thatrow(u′) = row(ua). Moreover,(S,E,C)
is consistentif for all u1, u2 ∈ S, row(u1) 6= row(u2) (which is equivalent to
u1 6≡L u2, or to [u1] 6= [u2]). It is clear that if the table(S,E,C) is consistent and
S has exactlyn elements (wheren is the index ofL), then the strings inS are in
bijection with the classes ofΣ∗/≡L

.
For any closed and consistent table(S,E,C) we construct the automaton

A(S,E,C) = (Q, Σ, δ, q0, F) as follows: Q = {[u] | u ∈ S}, q0 = [λ], F =
{[u] | u ∈ S andCL(u) = λ}, andδ([u], a) = [ua] for all u ∈ S anda ∈ Σ.

To see that this is a well defined automaton, note that sinceS is a non-empty
prefix-closed set, it must containλ, soq0 is defined. BecauseS is consistent, there
are no two elementsu1, u2 in S such that[u1] = [u2]. Thus,F is well defined.
Since the observation table(S,E,C) is closed, for eachu ∈ S anda ∈ Σ, there
existsu′ in S such thatrow(ua) = row(u′) (hence[ua] = [u′]), and because
it is consistent, thisu′ is unique. Soδ is well defined. It is easy to check that
δ(q0, u) = [u] for all u in S ∪ SΣ.

We present a polynomial time algorithm that learns anyk-reversible language
L after asking a finite number of CQs.

Algorithm 1 An algorithm for learning the classk-Rev with CQs

1: S := {λ}, E := Σ≤k

2: closed := TRUE
3: update the table by asking CQs for all strings in{uv | u ∈ S ∪ SΣ, v ∈ E}
4: repeat
5: if (∃u ∈ S anda ∈ Σ such thatrow(ua) 6∈ row(S)) then
6: addua to S
7: update the table by asking CQs for all strings in{uaa′v | a′ ∈ Σ, v ∈ E}
8: closed := FALSE
9: end if

10: until closed
11: outputA(S,E,C) and halt.

5

Note that since the algorithm adds toS only elements with distinct row values,
the table(S,E,C) is always consistent. We will see that as long as|S| < n, it is
not closed.

Lemma 4. If |S| < n, then(S,E,C) is not closed.

Proof. Let us assume that there existsm < n such that|S| = m and the table
(S,E,C) is closed. LetA = (Q, Σ, δ, q0, F) be the automatonA(S,E,C) andAL

= (Q′, Σ, δ′, q′0, F
′) the minimal complete automaton acceptingL.

We define the functionϕ : Q → Q′ by ϕ([u]) := δ′(q′0, u). Note thatϕ is
well defined because there are no two stringsu1, u2 in S such that[u1] = [u2].
Moreover, it is injective sinceϕ([u1]) = ϕ([u2]) implies δ′(q′0, u1) = δ′(q′0, u2)
which is equivalent to[u1] = [u2]. We show thatϕ is a morphism of automata
from A(S,E,C) to AL, that is: ϕ(q0) = q′0, ϕ(F) ⊆ F ′, andϕ(δ([u], a)) =
δ′(ϕ([u]), a) for all u ∈ S anda ∈ Σ.

Clearly,ϕ(q0) = ϕ([λ]) = δ′(q′0, λ) = q′0. Let us now take[u] in F . Since
ϕ([u]) = δ′(q′0, u) andCL(u) = λ (that is,u ∈ L), it follows thatϕ([u]) ∈ F ′.
Finally, ϕ(δ([u], a)) = ϕ([ua]) = ϕ([v]) for somev in S such that[ua] = [v] (the
table is closed), andδ′(ϕ([u]), a) = δ′(δ′(q′0, u), a) = δ′(q′0, ua). It is enough to
see thatϕ([v]) = δ′(q′0, v) = δ′(q′0, ua) (because[v] = [ua] andAL is the minimal
automaton acceptingL) to conclude the proof.

We have constructed an injective morphism fromA to AL such that|Q| =
m < n = |Q|. Since bothA andAL are complete automata, this leads us to a
contradiction.

In the following sections we show that the algorithm runs in polynomial time,
and that it terminates with the minimal automaton for the target language as its
output.

