Welcome to Hypercircles’s documentation!

Contents:

Hypercircles

This is a set of different algorithms related to the reparametrization problem and adds the class Hypercircle.

The git-aware user may use my github branch: https://github.com/lftabera/sage/tree/hypercircles

You may also download directly the module from http://personales.unican.es/taberalf/Documentos/Hypercircle.zip, unzip it and load from your Sage session:

sage: load('hypercircle.py')
sage: u=random_linear_fraction(QQ[I]['t'])
sage: H=Hypercircle([u])

In this case, ignore the import sentence of the examples and tests.

In any case, it is advisable to run at lest Sage 6.1.1 and apply the trac patch:

  • patch #8558 fast gcd for polynomials with number field coefficients.

TESTS:

The following is a subtle error that can happen if, for a parameter t, Phi(t) is attained by Phibeta on two parameters, tb and infinity. This test shows that the method woks in this case:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N = NumberField(x^2-2, 'a')
sage: QQx=QQ['x']
sage: D = QQx.random_element(2)
sage: x = QQx.gen()
sage: C = [(x**2-2)*QQx.random_element(2)/D for i in range(2)]
sage: a = N.gen()
sage: C = [f((a*x-a)/(x+1)) for f in C]
sage: H = Hypercircle(C)
sage: H.parametrization()
[(1/2*x^2 + 1/2)/x, (1/4*a*x^2 - 1/4*a)/x]
class sage.geometry.hypercircles.hypercircle.Hypercircle(Phi, check=True, name=False, verbose=False)

This is a class representing a hypercircle for a extension QQ in QQ(alpha)

Accesing the elements of the Hypercircle are interpreting as accesing elements of the standard parametrization.

It is initialized by a proper parametrization of a curve C in QQ(alpha) represented by a list of rational functions. The hypercircle will be associated to the parametrization. In particular, if one wants to compute the hypercircle generated by a unit u, one can call Hypercircle in the parametrization [inverse_unit(u)] defined by the inverse of u.

While some features work if the ground field is different from QQ this is not assured to work.

INPUT:

  • Phi: a list of rational functions in K(alpha)[t] representing the parametrization.
  • check (optional, default: True): check K-definability.
  • name: (optional) a name for the parameter of the parametrization of the hypercircle. By default it takes the variable of Phi.
  • verbose (optional, defaul: False) print verbose information.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle, random_linear_fraction
sage: N.<I> = QQ[I]
sage: K.<t> = N[]
sage: u = t
sage: H = Hypercircle([u])
sage: H
Hypercircle over Number Field in I with defining polynomial x^2 + 1
sage: H.parametrization()
[t, 0]
sage: H[0] # Extract a term form the parametrization
t
sage: H(2/3) # compute the point corresponding to parameter 2/3
[2/3, 0]
sage: H.compute_associated_unit(0) #See the documentation
t
sage: v = random_linear_fraction(NumberField(x^6-2,'a')['x']);
sage: H2 = Hypercircle([v])
sage: alpha = v.base_ring().gen()
sage: sum([H2[i]*alpha**i for i in range(6)])
x
K()

Return the base field K

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3-2)
sage: K.<t>=N[]
sage: u = 1/(t-a)
sage: H=Hypercircle([u])
sage: H.K() is QQ
True
K_alpha()

Return the number field K(alpha)

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3-2)
sage: K.<t>=N[]
sage: u = 1/(t-a)
sage: H=Hypercircle([u])
sage: H.K_alpha() is N
True
alpha()

Return the primitive element of the extension.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3-2)
sage: K.<t>=N[]
sage: u = 1/(t-a)
sage: H=Hypercircle([u])
sage: H.alpha()
a
ambient_dimension()

Return the ambient dimension of the hypercircles

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3-2)
sage: K.<t>=N[]
sage: u = 1/(t-a)
sage: H=Hypercircle([u])
sage: H.ambient_dimension() == N.degree()
True
birational_conic(name=None)

Return the conic hypercircle associated to small_place_unit.

We have to be quite carful since since the ground field is QQ[alpha] although the standard parametrization is over QQ[beta].

If the hypercircle is of degree 1 or the small place is of degree 1, then returns a line.

If beta is not in QQ[alpha] then it computes the hypercircle from small_place_unit.

If beta is in QQ[alpha] it projects using relativize and then computes the conic from small_place_unit in the projection.

Warning::
beta is QQ[alpha] not yet implemented.

The result is the conic hypercircle for the extension QQ in Q[beta].

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle, inverse_unit
sage: N.<a> = NumberField(x^5 + 15*x^4 + 20*x^3 + 15*x^2 + 6*x - 1)
sage: K.<t> = N['t']
sage: u = (a*t+1)/(t-2*a)
sage: H1=Hypercircle([u])
sage: H1.degree()
5
sage: H1.small_place_degree()
2
sage: conic = H1.birational_conic(); conic
Hypercircle over Number Field in beta with defining polynomial
x^2 - 2883
sage: conic.parametrization()
[(1/2*t^2 - 1776455701/1302*beta*t + 4529581007743677/2)/(t -
1776455701/1302*beta - 28998415), (1/5766*beta*t^2 -
28998415/2883*beta*t - 1509860335914559/1922*beta)/(t -
    1776455701/1302*beta - 28998415)]
sage: conic.ideal('R')
Ideal (R0^2 - 2883*R1^2 - 57996830*R0*R2 + 55070126731/7*R1*R2 -
4529581007743677*R2^2) of Multivariate Polynomial Ring in R0, R1, R2
over Rational Field

