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Abstract. Formal language learning models have been widely investi-
gated in the last four decades. But it was not until recently that the
model of learning from corrections was introduced. The aim of this pa-
per is to make a further step towards the understanding of the classes of
languages learnable with correction queries. We characterize these classes
in terms of triples of definite finite tell-tales. This result allowed us to
show that learning with correction queries is strictly more powerful than
learning with membership queries, but weaker than the model of learning
in the limit from positive data.

Key words: correction query, query learning, Gold-style learning.

1 Introduction

The field of learning formal languages was practically introduced by E.M. Gold
[1] in 1967, in an attempt to construct a precise model for the notion of “being
able to speak a language”. Gold imagined language learning as an infinite process
in which the learner has access to a growing sequence of examples (learning from
text), or both positive and negative information (learning from informant), and
is supposed to make guesses. At some point his conjecture should be the target
language and he should never change his mind afterwards.

In the same paper Gold also introduces the notion of finite identification
(from text and informant). The main difference between this model and learning
in the limit model is that the learner has to stop the presentation of information
at some finite time when he “feels” that he has received enough, and state the
identity of the target language.

In [2] D. Angluin gives several necessary and sufficient conditions for a class
of languages to be learnable in the limit from positive data. Twelve years later,
Y. Mukouchi [3] describes the class of languages finitely identifiable from text
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2 Cristina T̂ırnăucă and Satoshi Kobayashi

(informant) in terms of definite finite tell-tales (pairs of definite finite tell-tales,
respectively).

All the models mentioned so far are also known in the literature as Gold-
style learning. A totally different language learning model is the query learning
model, introduced by Angluin in 1987 [4]. In this setting the learner has access
to a truthfully oracle which is allowed to answer specific kind of queries. In [4]
a polynomial time query learning algorithm for the class of minimal complete
deterministic finite automata (DFAs) is given, in which the learner can ask mem-
bership queries (MQs) and equivalence queries (EQs). There are though other
types of possible queries: subset queries, superset queries, etc.

Although these two learning models seem to be quite different at a first
glance, S. Lange and S. Zilles showed that in fact there is a strong correlation
between them [5]. They proved that the class of languages learnable from MQs
only coincides with the class of languages finitely identifiable from an informant,
and that learning from EQs is equally powerful as learning in the limit from an
informant.

As previously mentioned, the study of formal languages learning has its ori-
gins in the desire of a better understanding of how children learn so effortlessly
their native language. Still, none of these models accurately describes the process
of human language learning. Moreover, even the presence of negative informa-
tion in the process of children language acquisition is subject to a long and still
unsolved debate. Clearly, children are not explicitly provided negative examples
(words that are not in the language or ungrammatical sentences). Yet, they are
corrected when they make a mistake, and this can be thought of as negative
information. Actually, these ideas can be found in Gold’s paper [1]. Although he
points out that “those working in the field generally agree that most children
are rarely informed when they make grammatical errors, and those that are in-
formed take little heed”, he suggests that maybe “the child receives negative
instances by being corrected in a way we do not recognize”.

Motivated by these aspects of human language acquisition, L. Becerra-Bona-
che, A.H. Dediu and C. T̂ırnăucă introduced in [6] a new type of query, namely
correction query (CQ). A CQ is a slightly modified type of MQ: instead of a
‘yes’/‘no’ answer, the learner receives a correcting string (given s in Σ∗, the
correcting string of s with respect to the language L is the smallest strings s′

such that ss′ belongs to L, if such string exists, and a special symbol otherwise).
The same article presents a polynomial time algorithm which infers minimal
complete DFAs using CQs and EQs.

In this paper we characterize the language classes learnable with CQs for
which the teacher can be effectively implemented (the answers to CQs are com-
putable) by means of triples of definite finite tell-tales (Section 3). We consider
only classes of recursive languages, and neglect time complexity issues. Prelim-
inary notions and results are presented in Section 2. In Section 4, using this
characterization, we show some relations between our learning model (learning
with CQs) and other well-known learning models (like the model of learning
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with MQs, or the model of learning in the limit from positive data). Concluding
remarks and future work ideas are presented in Section 5.

2 Preliminaries

We assume that the reader is familiar with basic notions from formal language
theory. A wealth of further information about this area can be found in [7].