3.2 Correctness and Termination

We have seen that as long as|S| < n, the table is not closed, so there will al-
ways be anu in S and a symbola in Σ such thatrow(ua) 6∈ row(S). Since the
cardinality of the setS is initially 1, and increases by 1 with each “repeat-until”
loop (lines 4-10), it will eventually ben, and hence the algorithm is guaranteed to
terminate.

We claim that when|S| = n, the observation table(S,E,C) is closed and
consistent, andA(S,E,C) is isomorphic toAL. Indeed, if|S| = n then the set
{[u] | u ∈ S} has cardinalityn, since the elements ofS have distinct row values.
Thus for allu ∈ S anda ∈ Σ, row(ua) ∈ row(S) (otherwise[ua] would be the
(n + 1)th equivalence class ofΣ∗/≡L

), and hence the table is closed.
To see thatA(S,E,C) and AL are isomorphic, let us takeA(S,E,C) =

(Q, Σ, δ, q0, F), AL = (Q′, Σ, δ′, q′0, F
′), and the functionϕ : Q → Q′ defined by

ϕ([u]) := δ′(q′0, u) for all u ∈ S. As in the proof of Lemma 4, it can be shown

6

thatϕ is a well-defined and injective automata morphism. Since thetwo automata
have the same number of states,ϕ is also surjective, and hence bijective. Let us
now show thatϕ(F) = F ′. Indeed, takeq ∈ F ′. Becauseϕ is bijective, there
existsu in S such thatϕ([u]) = q. It follows immediately thatδ′(q′0, u) ∈ F ′, and
henceu ∈ L. Thus,CL(u) = λ and[u] ∈ F . Clearly,ϕ([u]) = q ∈ ϕ(F). So,
F ′ ⊆ ϕ(F), and sinceϕ(F) ⊆ F ′, ϕ(F) = F ′ which concludes the proof.

3.3 Time Analysis and Query Complexity

Let us now discuss the time complexity of the algorithm. Whilethe cardinality of
S is smaller thenn, the algorithm searches for a stringu in S and a symbola in Σ
such thatrow(ua) is distinct from allrow(v) with v ∈ S. This can be done using
at most|S|2 · |Σ| · |E| operations: there are|S| possibilities for choosingu (and the
same number forv), |Σ| for choosinga, and|E| operations to comparerow(ua)
with row(v). If we take|Σ| = l, the total running time of the “repeat-until” loop
can be bounded by(12 +22 + . . .+(n−1)2) · l · (1+ l+ l2 + . . .+ lk). Note that by
“operations” we mean string comparisons, since they are generally acknowledged
as being the most costly tasks.

On the other hand, to constructA(S,E,C) we needn comparisons for de-
termining the final states, and anothern2 · |Σ| · |E| operations for constructing
the transition function. This means that the total running time of the algorithm is
bounded byn + l · lk+1−1

l−1
· n(n+1)(2n+1)

6
, that isO(n3).

As for the number of queries asked by the algorithm, it can be bounded by|S∪
SΣ| · |E| (i.e., by the size of the final observation table), so the query complexity
of the algorithm isO(n).

4 Injective Regular Languages

Another example of languages efficiently learnable with CQs is the so-called class
of injective languages. We say that a regular languageL ⊆ Σ∗ is injectiveif for all
u1, u2 ∈ Σ∗, u1 ≡L u2 if and only if CL(u1) = CL(u2). We present an algorithm
which learns any injective languageL after asking a finite number of CQs.

4.1 The Algorithm

Let Inj be the class of all injective regular languages over the fixedalphabetΣ,
and letL be the target language. We use again an observation table (here and there
denoted by(S,C)), with the only difference that the setE has only one element
(E = {λ}), so we do not have to mention it explicitly. Moreover, instead of the
functionrow(u) we can just use its value inλ, namelyCL(u).

The notions of closed and consistent observation table are defined accordingly:
a table(S,C) is closedif for all u ∈ S anda ∈ Σ, CL(ua) ∈ CL(S), and it

7

is consistentif for all u1, u2 ∈ S, CL(u1) 6= CL(u2). When (S,C) is closed
and consistent, we can construct the corresponding automatonA(S,C) as in the
previous section. The following algorithm correctly identifies L after asking a
finite number of CQs.