Note that, since N is of odd degree, we can easily define an odd divisor in the conic.:

sage: odd = inverse_unit(H1.small_place_unit())(0);odd
(-1256591910/186889*beta + 644442070590/1308223)*a^4 +
(-19357049580/186889*beta + 9863976192090/1308223)*a^3 +
(-32933742355/186889*beta + 15916658306895/1308223)*a^2 +
(-31764862315/186889*beta + 14651617450070/1308223)*a +
15728077502199/11587118*beta + 78287276434345/2616446
sage: oddpoint = conic(odd); oddpoint
[644442070590/1308223*a^4 + 9863976192090/1308223*a^3 +
15916658306895/1308223*a^2 + 14651617450070/1308223*a +
78287276434345/2616446, -1256591910/186889*a^4 -
19357049580/186889*a^3 - 32933742355/186889*a^2 -
31764862315/186889*a + 15728077502199/11587118]
sage: pol0 = oddpoint[0].absolute_minpoly()
sage: pol0.degree()
5
sage: pol1 = oddpoint[1].absolute_minpoly()
sage: pol1.degree()
5
sage: NumberField(pol0, 'g').is_isomorphic(NumberField(pol1, 'g'))
True

An example where we have to relativize the hypercircle before computing the conic:

sage: var('x')
x
sage: N.<alpha>=NumberField(x^6-2*x^3-17,'alpha')
sage: K.<t>=N[]
sage: u = (-alpha^3*t + 1/3*alpha^3 - 1/3)/(-alpha*t + 1)
sage: H = Hypercircle([u])
sage: v = H.small_place_unit(); v
((-36*beta + 114)*alpha^2 + (-51*beta + 306)*alpha + 867)/(t +
(-51*beta + 306)*alpha^2 + 867*alpha)
sage: len(H.small_place_beta_minpoly().roots(H.K_alpha()))
2

beta is in K_alpha, so we cannot use v to compute the conic. Internally we use relativize, but this is transparent to the user, although probably slower:

sage: C = H.birational_conic(); C
Hypercircle over Number Field in beta with defining
polynomial x^2 - 2
sage: par = inverse_unit(u(v))(0); par
867/2*beta + 2601
sage: C(par)
[2601, 867/2]

Note that par is in QQ[beta][alpha]:

sage: w = C.compute_associated_unit(par[0]); w
((306*beta - 102)*t - 153*beta - 1683)/(t - beta + 8)
sage: u(v(v.parent(w)))
t + 8

Another example where beta is of degree one:

sage: N = NumberField(x^3+x+4, 'a')
sage: K = N['t']
sage: a = N.gen()
sage: t = K.gen()
sage: u = (a*t+a)/(t-1)
sage: H = Hypercircle([u])
sage: H.degree()
3
sage: C = H.birational_conic(); C
Hypercircle over Number Field in c with defining polynomial x
sage: C.degree()
1
sage: C.ambient_dimension()
1
compute_associated_unit(t0, verbose=False)

Compute an associated unit of the hypercircle from t0 where t0 is either a parameter that gives a rational point or a list or coordinates of a rational point.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3+2*x+5)
sage: K.<t>=N[]
sage: u= (t+a)/(t-a)
sage: H1 = Hypercircle([u])
sage: H2 = Hypercircle([u])
sage: H1.degree()
1
sage: H1(a)
[0, 1, 0]
sage: H1.compute_associated_unit(a)
a*t
sage: H2.compute_associated_unit([0, 1, 0])
a*t

A non linear, non primitive case:

sage: N.<a> = NumberField(x^4-2)
sage: K.<t> = N[]

False
compute_associated_unit_from_odd_divisor(divisor=0, verbose=False)

Computes an associated unit from an odd divisor.

The hypercircle must be a plane conic or a line.

INPUT:

  • divisor: The minimal polynomial of a parameter that defines a divisor of odd degree.
  • verbose: A boolean, if true print verbose information about the time of computation.

OUTPUT:

  • An associated unit of the hypercircle.

TESTS:

sage: from sage.geometry.hypercircles.hypercircle import *
sage: N = NumberField(x^3+2*x+4, 'a')
sage: K = N['t']
sage: u = random_linear_fraction(K)
sage: H = Hypercircle([u])
sage: v = H.small_place_unit()
sage: v1 = inverse_unit(v)
sage: C = H.birational_conic()
sage: divisor = v1(0).minpoly()
sage: i = 1
sage: while divisor.degree() != 3:
...    divisor = v1(i).minpoly()
...    i = i + 1
sage: w = C.compute_associated_unit_from_odd_divisor(divisor)
sage: u1 = v(v.parent(w))
sage: drop_beta(simsim(u(u1))) in QQ['t'].fraction_field()
True

Another example in which the conic is a line because beta is in QQ:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N = NumberField(x^3+x+4, 'a')
sage: K = N['t']
sage: a = N.gen()
sage: t = K.gen()
sage: u = (t+a)/(t-a)
sage: H = Hypercircle([u])
sage: C = H.birational_conic(); C
Hypercircle over Number Field in c with defining polynomial x

An explicit one:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: u = (2*a*t-a^2)/(t+a+2-a^2)
sage: H = Hypercircle([u])
sage: v = H.small_place_unit(); v
(((1/36*beta - 5/36)*a^2 + (1/9*beta - 1/18)*a - 1/36*beta -
31/36)*t + (3190/9*beta - 30586/9)*a^2 + (11381/9*beta + 22357/9)*a
- 540*beta - 24964/3)/(t + (790/3*beta + 566/3)*a^2 + (164/3*beta -
6812/3)*a + 1580/9*beta + 209356/9)
sage: C = H.birational_conic()
sage: par = inverse_unit(v)(0); par
(-10442/81*beta + 99926/81)*a^2 + (29872/81*beta - 172624/81)*a -
44836/81*beta - 579140/81
sage: C(par)
[99926/81*a^2 - 172624/81*a - 579140/81, -10442/81*a^2 + 29872/81*a
- 44836/81]
sage: w = C.compute_associated_unit_from_odd_divisor(par.minpoly())
sage: w
((239552/99*beta + 657400/99)*t - 523552/99*beta - 504560/99)/(t -
1/11*beta - 41/11)
sage: u1 = simsim(v(v.parent(w))); u1
((41402330111/282972916566*a^2 + 251048485799/282972916566*a -
200797966037/282972916566)*t - 47061795353/141486458283*a^2 -
344736433073/141486458283*a + 263070188339/141486458283)/(t -
1248255360/15720717587*a^2 + 566134272/15720717587*a -
48682972618/15720717587)
sage: u1 = simplify_unit(u1); u1
(1/2*a*t - 2*a^2 - 8*a + 2)/(t + a^2 - 7)
sage: H(u1(0))
[-22/27, 25/27, 4/27]
sage: simsim(u(u1))
8/(t - 8)
compute_small_place(beta_name='beta', gamma_name='gamma', verbose=False, discriminant_bound=12)

Compute a place of degree 1 or 2 of the hypercircle.