Let Σ be a finite alphabet of symbols. By Σ∗ we denote the set of all finite
strings of symbols from Σ. A language is any set of strings over Σ. The length
of a string w is denoted by |w|, and the concatenation of two strings u and v by
uv or u · v. The empty string (i.e., the unique string of length 0) is denoted by
λ. If w = uv for some u, v ∈ Σ∗, we say that u is a prefix of w and v is a suffix
of w. By Pref (L) we denote the set {w ∈ Σ∗ | ∃w′ ∈ Σ∗ such that ww′ ∈ L}.

Assume that Σ is a totally ordered set and let ≺L be the lexicographical
order on Σ∗. Then, the lex-length order ≺ on Σ∗ is defined by: u ≺ v if either
|u| < |v|, or else |u| = |v| and u ≺L v. In other words, strings are compared first
according to length and then lexicographically.

Let C be a class of recursive languages over Σ∗. We say that C is an indexable
class if there is an effective enumeration (Li)i≥1 of all and only the languages
in C such that membership is uniformly decidable, i.e., there is a computable
function that, for any w ∈ Σ∗ and i ≥ 1, returns 1 if w ∈ Li, and 0 otherwise.
Such an enumeration will subsequently be called an indexing of C.

In the sequel we might say that C = (Li)i≥1 is an indexable class and under-
stand that C is an indexable class and (Li)i≥1 is an indexing of C.

2.1 Query Learning

In the query learning model a learner has access to an oracle that truthfully
answers queries of a specified kind. A query learner M is an algorithmic device
that, depending on the reply on the previous queries, either computes a new
query, or returns a hypothesis and halts.

More formally, let C = (Li)i≥1 be an indexable class, let L ∈ C and let M be a
query learner. We say that M learns L using some type of queries if it eventually
halts and its only hypothesis, say i, correctly describes L, i.e., Li = L. So, M
returns its unique and correct guess i after only finitely many queries. Moreover,
M learns C using some type of queries if it learns every L ∈ C using queries of
the specified type. Below we consider:

Membership queries. The input is a string w and the answer is ‘yes’ or ‘no’,
depending on whether or not w belongs to the target language L.

Correction queries. The input is a string w and the answer is the smallest
string (in lex-length order) w′ such that ww′ belongs to the target language L if
w ∈ Pref (L), and the special symbol θ 6∈ Σ otherwise. We denote the correction
of a string w with respect to the language L by CL(w).

Equivalence queries. The input is an index j of some language Lj ∈ C. If
L = Lj , the answer is ‘yes’. Otherwise together with the answer ‘no’, a coun-
terexample from (Lj\L) ∪ (L\Lj) is supplied.
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The collections of all indexable classes C for which there is a query learner
M such that M learns C using membership, correction, and equivalence queries
are denoted by MemQ , CorQ and EquQ , respectively.

In this paper we focus on classes of languages for which Pref (Li) is recursive
for all i ≥ 1. More precisely, we consider indexable classes C which have the
following property (A): there exists a recursive function f : IN+×Σ∗ → Σ∗∪{θ}
such that f(i, w) = v if and only if CLi(w) = v for any w in Σ∗ and Li in C.

For this purpose, we denote by CorQ (A) the collection of classes of languages
in CorQ for which condition (A) is satisfied. Similarly, MemQ (A) is defined.
Clearly, for the language classes in CorQ (A) the answers to the correction queries
can be effectively computed. That is why in this case we speak about a teacher
instead of an oracle.

2.2 Gold-style Learning

In order to present the Gold-style learning models we need some further notions,
briefly explained below (for details, see [1, 2, 8]).

Let L be a non-empty language. A text for L is an infinite sequence σ =
w1, w1, w3, . . . such that {wi | i ≥ 1} = L. An informant for L is an infinite
sequence σ = (w1, b1), (w2, b2), (w3, b3), . . . with bi ∈ {0, 1}, {wi | i ≥ 1 and bi =
1} = L, and {wi | i ≥ 1 and bi = 0} = Σ∗\L.

Let C = (Li)i≥1 be an indexable class. An inductive inference machine (IIM)
is an algorithmic device that reads longer and longer initial segments σ of a text
(informant) and outputs numbers as its hypotheses. An IIM returning some i is
construed to hypothesize the language Li. Given a text (an informant) σ for a
language L ∈ C, M identifies L from σ if the sequence of hypotheses output by
M , when fed σ, stabilizes on a number i (i.e., past some point M always outputs
the hypothesis i) with Li = L. We say that M identifies C from text (informant)
if it identifies every L ∈ C from every corresponding text (informant).