Algorithm 2 An algorithm for learning the classInj with CQs
1: S := {λ}
2: closed := TRUE
3: update the table by asking CQs for all strings inS ∪ SΣ
4: repeat
5: if (∃u ∈ S, a ∈ Σ such thatCL(ua) 6∈ CL(S)) then
6: addua to S
7: update the table by asking CQs for all strings in{uaa′ | a′ ∈ Σ}
8: closed := FALSE
9: end if

10: until closed
11: outputA(S,C) and halt.

Notice that the algorithm is essentially the same as the one for learningk-
reversible languages, and its correction is based on the fact that for all injective
languages, the correcting string foru uniquely identifies the stateδ(q0, u), where
AL = (Q, Σ, δ, q0, F).

4.2 Time Analysis and Query Complexity

The worst case complexity of Algorithm 2 is again inO(n3), since the main loop
requires at most(12 + 22 + . . . + (n − 1)2) · l operations, and the automaton
can be constructed using at mostn + n2l comparisons (that is, in total, at most
n + n(n+1)(2n+1)

6
· l operations).

The number of CQs asked by the algorithm is bounded byn(1 + l), which
means that the query complexity is linear in the size of the minimal complete
automaton accepting the target language.

4.3 On the Relation of Inj with k-Rev

Since for learning the classInj we used a simpler version of the Algorithm 1 for
learningk-Rev , one may think that the classInj is included ink-Rev . We show
that this is not the case.

Proposition 5. For anyk > 0, the classesk-Rev andInj are incomparable.

Proof. We first show that for allk > 0, there exists an injective language which
is notk-reversible. For this, consider the finite languageL1

k = {abkb, bk+2, abka}.
The automatonAL1

k

is represented in Figure 1.

8

Figure 1: The minimal automaton forL1
k

We have:CL1
k

(abi) = bk−ia andCL1
k

(bbi) = bk−ib for all i ∈ {0, . . . k}, CL1
k

(λ)

= abka, CL1
k

(abka) = CL1
k

(abkb) = CL1
k

(bk+2) = λ, andCL1
k

(u) = θ for all other
stringsu. So, there are no two non-equivalent strings with the same correction.
Thus,L1

k is in Inj .
On the other hand, if we assume thatL1

k is in k-Rev , then by Theorem 1,
wheneveru1vw, u2vw are inL1

k and |v| = k, TailL1
k

(u1v) = TailL1
k

(u2v). But
a · bk · b, b · bk · b are inL1

k and|bk| = k, soTailL1
k

(a · bk) = TailL1
k

(b · bk), that is
{a, b} = {b}, a contradiction.

Now let us take the languageL2
k = {ak+1, bak, abk+1} (for anyk > 0). The

automatonAL2
k

is represented in Figure 2.

Figure 2: The minimal automaton forL2
k

The languageL2
k is not injective, since there exist two stringsu1, u2 such that

CL2
k

(u1) = CL2
k

(u2) andu1 6≡L2
k

u2 (if we takeu1 = a, u2 = b, thenTailL2
k

(a) =

{ak, bk+1} 6= {ak} = TailL2
k

(b), soa 6≡L2
k

b andCL2
k

(a) = CL2
k

(b) = ak).

Because onlyak+1 andbak have a common suffix of length at leastk, checking
the k-reversibility of L2

k reduces to showing thatTailL2
k

(ak+1) = TailL2
k

(bak)
(which is obviously true, since both equal{λ}).

9

So, for anyk > 0, the classesk-Rev andInj are incomparable. We next show
that0-Rev is a proper subclass ofInj .

Proposition 6. The class 0-Rev is strictly included inInj .

Proof. Let L be a 0-reversible language, and assume that there existu1, u2 in Σ∗

such thatu1 6≡L u2 andCL(u1) = CL(u2) = u. Clearly,u is in Σ∗ (if u = θ then
TailL(u1) = TailL(u2) = ∅ which contradictsu1 6≡L u2). Becauseu1u andu2u
are both inL, by Theorem 2,TailL(u1) = TailL(u2). This implies thatu1 ≡L u2

which contradicts our assumption. So,L is injective.
Now let us consider the language finiteL0 = {a2, ab2, b3} with the minimal

automatonAL0
represented in Figure 3.