Note that, since the method uses LLL to basis reduction, it only works for absolute number fields. In particular, the hypercircle must be defined over QQ.

The method tries to help with the hell of number fields. If we start with a number field QQ[alpha]. It will compute a field QQ[beta] such that the hypercircle has points in QQ[beta]. These structures are incompatible, so it also computes a new field QQ[gamma] = QQ[alpha,beta] as well as relative representations QQ[alpha][beta], QQ[beta][alpha] and isomorphisms with QQ[gamma]

NOTE: With improvements in coercion, there may be some morphisms that are not needed.

INPUT:

  • Phi: a list of rational fractions in QQ[alpha] that are the standard parametrization of an hypercircle.
  • beta_name: variable for the new quadratic element
  • gamma_name: variable for a primitive of QQ(alpha, beta)
  • discriminant_bound: parameter passed to squarefree_part, default is -1 and will perform a full factorization of the discriminant.

OUPUT:

If the place is of degree 1, a dictionary with the following keys:

  • degree_place: 1
  • parameter_to_QQ: a parameter that gives a rational point in the hypercircle.
  • rational_point_witness: the rational point in the hypercircle obtained.
  • W_D: A basis of the space of quadrics W_D

If the place is of degree 2, a dictionary with the following keys:

  • K_alpha_beta: The field QQ[alpha][beta]
  • K_alpha_beta_to_NewK: isormporphism from QQ[alpha][beta] to QQ[gamma]
  • K_alpha_to_NewK: morphism from QQ[alpha] to QQ[gamma]
  • K_beta: QQ[beta]
  • K_beta_alpha: The field QQ[beta][alpha]
  • K_beta_alpha_to_NewK: isomorphism from QQ[beta][alpha] to QQ[gamma]
  • K_beta_to_NewK: morphism from QQ[beta] to QQ[gamma]
  • NewK: the field QQ[alpha, beta]=QQ[gamma]
  • NewK_to_K_alpha_beta: isomorphism from QQ[gamma] to QQ[alpha][beta]
  • NewK_to_K_beta_alpha: isomorphism from QQ[gamma] to QQ[beta][alpha]
  • beta: quadratic element
  • degree_place: 2
  • gamma: primitive element of QQ[alpha][beta]
  • parameter_to_beta_in_K_beta_alpha: element in QQ[beta][alpha] that provides a point over QQ[beta]
  • parameter_to_beta_in_NewK: the same elemnt but in QQ[gamma]
  • point_beta_in_K_beta_alpha: a place of degree 1 or 2 in as a point in QQ[beta]
  • point_beta_in_NewK: the same point but in QQ[gamma]
  • witness_in_K_beta_alpha: The standar parametrization of the hypercircle with coefficients in QQ[beta][alpha].
  • witness_in_NewK: The standar parametrization of the hypercircle with coefficients in QQ[gamma].
  • W_D: A basis of the space of quadrics W_D

EXAMPLES:

This used to fail:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle, random_linear_fraction
sage: var('x')
x
sage: N.<alpha> = NumberField(x^3-2,'alpha')[x]
sage: u = random_linear_fraction(N, reduced = True)
sage: w = Hypercircle([u])
sage: w.compute_small_place()
sage: P = w._small_place_structure()
sage: P['degree_place']
1
sage: [foo in QQ for foo in P['rational_point_witness']]
[True, True, True]
sage: [p(P['parameter_to_QQ']) for p in w] == P['rational_point_witness']
True
sage: p = P['parameter_to_QQ']
sage: u = random_linear_fraction(N)
sage: w = Hypercircle([u])
sage: w.compute_small_place()
sage: P = w._small_place_structure()
sage: sorted(P.keys())
['K_alpha_beta', 'K_alpha_beta_to_NewK', 'K_alpha_to_NewK', 'K_beta',
'K_beta_alpha', 'K_beta_alpha_to_NewK', 'K_beta_to_NewK', 'NewK',
'NewK_to_K_alpha_beta', 'NewK_to_K_beta_alpha', 'W_D', 'beta',
'degree_place', 'gamma', 'parameter_to_beta_in_K_beta_alpha',
'parameter_to_beta_in_NewK', 'point_beta_in_K_beta_alpha',
'point_beta_in_NewK', 'witness_in_K_beta_alpha', 'witness_in_NewK']
sage: len(P['point_beta_in_K_beta_alpha'])
3
sage: P['beta'].minpoly().degree()
2
sage: Phi_ba = P['witness_in_K_beta_alpha']
sage: Kba = P['K_beta_alpha']
sage: parameter = P['parameter_to_beta_in_K_beta_alpha']
sage: point_beta = P['point_beta_in_K_beta_alpha']
sage: beta = P['beta']
sage: x = Phi_ba[0].parent().gen()
sage: W = P['witness_in_K_beta_alpha']
sage: [foo(parameter) for foo in W] == point_beta
True
sage: str(alpha) in str(point_beta)
False
sage: str(beta) in str(point_beta)
True

Rational points can be found during the process:

sage: var('x')
x
sage: N.<a> = NumberField(x^3-2)
sage: K.<t> = N[]
sage: u = (a*t+1)/t
sage: H = Hypercircle([u])
sage: H.compute_small_place()
sage: P = H._small_place_structure()
sage: P['degree_place']
1
sage: P['rational_point_witness']
[0, 0, 0]