A slightly modified version is the so called model of conservative learning
(see [9, 10] for more details). A conservative IIM is only allowed to change its
mind in case its actual guess contradicts the data seen so far.

As above, LimTxt (LimInf ) denotes the collection of all indexable classes C
for which there is an IIM M such that M identifies C from text (informant). One
can similarly define ConsvTxt and ConsvInf , for which the inference machines
should be conservative IIMs.

Although an IIM is allowed to change its mind finitely many times before
returning its final and correct hypothesis, in general it is not decidable whether
or not it has already output its final hypothesis. In case that for a given indexable
class C, there exists an IIM M such that given any language L ∈ C and any text
(or informant) for L, the first hypothesis i output by M is already correct (i.e.,
Li = L), we say that M finitely identifies C (see [1]). The corresponding models
FinTxt and FinInf are defined as above.

In the sequel we present some characterizations for the classes FinInf and
ConsvTxt in terms of pairs of definite finite tell-tales and finite tell-tales, respec-
tively. Let C = (Li)i≥1 be an indexable class.
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Definition 1 (Angluin, [2]). A set Ti is a finite tell-tale of Li if
(1) Ti is a finite subset of Li, and
(2) for all j ≥ 1, if Ti ⊆ Lj then Lj is not a proper subset of Li.

Theorem 1 (Lange and Zeugmann, [11]). An indexable class C = (Li)i≥1

belongs to ConsvTxt if and only if a finite tell-tale of Li is uniformly computable
for any index i, that is, there exists an effective procedure which on any input
i ≥ 1 enumerates a finite tell-tale of Li and halts.

Definition 2 (Mukouchi, [3]). A language L is consistent with a pair of sets
〈T, F 〉 if T ⊆ L and F ⊆ Σ∗\L. The pair 〈T, F 〉 is said to be a pair of definite
finite tell-tales of Li if:
(1) Ti is a finite subset of Li, Fi is a finite subset of Σ∗\Li, and
(2) for all j ≥ 1, if Lj is consistent with the pair 〈T, F 〉, then Lj = Li.

Theorem 2 (Mukouchi, [3]). An indexable class C = (Li)i≥1 belongs to FinInf
if and only if a pair of definite finite tell-tales of Li is uniformly computable for
any index i.

Moreover, there is a strong relation between query learning models and
Gold-style learning models. The following strict hierarchy can be found in [5]:
FinTxt ⊂ FinInf = MemQ ⊂ ConsvTxt ⊂ LimTxt ⊂ LimInf = EquQ .

3 Characterization of the Class CorQ(A)

In this section we show that an indexable class with property (A) is learnable
from CQs if and only if each language of that class is uniquely characterized by
a triple of finite sets. For this, we need some further definitions and notations.

We say that a language L is consistent with a triple of sets 〈T, F, U〉 if T ⊆ L,
F ⊆ Σ∗\L and U ⊆ Σ∗\Pref (L).

The triple 〈Ti, Fi, Ui〉 is a triple of definite finite tell-tales of Li w.r.t. C =
(Li)i≥1 if :
(1) Ti, Fi and Ui are finite,
(2) Li is consistent with 〈Ti, Fi, Ui〉, and
(3) for all j ≥ 1, if Lj is consistent with 〈Ti, Fi, Ui〉, then Li = Lj .

Theorem 3. Let C = (Li)1≥1 be an indexable class with property (A). Then
C belongs to CorQ if and only if a triple of definite finite tell-tales of Li is
uniformly computable for any index i.

The theorem is a direct consequence of the following two propositions.

Proposition 1 (Sufficient condition). Let C = (Li)1≥1 be an indexable class.
If a triple of definite finite tell-tales of Li is uniformly computable for any index
i, then C is in CorQ.