Figure 3: The minimal automaton forL0

The languageL0 is injective since any two non-equivalent strings have differ-
ent corrections (CL0

(λ) = a2, CL0
(a) = a, CL0

(b) = b2, CL0
(a2) = λ,CL0

(b2) =
b, CL0

(ba) = θ), and not 0-reversible becauseTailL0
(a) 6= TailL0

(b) although
a · b2 andb · b2 are both inL0.

5 Pattern Languages

Initially introduced by Angluin (in [Ang79]) to show that there are non-trivial
classes of languages learnable from text, in the limit, the class of pattern languages
has been intensively studied in the context of language learning ever since.

We assume a finite alphabetΣ such that|Σ| ≥ 2, and a countable, infinite set
of variablesX = {x, y, z, x1, y1, z1, . . . , }. A patternπ is any non-empty string
over Σ ∪ X. The pattern languageL(π) consists of all the words obtained by
replacing the variables inπ with arbitrary strings inΣ+. Let us denote byP the
set of all pattern languages over a fixed alphabetΣ.

10

We say that the patternπ is in normal form if the variables occurring inπ are
preciselyx1, . . . , xk and for everyj with 1 ≤ j < k, the leftmost occurrence of
xj in π is left to the leftmost occurrence ofxj+1.

5.1 The Algorithm

Suppose that the target language is a pattern languageL(π), whereπ is in normal
form. Then the following algorithm outputs the patternπ after asking a finite
number of CQs.

Algorithm 3 An algorithm for learning the classP with CQs
1: w := CL(λ), n := |w|
2: for i := 1 to n do
3: π[i] := null
4: end for
5: for i := 1 to n do
6: if (π[i] = null) then
7: choosea ∈ Σ\{w[i]} arbitrarily
8: v := CL(w[1 . . . i − 1]a),m := |v|
9: if (|v| = |w[i + 1, . . . , n]|) then

10: π[i] := xi

11: for all j ∈ {1, . . . ,m} for whichv[j] 6= w[i + j] do
12: π[i + j] := xi

13: end for
14: else
15: π[i] := w[i]
16: end if
17: end if
18: end for
19: outputπ

5.2 Correctness and Termination

The correctness of the algorithm is based on the following observation. Ifw is
the smallest string (in lex-length order) inL(π) andn = |w|, then for all i in
{1, . . . , n} we have:

• if π[i] is a variablex such thati is the position of the leftmost occurrence
of x in π, then|CL(w[1, . . . , i − 1]a)| = |w[i + 1, . . . , n]| for any symbol
a ∈ Σ; moreover, we can detect the other occurrences of the variable x in
π by just checking the positions where the stringsCL(w[1, . . . , i− 1]a) and
w[i + 1, . . . , n] do not coincide, wherea is any symbol inΣ\{w[i]}

11

• if π[i] = a for somea in Σ, thenCL(w[1, . . . , i − 1]b) is eitherθ, or longer
thenw[i + 1, . . . , n] for all b ∈ Σ\{a}.

Obviously, the algorithm terminates in finite steps.

5.3 Time Analysis and Query Complexity

For each symbol in the pattern, the algorithm makes at mostn + 1 comparisons,
wheren is the length of the pattern. This implies that the total running time of the
algorithm is bounded byn(n + 1), that isO(n2).

It is easy to see that the query complexity is linear in the length of the pattern,
since the algorithm does not ask more thann + 1 CQs.

6 Learning with CQs versus Learning with MQs

The notion of CQ appeared as an extension of the well-known andintensively
studied MQ. The inspiration for introducing them comes froma real life setting
(which is the case for MQs also): when children make mistakes, the adults do
not reply by a simple ’yes’ or ’no’ (the agreement is actuallyimplicit), but they
also provide them with a corrected word. Clearly, CQs can be thought as some
more informative MQs. So, it is only natural to compare the two learning settings
(learning with CQsvs. learning with MQs), and to analyze their expressive power.

The first step in this direction has already been done: Tı̂rnăuc̆a and Kobayashi
showed in [TK07] that learning with CQs is strictly more powerful than learning
with MQs, when we neglect the time complexity.