A non-reduced case with a rational point found:

sage: var('x')
x
sage: N.<a> = NumberField(x^3-2)
sage: K.<t> = N[]
sage: u = (a*t - a^2 + 1)/(t - a)
sage: H = Hypercircle([u])
sage: H(0)
[70/433*a^2 - 145/433*a + 22/433, 13/433*a^2 + 4/433*a + 301/433,
-78/433*a^2 - 24/433*a - 74/433]
sage: H.compute_small_place()
sage: P = H._small_place_structure()
sage: P['degree_place']
1
sage: P['rational_point_witness']
[0, 1, 0]

TEST:

This used to fail:

sage: var('x')
x
sage: N.<a> = NumberField(x^4-5, 'a')
sage: K.<x> = N[]
sage: u = (a*x-(a**2+1))/((4-a**2)*x+(a**2+3))
sage: S = Hypercircle([u])
sage: S.compute_small_place()

EXAMPLES:

sage: var('x')
x
sage: N.<a> = NumberField(x^3+2*x+5)
sage: K.<t>=N[]
sage: u = ((a-1)*t+a+3)/(a**2*t-a)
sage: H = Hypercircle([u])
sage: H.compute_small_place()
sage: H.small_place_degree()
2
sage: H.small_place_coordinates()
[13/8*beta - 121/8, -5/8*beta + 41/8, 1/2*beta - 7/2]
sage: H.small_place_beta_minpoly()
x^2 - 73
sage: t0 = H.small_place_parameter(); t0
(1/2*beta - 7/2)*a^2 + (-5/8*beta + 41/8)*a + 13/8*beta - 121/8
sage: H(t0)
[13/8*beta - 121/8, -5/8*beta + 41/8, 1/2*beta - 7/2]
sage: v = random_linear_fraction(K, reduced='true')
sage: H1 = Hypercircle([v,v])
sage: H1.compute_small_place(beta_name = 'jj', gamma_name = 'gg')
sage: H1.small_place_beta()
1
degree()

Return the degree of the hypercircle

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3-2)
sage: K.<t>=N[]
sage: u = (a*t+a)/(t-a)
sage: H=Hypercircle([u])
sage: H.degree()
3
sage: u = (t+a)/(t-a)
sage: H = Hypercircle([u])
sage: H.degree()
1
ideal(name='Y', method='echelon', verbose=False)

Return the implicit ideal of the hypercircle

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3-2)
sage: K.<t>=N[]
sage: u = (a*t+a)/(t-a)
sage: H=Hypercircle([u])
sage: I = H.ideal(); I
Ideal (Y0^2 - 2*Y1*Y2 + Y0*Y3 + 2*Y2*Y3, Y0*Y1 - 2*Y2^2, -Y1^2 +
Y0*Y2 + Y1*Y3 + Y2*Y3) of Multivariate Polynomial Ring in Y0, Y1,
Y2, Y3 over Rational Field
sage: [foo(Y0=H[0],Y1=H[1],Y2=H[2],Y3=1) for foo in I.gens()]
[0, 0, 0]
sage: H.ideal(name='x')
Ideal (x0^2 - 2*x1*x2 + x0*x3 + 2*x2*x3, x0*x1 - 2*x2^2, -x1^2 +
x0*x2 + x1*x3 + x2*x3) of Multivariate Polynomial Ring in x0, x1,
x2, x3 over Rational Field
is_conic()

Check if the hypercircle is a conic.

TEST:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle, random_linear_fraction, inverse_unit
sage: N = QQ[I]
sage: K = N['t']
sage: u1 = random_linear_fraction(K)
sage: H1 = Hypercircle([u1])
sage: H1.is_conic()
True
sage: u2 = random_linear_fraction(K, reduced=True)
sage: H2 = Hypercircle([inverse_unit(u2)])
sage: H2.is_conic()
False
is_line()

Return wether the hypercircle is a line or not.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3-2)
sage: K.<t>=N[]
sage: u = (a*t+a)/(t-a)
sage: H = Hypercircle([u])
sage: H.is_line()
False
sage: H = Hypercircle([t])
sage: H.is_line()
True
is_primitive()

Check if the hypercircle is primitive

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3-2)
sage: K.<t>=N[]
sage: u = (a*t+a)/(t-a)
sage: H=Hypercircle([u])
sage: H.is_primitive()
True
sage: u = 1/(t-a)
sage: H=Hypercircle([u])
sage: H.is_primitive()
False
parametrization()

Return the standar parametrization of the hypercircle

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3-2)
sage: K.<t>=N[]
sage: u = 1/(t-a)
sage: H=Hypercircle([u])
sage: H.parametrization()
[t - a, 1, 0]
polmin()

Return the minimal polynomial of alpha

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3-2)
sage: K.<t>=N[]
sage: u = 1/(t-a)
sage: H=Hypercircle([u])
sage: H.polmin()
x^3 - 2
rational_parametrization()

Return a rational parametrization if precomputed or if we already have a unit. See also compute_rational_parametrization. The result is cached

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle, inverse_unit
sage: N.<a> = NumberField(x^4+3)
sage: K.<t> = N[]
sage: u = ((2*a+a**3)*t+1)/((1-a)*t-2*a)
sage: H = Hypercircle([u])
sage: H.set_unit(inverse_unit(u))
sage: H.rational_parametrization()
[(-3/2*t^4 - 41/4*t^3 - 21*t^2 - 18*t)/(t^4 + 9*t^3 + 57/2*t^2 +
42*t + 147/4), (1/2*t^4 + 13/4*t^3 + 29/4*t^2 + 3*t + 21/4)/(t^4 +
9*t^3 + 57/2*t^2 + 42*t + 147/4), (1/2*t^4 + 11/4*t^3 + 7*t^2 +
43/4*t)/(t^4 + 9*t^3 + 57/2*t^2 + 42*t + 147/4), (1/2*t^4 + 9/4*t^3
+ 9/4*t^2 + 15/4*t + 7/2)/(t^4 + 9*t^3 + 57/2*t^2 + 42*t + 147/4)]
relativize(beta, name='beta')

If beta is an algebraic integer of K_alpha, compute the hypercircle associated to K(beta) in K(alpha).