Proof. Let C = (Li)i≥1 be an indexable class for which a triple of definite finite
tell-tales 〈Ti, Fi, Ui〉 is uniformly computable for any index i, and let w1, w2, . . .
be the lex-length enumeration of all words in Σ∗. If L is the target language,
then the following query learning algorithm identifies L using CQs.
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Algorithm 1 A correction query algorithm for the language L in C
1: T := ∅, F := ∅, U := ∅, j := 1
2: while TRUE do
3: get from the oracle the answer to CL(wj)
4: if (CL(wj) = θ) then
5: U := U ∪ {wj}
6: F := F ∪ {wj}
7: else
8: T := T ∪ {wj · CL(wj)}
9: if CL(wj) 6= λ then

10: F := F ∪ {wj}
11: end if
12: end if
13: for i := 1 to j do
14: if (Ti ⊆ T , Fi ⊆ F and Ui ⊆ U) then
15: output i and halt
16: end if
17: end for
18: j := j + 1
19: end while

It is not very difficult to see that if our algorithm outputs an hypothesis, then
it is the correct one. Since we constructed T, F and U such that T ⊆ L,F ⊆ Σ∗\L
and U ⊆ Σ∗\Pref (L), it is clear that as soon as we have Ti ⊆ T , Fi ⊆ F and
Ui ⊆ U , the target language L will be consistent with the triple 〈Ti, Fi, Ui〉, and
hence the algorithm outputs i such that Li = L.

Now, let us prove that after asking a finite number of queries, the sets T ,
F and U will be large enough to include Ti, Fi and Ui, respectively, where
i is the smallest index such that Li = L. Let k1, k2, k3 and k be such that
k1 = max{j | wj ∈ Ti}, k2 = max{j | wj ∈ Fi}, k3 = max{j | wj ∈ Ui} and
k = max{k1, k2, k3, i}.

Consider the sets T, F, U constructed after receiving the corrections for the
strings w1, s2, . . . , sk.
1. If w ∈ Ti, then w ¹ wk and CL(w) = λ. Hence, w ∈ T .
2. If w ∈ Ui, then w ¹ wk and CL(w) = θ. Hence, w ∈ U .
3. If w ∈ Fi, then w ¹ wk and CL(w) 6= λ. We distinguish two cases. Either
CL(w) ∈ Σ+ and then w is added to F at line 10 of the algorithm, or CL(w) = θ
and w is added to F at line 6 of the algorithm. In both of the cases, w ∈ F .

We have seen that after reading corrections of at most k strings, Ti ⊆ T ,
Fi ⊆ F and Ui ⊆ U , and since i is smaller than or equal to k, the algorithm
outputs the (correct) hypothesis i. ut

Proposition 2 (Necessary condition). If C = (Li)1≥1 is in CorQ (A) then a
triple of definite finite tell-tales of Li is uniformly computable for any index i.
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Proof. Let C = (Li)i≥1 be an indexable class in CorQ (A), and take M to be
a query learning algorithm which learns C using CQs. The following procedure
computes a triple of definite finite tell-tales of Li for any i ≥ 1.

Algorithm 2 Computing a triple of definite finite tell-tales
1: Input: the target language Li

2: run M on Li, and collect the sequence of queries and answers in QAi

3: Ti := {wv | (w, v) ∈ QAi, v 6= θ}
4: Fi := {wv′ | (w, v) ∈ QAi, v 6= θ, v′ ≺ v}
5: Ui := {w | (w, θ) ∈ QAi}
6: output 〈Ti, Fi, Ui〉 and halt.

Clearly, Ti, Fi and Ui are all finite. We show that Ti ⊆ Li, Fi ⊆ Σ∗\Li and
Ui ⊆ Σ∗\Pref (Li). If u ∈ Ti, then there exist w, v in Σ∗ such that u = wv and
v = CLi

(w). Hence, u = wv ∈ Li. If u ∈ Fi, then there exist w, v, v′ in Σ∗ such
that v′ ≺ v, u = wv′ and v = CLi

(w). Hence, u = wv′ 6∈ Li. If u ∈ Ui, then
CLi(u) = θ, and hence u ∈ Σ∗\Pref (Li).

Let us now take j such that Lj is consistent with the triple 〈Ti, Fi, Ui〉.
We compute CLj (w) for each pair (w, v) in QAi. If v = θ, then w ∈ Ui. But
Ui ⊆ Σ∗\Pref (Lj) implies w /∈ Pref (Lj), and hence CLj (w) = θ. If v ∈ Σ∗\{θ},
then wv ∈ Ti and wv′ ∈ Fi for all v′ ≺ v. But Ti ⊆ Lj and Fi ⊆ Σ∗\Lj implies
wv ∈ Lj and wv′ 6∈ Lj for all v′ ≺ v. Hence, CLj (w) = v.