In this section we make a step further towards understandingthe differences
and similarities between these two learning models by taking into consideration
the efficiency of the learning algorithms, that is, the time complexity. For this, we
need further terminology.

LetC = (Li)i≥1 be an indexable class. We say thatC is polynomially learnable
with MQs(or with CQs) if there exists a polynomial time algorithm which learnsC
using MQs (CQs, respectively). We denote the collection of all indexable classes
C which are polynomially learnable with MQs byPolMemQ (PolCorQ is defined
similarly).

Recall that if the correction for a given stringu is λ then the string is in the
language, and the oracle’s answer would be ’yes’; in all other cases, the string is
not in the language, and the answer would be ’no’. So, since the answer to any
CQ gives us also the answer to the corresponding MQ, it followsimmediately that
the classPolMemQ is included inPolCorQ . We show that the inclusion is strict
using pattern languages as the separating case.

Theorem 7. The classP is in PolCorQ\PolMemQ .

12

Proof. It is clear thatP is in PolCorQ since Algorithm 3 is a polynomial time
algorithm which identifies any pattern language using COs (see Section 5).

Assume now thatP is in PolMemQ , and consider the class of singletonsS of
fixed lengthn over the alphabetΣ. Because every languageL = {w} in S can
be written as a pattern language (L = L(w), wherew is a pattern without any
variables),S is also inPolMemQ . But Angluin shows that, ifk is the cardinality
of the alphabet, then any algorithm which learnsS using MQs needs to ask at least
kn − 1 MQs ([Ang81]), which leads to a contradiction.

Note that althoughP is not polynomially learnable with MQs, it is inMemQ

(see [Muk92], page 266). However, there are classes of languages inPolCorQ

which cannot be learned at all (polynomially or not) using MQs, as we will see in
the sequel.

Theorem 8. The classk-Rev is in PolCorQ\MemQ .

Proof. Since Algorithm 1 learns anyk-reversible language using CQs in polyno-
mial time (see Section 3), it follows immediately thatk-Rev is in PolCorQ .

To show thatk-Rev is not inMemQ , we use Mukouchi’s characterization of
the classMemQ in terms of pairs of definite finite tell-tales. A pair〈T, F 〉 is said
to be apair of definite finite tell-tales ofLi if:

(1) Ti is a finite subset ofLi, Fi is a finite subset ofΣ∗\Li, and

(2) for all j ≥ 1, if Lj is consistent with the pair〈T, F 〉 (that is,T ⊆ Lj and
F ⊆ Σ∗\Lj), thenLj = Li.

Mukouchi proves in [Muk92] that an indexable classC = (Li)i≥1 belongs to
MemQ if and only if a pair of definite finite tell-tales ofLi is uniformly com-
putable for any indexi.

So, let us assume thatk-Rev is in MemQ . Consider the alphabetΣ such that
{a, b} ⊆ Σ, and the languageL = {a}. Clearly,L is in k-Rev for all k ≥ 0 and
hence a pair of definite finite tell-tales〈T, F 〉 is computable forL. This means
thatT ⊆ L andF is a finite set included inΣ∗\{a}. Let us takem = max{|w| |
w ∈ F} and the languageL′ = {a, bamb}. It is clear thatL′ is in k-Rev for all
k ≥ 0, and that it is consistent with〈T, F 〉. Moreover,L′ 6= L, which leads to a
contradiction.

Note that the same kind of proof can be used to show thatInj is also in
PolCorQ\MemQ , and in this case the query complexity is actually linear. Onthe
other hand, very simple classes of languages cannot be learned in polynomial time
using CQs. For example, if we takēS to beS̄ = (Lw)w∈Σ∗, whereLw = Σ∗\{w},
then any algorithm would require at least1 + k + k2 + . . . + kn CQs in order to
learnLw, wheren = |w| andk = |Σ|.

13

7 Concluding Remarks

We have investigated the learnability of some well-known language classes in the
query learning setting. A sinthesis of the results obtainedis presented in Figure 4.

Figure 4: CQ learning vs MQ learning

The class of pattern languages was known to be learnable withMQs. We gave
a polynomial time algorithm for learningP using CQs, and showed that they can-
not be efficiently learned with MQs. Moreover, we proved thatk-reversible lan-
guages and injective languages are efficiently learnable with CQs, and not learn-
able (at all) with MQs.