INPUT:

  • beta: and element of K_alpha

OUTPUT:

  • (H, phi, mat) such that:
  • H: is the hypercircle of self associated to the extension K(beta) in K(alpha)
  • phi: isomorphism from K(alpha) to K(beta)(alpha)
  • mat a matrix such that if p is the coordinates of a point in self, mat*p is the corresponding point in H under the natural isomorphism.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^6 + 6*x^5 + 15*x^4 + 20*x^3 + 15*x^2 + 6*x - 1)
sage: K.<t> = N['t']
sage: u = (a*t+1)/(t-a)
sage: H=Hypercircle([u])
sage: H.degree()
6
sage: H.small_place_degree()
2
sage: beta = a^3 + 3*a^2 + 3*a
sage: beta.minpoly()
x^2 + 2*x - 1

If the hypercircle is of degree 6 and beta is of degree 2, then the hypercircle associated to u with base field K[beta] must be of degree 3.:

sage: H2, phi, mat = H.relativize(beta)
sage: H2.degree()
3
sage: H2.ambient_dimension()
3
sage: phi
Ring morphism:
From: Number Field in a with defining polynomial x^6 + 6*x^5 +
15*x^4 + 20*x^3 + 15*x^2 + 6*x - 1
To:   Number Field in a with defining polynomial x^3 + 3*x^2 + 3*x -
beta over its base field
Defn: a |--> a
sage: mat
[           1            0            0         beta      -3*beta
6*beta]
[           0            1            0           -3     beta + 9
-3*beta - 18]
[           0            0            1           -3            6
beta - 9]
sage: N2 = phi.codomain(); N2
Number Field in a with defining polynomial x^3 + 3*x^2 + 3*x - beta
over its base field
sage: N.is_isomorphic(N2)
True

Compute directly the hypercircle over the field N2:

sage: uu = N2[t].fraction_field()(u); uu
(a*t + 1)/(t - a)
sage: H3 = Hypercircle([uu])
sage: H2.parametrization() == H3.parametrization()
True

Check that the matrix mat is the isomorphism searched:

sage: t0 = N.random_element()
sage: mat * vector(H(t0)) == vector(H2(phi(t0)))
True
set_unit(unit, check=True, simplify=False)

Declare an associated unit to the hypercircle. If check is True, compute also an associated rational parametrization and cache it. If simplify is True, an equivalent unit with possibly smaller coefficients will be used instead.

As a side effect, it will change the internal unit and, as a side effect if check = True, change the internar rational parametrization.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle, inverse_unit
sage: N.<a> = NumberField(x^3-2)
sage: K.<t> = N[]
sage: u = (t+a)/(t-a)
sage: v = inverse_unit(u)
sage: H = Hypercircle([v])
sage: H.set_unit(t) # not an associated unit
Traceback (most recent call last):
...
TypeError: not a constant polynomial
sage: H.set_unit(u)
sage: H.rational_parametrization()
[(t^3 + 2)/(t^3 - 2), 2*t^2/(t^3 - 2), 2*t/(t^3 - 2)]
sage: H.set_unit((a*t + 1)/(-a*t + 1)) # another unit
sage: H.rational_parametrization()
[(-t^3 - 1/2)/(t^3 - 1/2), -t/(t^3 - 1/2), -t^2/(t^3 - 1/2)]
small_place_beta()

Return the primitive element of QQ[beta] used to define this field.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3+2*x+5)
sage: K.<t>=N[]
sage: u = ((a-1)*t+a+3)/(a**2*t-a)
sage: H = Hypercircle([u])
sage: H.small_place_beta()
beta
sage: HH = Hypercircle([u])
sage: HH.compute_small_place(beta_name = 'jj')
sage: HH.small_place_beta()
jj
sage: v = [((59*a^2 + 21*a + 84)*t + 47*a^2 + 54*a + 54)/t]
sage: H1 = Hypercircle(v)
sage: H1.small_place_beta()
1
small_place_beta_minpoly()

Retuns the minimal polynomia of beta that is the defining polynomial of QQ[beta].

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3+2*x+5)
sage: K.<t>=N[]
sage: u = ((a-1)*t+a+3)/(a**2*t-a)
sage: H = Hypercircle([u])
sage: H.small_place_beta_minpoly()
x^2 - 73
sage: v = [((59*a^2 + 21*a + 84)*t + 47*a^2 + 54*a + 54)/t]
sage: H1 = Hypercircle(v)
sage: H1.small_place_beta_minpoly()
x - 1
small_place_coordinates()

Return a list representing the coordinates of a point in an extension of degree at most 2 over QQ

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3+2*x+5)
sage: K.<t>=N[]
sage: u = ((a-1)*t+a+3)/(a**2*t-a)
sage: H = Hypercircle([u])
sage: t0=H.small_place_parameter(); t0
(1/2*beta - 7/2)*a^2 + (-5/8*beta + 41/8)*a + 13/8*beta - 121/8
sage: H(t0)
[13/8*beta - 121/8, -5/8*beta + 41/8, 1/2*beta - 7/2]
sage: H.small_place_coordinates()
[13/8*beta - 121/8, -5/8*beta + 41/8, 1/2*beta - 7/2]
sage: v = [((59*a^2 + 21*a + 84)*t + 47*a^2 + 54*a + 54)/t]
sage: H1 = Hypercircle(v)
sage: t1=H1.small_place_parameter(); t1
2255/26446*a^2 + 580/13223*a + 1735/26446
sage: H1(t1)
[1735/26446, 580/13223, 2255/26446]
sage: H1.small_place_coordinates()
[1735/26446, 580/13223, 2255/26446]
small_place_degree()

Return the degree of a small place computed. The degree is garanteed to be 1 or 2.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3+2*x+5)
sage: K.<t>=N[]
sage: u = ((a-1)*t+a+3)/(a**2*t-a)
sage: H = Hypercircle([u])
sage: H.compute_small_place()
sage: H.small_place_degree()
2
sage: v = [((59*a^2 + 21*a + 84)*t + 47*a^2 + 54*a + 54)/t]
sage: H1 = Hypercircle(v)
sage: H1.compute_small_place()
sage: H1.small_place_degree()
1
small_place_in_subfield()