We have shown that for all (w, v) ∈ QAi, CLj (w) = v = CLi(w). Since the
algorithm M is assumed to identify a unique language from the class C, we obtain
Li = Lj . This makes 〈Ti, Fi, Ui〉 a triple of definite finite tell-tales of Li. ut

4 Relations to Other Learning Models

Using the results presented in the previous section, we show the relations between
correction query learning models and other learning models.

4.1 A Model Included in CorQ

Let C = (Li)i≥1 be an indexable class. We have the following theorem.

Theorem 4. If C is in FinInf , then C is in CorQ.

Proof. Assume that C is in FinInf . Then cf. Theorem 2, a pair of definite fi-
nite tell-tales 〈Ti, Fi〉 of Li is uniformly computable for any index i. We show
that 〈Ti, Fi, ∅〉 is a triple of definite finite tell-tales for Li. Clearly, Ti is a finite
subset of Li, Fi is a finite subset of Σ∗\Li and the empty set is a finite sub-
set of Σ∗\Pref (Li). Let us now take j such that Lj is consistent with the triple
〈Ti, Fi, ∅〉. Because 〈Ti, Fi〉 is a pair of definite finite tell-tales for Li, Ti ⊆ Lj and
Fi ⊆ Σ∗\Lj , we obtain Lj = Li, and hence 〈Ti, Fi, ∅〉 is a triple of definite finite
tell-tales for Li. Using Proposition 1, we immediately get that C is in CorQ . ut
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Let us now show that the inclusion is strict. Take K1,K2, K3, . . . to be the
collection of all finite non-empty sets of positive integers (indexable somehow).
Take Σ = {a}, and define Li = {an | n ∈ Ki} for all i ≥ 1. Clearly, CCorQ

FinInf =
(Li)i≥1 is an indexable class.

Lemma 1. CCorQ
FinInf is in CorQ.

Proof. We show that 〈Ti, Fi, Ui〉 is a triple of definite finite tell-tales of Li for any
index i, where Ti = Li, l = max{n | n ∈ Ki}, Fi = {an | n ∈ {1, . . . , l}\Ki} and
Ui = {al+1}. Indeed, it is easy to see that Ti, Fi, Ui are finite, and that Ti ⊆ Li,
Fi ⊆ Σ∗\Li and Ui ⊆ Σ∗\Pref (Li). Let us take j such that Lj is consistent
with the triple 〈Ti, Fi, Ui〉. Then, Fi ⊆ Σ∗\Lj implies ({1, . . . , l}\Ki) ∩Kj = ∅,
and Ui ⊆ Σ∗\Pref (Lj) implies Kj ⊆ {1, . . . , l}. Putting together these last two
results we obtain Kj ⊆ Ki, and hence Lj ⊆ Li. But Ti ⊆ Lj implies Li ⊆ Lj .
So, Lj = Li which concludes the proof. ut

Lemma 2. CCorQ
FinInf is not in FinInf .

Proof. Now, assume that CCorQ
FinInf is in FinInf . Cf. Theorem 2, this implies that

a pair of definite finite tell-tales 〈Ti, Fi〉 of Li is uniformly computable for any
index i. Let us fix i, take l = max{i | ai ∈ Fi}, and set j to be the index for
which Kj = Ki ∪ {l + 1}. Then, Lj is also consistent with the pair 〈Ti, Fi〉 since
Ti ⊆ Li ⊂ Lj and Fi ⊆ Σ∗\Lj (Fi ⊆ Σ∗\Li and al+1 /∈ Fi), and hence Lj = Li.
We reach a contradiction since al+1 ∈ Lj\Li. ut

This result can be extended to any alphabet Σ = {a1, a2, . . . , an} if we set
Li to be {a1a2 . . . an−1a

j
n | j ∈ Ki} for any index i.

As a direct consequence, we obtain that the class MemQ is strictly included
in CorQ . So, CQs are strictly more powerful than MQs, and they cannot be
simulated by a finite number of MQs.

4.2 A Model which Includes CorQ(A)

Let C = (Li)i≥1 be an indexable class. We have the following theorem.

Theorem 5. If C is in CorQ (A), then C is in ConsvTxt.

Proof. If C = (Li)i≥1 is in CorQ (A) then, cf. Proposition 2, a triple of definite
finite tell-tales 〈Ti, Fi, Ui〉 of Li is uniformly computable for any index i.