For the future, we would like to see what happens with the learnability results
obtained so far when we change the correcting string. A possible direction could
be to choose as correction the closest string in the edit distance.

Acknowledgments

The preparation of this paper was done while the first author was visiting the
Departament of Mathematics, Turku University, and was supported in part by
the European Science Foundation (ESF) for the activity entitled ’Automata: from
Mathematics to Applications’, and by the FPU Fellowship AP2004-6968 from the
Spanish Ministry of Education and Science. Many thanks to Magnus Steinby for
fruitful discussions and valuable advices.

14

References

[Ang79] Dana Angluin. Finding patterns common to a set of strings (extended
abstract). InProc. 11th Annual ACM Symposium on Theory of Computing
(STOC ’79), pages 130–141, New York, NY, USA, 1979. ACM Press.

[Ang81] Dana Angluin. A note on the number of queries needed to identify
regular languages.Information and Control, 51(1):76–87, 1981.

[Ang82] Dana Angluin. Inference of reversible languages.Journal of the ACM,
29(3):741–765, 1982.

[Ang87] Dana Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, 1987.

[Ang88] Dana Angluin. Queries and concept learning.Machine Learning,
2(4):319–342, 1988.

[BBDT06] Leonor Beccera-Bonache, Adrian Horia Dediu, and Cristina
Tı̂rnăuc̆a. Learning DFA from correction and equivalence queries. In
Y. Sakakibara, S. Kobayashi, K. Sato, T. Nishino, and E. Tomita, editors,
Proc. 8th International Colloquium on Grammatical Inference (ICGI ’06),
volume 4201 ofLecture Notes in Artificial Intelligence, pages 281–292,
Berlin, Heidelberg, 2006. Springer-Verlag.

[DH07] Frank Drewes and Johanna Högberg. Query learning of regular tree lan-
guages: How to avoid dead states.Theory of Computing Systems, 40(2):163–
185, 2007.

[Gol67] E. Mark Gold. Language identification in the limit.Information and
Control, 10(5):447–474, 1967.

[HU79] John E. Hopcroft and Jeffrey D. Ullman.Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, Reading, Mas-
sachusetts, 1979.

[Muk92] Yasuhito Mukouchi. Characterization of finite identification. In Klaus P.
Jantke, editor,Proc.3rd International Workshop on Analogical and Inductive
Inference (AII ’92), volume 642 ofLecture Notes in Artificial Intelligence,
pages 260–267, London, UK, 1992. Springer.

[MVMP04] Carlos Mart́ın-Vide, Victor Mitrana, and George Păun, editors.For-
mal Languages and Applications. Studies in Fuzzyness and Soft Computing
148. Springer-Verlag, Berlin, Heidelberg, 2004.

[Sak90] Yasubumi Sakakibara. Learning context-free grammars from structural
data in polynomial time.Theoretical Computer Science, 76:223–242, 1990.

15

[TK07] Cristina T̂ırnăuc̆a and Satoshi Kobayashi. A characterization of the lan-
guage classes learnable with correction queries. In J. Cai, S. Barry Cooper,
and H. Zhu, editors,Proc.4rd International Conference on Theory and Ap-
plications of Models of Computation (TAMC ’07), volume 4484 ofLec-
ture Notes in Computer Science, pages 398–407, Berlin, Heidelberg, 2007.
Springer-Verlag.

[TT07] Căt̆alin Ionuţ T̂ırnăuc̆a and Cristina T̂ırnăuc̆a. Learning regular tree lan-
guages from correction and equivalence queries.To appear in the Journal of
Automata, Languages and Combinatorics, the special issue for WATA 2006,
2007.

[Val84] Leslie G. Valiant. A theory of the learnable.Communications of the
ACM, 27(11):1134–1142, 1984.

[Yok94] Takashi Yokomori. Learning non-deterministic finite automata from
queries and counterexamples.Machine Intelligence, 13:169–189, 1994.

[Yok96] Takashi Yokomori. Learning two-tape automata fromqueries and coun-
terexamples.Mathematical Systems Theory, 29(3):259–270, 1996.

16

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 978-952-12-1911-5
ISSN 1239-1891