Returns true is self.small_place_beta() defines a subfield of K[alpha]

Examples:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle, random_linear_fraction, inverse_unit
sage: N.<alpha>=NumberField(x^6-2*x^3-17,'alpha')
sage: K.<t>=N[]
sage: v = (-alpha^3*t + 1/3*alpha^3 - 1/3)/(-alpha*t + 1)
sage: H = Hypercircle([v])
sage: H.small_place_in_subfield()
True
sage: v = ((alpha+1)*t-alpha**4)/(t+alpha**2-alpha)
sage: H = Hypercircle([v])
sage: H.small_place_in_subfield()
False
sage: v = random_linear_fraction(K, reduced=True)
sage: H = Hypercircle([ inverse_unit(v)])
sage: H.small_place_in_subfield()
True
small_place_parameter()

Return a parameter in QQ(beta, alpha) such that the image, by the parametrization, is in QQ(beta)

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3+2*x+5)
sage: K.<t>=N[]
sage: u = ((a-1)*t+a+3)/(a**2*t-a)
sage: H = Hypercircle([u])
sage: t0=H.small_place_parameter(); t0
(1/2*beta - 7/2)*a^2 + (-5/8*beta + 41/8)*a + 13/8*beta - 121/8
sage: H(t0)
[13/8*beta - 121/8, -5/8*beta + 41/8, 1/2*beta - 7/2]
sage: v = [((59*a^2 + 21*a + 84)*t + 47*a^2 + 54*a + 54)/t]
sage: H1 = Hypercircle(v)
sage: t1=H1.small_place_parameter(); t1
2255/26446*a^2 + 580/13223*a + 1735/26446
sage: H1(t1)
[1735/26446, 580/13223, 2255/26446]
small_place_unit(verbose=False)

Return a unit that reparametrizes the hypercircle over QQ[beta].

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle, simsim
sage: N.<a> = NumberField(x^3+2*x+5)
sage: K.<t>=N[]
sage: u = ((a-1)*t+a+3)/(a**2*t-a)
sage: H = Hypercircle([u])
sage: ubeta = H.small_place_unit(); ubeta
(((1/2*beta - 7/2)*a^2 + (-5/8*beta + 41/8)*a + 13/8*beta - 121/8)*t
+ (255/2*beta - 1259)*a^2 + (384*beta + 12803/2)*a + 16945/8*beta +
74901/8)/(t + (4461/8*beta + 44765/8)*a^2 + (17635/8*beta +
141935/8)*a + 1487/2*beta + 9812)
sage: map(simsim, H(ubeta))
[((13/8*beta - 121/8)*t^3 + (183391/16*beta + 1134121/16)*t^2 +
(350112143/16*beta + 2855716015/16)*t + 434921034785763/128*beta +
3715851728706871/128)/(t^3 + 14107/2*t^2 + (15409306305/32*beta +
131798889317/32)*t - 225946444725621/32*beta - 1930463829601393/32),
((-5/8*beta + 41/8)*t^3 + (32285/4*beta + 160159/2)*t^2 +
(-6579417895/32*beta - 56095033211/32)*t - 93993070662403/128*beta -
803026632222679/128)/(t^3 + 14107/2*t^2 + (15409306305/32*beta +
131798889317/32)*t - 225946444725621/32*beta - 1930463829601393/32),
((1/2*beta - 7/2)*t^3 + (34803/16*beta + 174853/16)*t^2 +
(-1326724227/32*beta - 11418602135/32)*t + 200770410597589/128*beta
+ 1715344616464353/128)/(t^3 + 14107/2*t^2 + (15409306305/32*beta +
131798889317/32)*t - 225946444725621/32*beta - 1930463829601393/32)]
sage: v = [((59*a^2 + 21*a + 84)*t + 47*a^2 + 54*a + 54)/t]
sage: H1 = Hypercircle(v)
sage: vbeta = simsim(H1.small_place_unit()); vbeta
((2255/26446*a^2 + 580/13223*a + 1735/26446)*t + 79827/26446*a^2 +
20532/13223*a + 61419/26446)/(t - 45347/13223*a^2 + 17819/26446*a -
3841/26446)
sage: par_base_field = map(simsim, H1(vbeta)); par_base_field
[(1735/26446*t^3 + 144843/52892*t^2 + 974961/26446*t +
41451453/52892)/(t^3 + 50179/3778*t^2 + 495569/52892*t -
28845451/26446), (580/13223*t^3 + 23773/52892*t^2 - 574608/13223*t -
8236341/52892)/(t^3 + 50179/3778*t^2 + 495569/52892*t -
28845451/26446), (2255/26446*t^3 + 99807/26446*t^2 + 1303349/52892*t
- 3937719/52892)/(t^3 + 50179/3778*t^2 + 495569/52892*t -
28845451/26446)]
sage: sum([par_base_field[i] * a**i for i in range(3)]) == vbeta
True
sage: simsim(v[0](vbeta))
(2867/5*t + 13706/5)/(t + 177/5)
sage: H2 = Hypercircle([t])
sage: w = H2.small_place_unit(); w
t