We show that Ti is a finite tell-tale for Li. Clearly, Ti is a finite subset of
Li. Let us now take j such that Ti ⊆ Lj . We need to prove that Lj is not
a proper subset of Li. Assume by contrary that it is. Then, Lj ⊂ Li implies
Pref (Lj) ⊆ Pref (Li), and hence Σ∗\Pref (Lj) ⊇ Σ∗\Pref (Li). Keeping in mind
that Ui ⊆ Σ∗\Pref (Li) we obtain that Ui ⊆ Σ∗\Pref (Lj). Moreover, Fi ⊆
Σ∗\Li and Σ∗\Lj ⊇ Σ∗\Li imply Fi ⊆ Σ∗\Lj . Since Lj is consistent with the
triple 〈Ti, Fi, Ui〉, we have Li = Lj which contradicts our assumption. So given
any index i, a finite tell-tale of Li is uniformly computable. ut
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Let us now show that the inclusion is strict. For this, we denote by I(n) the
set of all positive integral multiples of n. Let the collection of all finite non-empty
sets of prime positive integers be P1, P2, P3, . . . indexable, for example, in order
of increasing

∏
p∈Pi

p. Then, take Σ = {a}, Ri = ∪p∈PiI(p) and Li = {an | n ∈
Ri}. Clearly, CConsvTxt

CorQ = (Li)i≥1 is an indexable class.

Lemma 3. CConsvTxt
CorQ is in ConsvTxt.

Proof. Let us first notice that Ti = {ap | p ∈ Pi} is a finite tell-tale for Li.
Clearly, Ti is a finite subset of Li. If we take j such that Lj ⊇ Ti, we have
Rj ⊇ Pi, and furthermore Rj ⊇ Ri and Lj ⊇ Li. Hence, Lj is not a proper
subset of Li. Moreover, Pi is uniformly computable for any index i, and so is
Ti. ut

Lemma 4. CConsvTxt
CorQ is not in CorQ (A).

Proof. Assume by contrary that CConsvTxt
CorQ is in CorQ (A). Cf. Proposition 2, a

triple of definite finite tell-tales 〈Ti, Fi, Ui〉 of Li is uniformly computable, for
any index i.

We introduce the following notation: Num(S) = {|w| | w ∈ S} for any set
S ⊆ Σ∗. Then Ti ⊆ Li is equivalent to Num(Ti) ⊆ Ri, and Fi ⊆ Σ∗\Li is
equivalent to Num(Fi) ∩Ri = ∅. Finally, Ui ⊆ Σ∗\Pref (Li) implies Ui = ∅.

Let us now choose a prime number p such that I(p) ∩ Num(Fi) = ∅ and
p 6∈ Pi, and take j such that Pj = Pi ∪ {p}. Clearly, Li ⊂ Lj . We show that Lj

is consistent with 〈Ti, Fi, Ui〉.
Indeed, Ti ⊆ Lj because Ti ⊆ Li and Li ⊂ Lj . Also, Num(Fi) ∩ Rj = ∅

because Num(Fi) ∩ Ri = ∅, Num(Fi) ∩ I(p) = ∅ and Rj = Ri ∪ I(p). Hence,
Fi ⊆ Σ∗\Lj . The empty set is trivially included in any set, and hence Ui ⊆
Σ∗\Pref (Lj).

We found an index j such that Lj is consistent with 〈Ti, Fi, Ui〉 and Lj 6= Li

which is a contradiction. ut

5 Concluding Remarks

Learning formal languages has been a preoccupation of many researchers during
time. With every new learning model introduced, many research possibilities
were created. Since very recently a new model in the query learning theory
has been proposed, namely learning with CQs, we considered that it is worth
investigating the particularities of the classes of languages learnable within this
setting.

We showed that there exists a method of characterizing these classes using
some finite triples, called triples of definite finite tell-tales. With the help of
this characterization, we managed to position the class CorQ in the hierarchy
formed by other well-known learning models (both Gold-style learning and query
learning models).
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As we already mentioned, our work was focused on the type of correction
introduced in [6]. In the future we would like to consider other types of correc-
tions and to answer to the following question: how is CorQ influenced by the
type of correction used? What about combining CQs and a limited number of
EQs, or CQs and positive examples? What happens if we restrict to polynomial
time learning? Can we construct a language class which is in CorQ and not
in CorQ (A)? We believe that these are several question which deserve further
investigation.
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