The following example used to fail, It is a primitive hypercircle such that we find a point on a subfield of degree 2. Hence, it needs relativize:

sage: var('x')
x
sage: N.<alpha>=NumberField(x^6-2*x^3-17,'alpha')
sage: K.<t>=N[]
sage: v = (-alpha^3*t + 1/3*alpha^3 - 1/3)/(-alpha*t + 1)
sage: H = Hypercircle([v])
sage: H.small_place_unit()
((-36*beta + 114)*alpha^2 + (-51*beta + 306)*alpha + 867)/(t +
(-51*beta + 306)*alpha^2 + 867*alpha)
sage: parbeta = map(simsim,H(H.small_place_unit()))
sage: S = str(parbeta)
sage: 'beta' in S
True
sage: 'alpha' in S
False
sage: parbeta[0]
((136/699*beta + 323/699)*t^6 + (-169932/233*beta - 100572/233)*t^5
+ (-202469643/233*beta + 76760712/233)*t^4 + (224927147781/233*beta
+ 680118435243/233)*t^3 + (-310588970748192/233*beta -
321170435162694/233)*t^2 + (81307917817026876/233*beta +
107073950888577564/233)*t - 5484690082401920928/233*beta -
14990067970691614488/233)/(t^6 + (106488/233*beta + 359856/233)*t^5
+ (-1583088246/233*beta - 1056775896/233)*t^4 +
(677541778002/233*beta + 1127117771766/233)*t^3 +
(3177467265953376/233*beta + 5570316058860162/233)*t^2 +
(-6201603752918368986/233*beta - 9890189581198153140/233)*t +
3701691290153002346406/233*beta + 5448920353023639800187/233)

This used to fail:

sage: N.<alpha> = NumberField(x^4 - 26*x^2 + 49, 'alpha')
sage: K.<t>  = N[]
sage: Phi = [((-5/7*alpha^3 + 165/7*alpha)*t^3 + (45*alpha^3 + 15*alpha^2 + 315*alpha + 135)*t^2 + (31266/7*alpha^3 + 3150*alpha^2 - 44358/7*alpha - 4410)*t + 110952*alpha^3 + 116454*alpha^2 - 219996*alpha - 231556)/(25*t^4 + (-5/7*alpha^3 + 300*alpha^2 + 865/7*alpha)*t^3 + (945*alpha^3 + 35265*alpha^2 + 315*alpha - 65955)*t^2 + (523382/7*alpha^3 + 1719810*alpha^2 - 970146/7*alpha - 3488310)*t + 1811964*alpha^3 + 31409338*alpha^2 - 3674832*alpha - 64192860), (50*t^3 + (-15/14*alpha^3 + 450*alpha^2 + 2595/14*alpha)*t^2 + (945*alpha^3 + 35265*alpha^2 + 315*alpha - 66255)*t + 261706/7*alpha^3 + 859005*alpha^2 - 487668/7*alpha - 1744155)/(25*t^4 + (-5/7*alpha^3 + 300*alpha^2 + 865/7*alpha)*t^3 + (945*alpha^3 + 35265*alpha^2 + 315*alpha - 65955)*t^2 + (523382/7*alpha^3 + 1719810*alpha^2 - 970146/7*alpha - 3488310)*t + 1811964*alpha^3 + 31409338*alpha^2 - 3674832*alpha - 64192860)]
sage: H = Hypercircle(Phi)
sage: H.degree() # It is not primitive
2
sage: H.small_place_beta_minpoly()
x^2 + 2
sage: H.small_place_unit()
((3/2870*alpha^3 - 3*alpha^2 - 2969/2870*alpha - 61/41*beta)*t +
(45/328*beta - 57/2870)*alpha^3 + (15/328*beta + 99/82)*alpha^2 +
(315/328*beta + 1518/1435)*alpha + 357/328*beta)/(t +
15/2296*beta*alpha^3 - 495/2296*beta*alpha - 33/82)
sage: map(simsim, H(H.small_place_unit()))
[(-61/41*beta*t^2 + 111/82*beta*t - 9/164*beta)/(t^2 - 33/41*t +
27/82), (-2969/2870*t^2 + 3036/1435*t - 10611/11480)/(t^2 - 33/41*t
+ 27/82), -3, (3/2870*t^2 - 57/1435*t + 207/11480)/(t^2 - 33/41*t +
27/82)]
standard_parametrization()

Returns the standard parametrization of the hypercircle.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3+2*x+5)
sage: K.<t>=N[]
sage: u = 1/(t-a**3)
sage: H=Hypercircle([u])
sage: H.standard_parametrization()
[t + 2*a, -2, 0]
t()

Return the variable of the parametrization

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle
sage: N.<a> = NumberField(x^3-2)
sage: K.<s>=N[]
sage: u = 1/(s-a)
sage: H = Hypercircle([u])
sage: H.t()
s
sage: H2 = Hypercircle([u], name='var9')
sage: H2.t()
var9
unit()

Return an associated unit

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import Hypercircle, simsim
sage: N.<a> = NumberField(x^3-2)
sage: K.<t>=N[]
sage: u = (a*t+a)/(t-a)
sage: H = Hypercircle([u])
sage: H.unit()
Traceback (most recent call last):
...
ValueError: Associated unit not yet discovered
sage: H.compute_associated_unit(0)
(-a^2 + a + 2)/(t + a^2 - a)
sage: [simsim(P(H.unit())) for P in H]
[(2*t^2 - 4*t + 2)/(t^3 + 6*t + 2), (t^2 + 4*t + 4)/(t^3 + 6*t + 2),
(-t^2 - t + 2)/(t^3 + 6*t + 2)]
sage.geometry.hypercircles.hypercircle.alpha_components(P)

Write a multivariate polynomial P in K(alpha)[t] as a vector in K[t]. This is the inverse of sums_alpha.

INPUT:

  • P: a polynomial in K(alpha)

OUTPUT:

  • A vector L such that sums_alpha(L, alpha) =  P. The elements of L are in K[t].

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import alpha_components, sums_alpha
sage: N.<a> = QQ[2^(1/3)]
sage: K.<x,y> = N['x,y']
sage: f = K.random_element(5)
sage: P = alpha_components(f)
sage: P[0] in QQ['x,y']
True
sage: f - sums_alpha(P, 1, a)
0

TESTS:

sage: K1=PolynomialRing(QQ[sqrt(2)], ('t','x','y'), order=TermOrder('degrevlex', 1) + TermOrder('degrevlex',2))
sage: t,x,y=K1.gens()
sage: a=K1.base_ring().gen()
sage: a**2
2
sage: f=a*x-y
sage: alpha_components(f)
(-y, x)
sage.geometry.hypercircles.hypercircle.composition_by_unit(Num, Den, unit, verbose=False)

Compute the composition of the parametrization represented by Num and Den with unit.

This is optimized for dealing with number fields as coefficients.

INPUT:

  • Num: a list of polynomials
  • Den: a polynomials
  • unit: a linear fraction_field

OUTPUT:

  • NN a list, DD a polynomial such that NN[i]/DD = (Num[i]/Den) (unit)

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import composition_by_unit, random_linear_fraction
sage: N = NumberField(x^3-2,'a')
sage: K.<t> = N[]
sage: Num = [K.random_element(3) for i in range(7)]
sage: Den = 0
sage: while Den == 0: Den = K.random_element(5)
...
sage: unit = random_linear_fraction(K)
sage: NN, DD = composition_by_unit(Num, Den, unit)
sage: [NN[i]/DD - (Num[i]/Den)(unit) for i in range(7)]
[0, 0, 0, 0, 0, 0, 0]
sage.geometry.hypercircles.hypercircle.conjugate_pol(f, conjugation, K2)

Compute the conjugate of a polynomial.

INPUT:

  • f: a polynomial or rational function in K[t] or K(t)
  • conjugation: an homomorphism of fields K -> L
  • K2 a ring of the form L[x]

OUTPUT:

  • The image of f by the natural extension of conjugation as an element in:

K[t] -> L[t] or K(t) -> L(t)

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import conjugate_pol
sage: N.<I> = QQ[I]
sage: conj = N.automorphisms()[1]
sage: conj
Ring endomorphism of Number Field in I with defining polynomial x^2 + 1
Defn: I |--> -I
sage: K.<x> = N[]
sage: f = (1-I)*x-(2+3*I)
sage: conjugate_pol(f, conj, K)
(I + 1)*x + 3*I - 2
sage: f = K.random_element(20)
sage: f + conjugate_pol(f, conj, K) in QQ[x]
True
sage: I*(f - conjugate_pol(f, conj, K)) in QQ[x]
True

A more interesting example:

sage: var('y')
y
sage: N.<a> = NumberField(y^5-2, 'a')
sage: K.<x> =N[]
sage: f = x^4 + a*x^3 + a^2*x^2 + a^3*x + a^4
sage: M.<b> = NumberField(f)
sage: conj1 = N.hom([M(a)])
sage: conj1
Ring morphism:
From: Number Field in a with defining polynomial y^5 - 2
To:   Number Field in b with defining polynomial x^4 + a*x^3 + a^2*x^2 +
a^3*x + a^4 over its base field
Defn: a |--> a
sage: conj2 = N.hom([1/2*a^4*b^2])
sage: conj2
Ring morphism:
From: Number Field in a with defining polynomial y^5 - 2
To:   Number Field in b with defining polynomial x^4 + a*x^3 + a^2*x^2 +
a^3*x + a^4 over its base field
Defn: a |--> 1/2*a^4*b^2
sage: p = a + x + a^3*x^2
sage: p1 = conjugate_pol(p, conj1, M[x]); p1
a^3*x^2 + x + a
sage: p2 = conjugate_pol(p, conj2, M[x]); p2
a^2*b*x^2 + x + 1/2*a^4*b^2
sage: sage.rings.polynomial.all.is_Polynomial(p1)
True
sage: sage.rings.polynomial.all.is_Polynomial(p2)
True
sage: q = p / p.parent().one(); q
a^3*x^2 + x + a
sage: q1 = conjugate_pol(q, conj1, M[x])
sage: sage.rings.polynomial.all.is_Polynomial(q1)
False
sage.geometry.hypercircles.hypercircle.drop_beta(U)

Take a fraction in N(beta)(t) but whose coefficients are in N. Output de same rational fraction in N(t).

INPUT:

  • A rational function U with parent N(beta)(t) with coefficients in N(t).

OUTPUT:

  • The same rational function U in N(t).

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import drop_beta
sage: N = QQ[sqrt(2), sqrt(3)]
sage: s2, s3 = N.gens()
sage: K.<x> = N[]
sage: u = (s3*x^2 + (1 - s3)*x +1) / (s3 * x^2 +1 -3*s3)
sage: v = drop_beta(u)
sage: u == v
True
sage: u.parent() is K.fraction_field()
True
sage: v.parent() is K.fraction_field()
False
sage: v.parent() is N.base_ring()[x].fraction_field()
True
sage.geometry.hypercircles.hypercircle.implicite_hc(Phi, name='Y', method='echelon', verbose=False)

Compute the implicit ideal of an hypercircle using the algorithm in Fast computation of the implicit ideal of a hypercircle.

INPUT:

  • Param: Proper parametrization of a primitive hypercircle
  • W: variable for the implicit equations
  • method: echelon (default), grobner or dummy

OUTPUT:

  • I: The projective implicit ideal of Phi in K[W_i] where K is the ground field.

One a set of generators is computed, perform a reduction to return less generators. echelon uses linear algebra, grobner use groebner bases, dummy does not perform any reduction and return all generators.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import *
sage: N.<I> = QQ[I]
sage: K.<x> = N[]
sage: u = (I*x-2)/(x+1+3*I)
sage: w = witness([u])
sage: implicite_hc(w)
Ideal (Y0^2 + Y1^2 + Y0*Y2 + 5*Y1*Y2 + 6*Y2^2) of Multivariate
Polynomial Ring in Y0, Y1, Y2 over Rational Field
sage: var('x')
x
sage: N.<a> = NumberField(x^3-2)
sage: K = N['p']
sage: u = random_linear_fraction(K)
sage: w = witness([u])
sage: I = implicite_hc(w)
sage: L = I.gens()
sage: len(L)
3
sage: L[0](w[0], w[1], w[2], 1)
0
sage: L[1](w[0], w[1], w[2], 1)
0
sage: L[2](w[0], w[1], w[2], 1)
0

A non-primitive case:

sage: var('x')
x
sage: N.<alpha> = NumberField(x^4-2)
sage: K.<t> = N[]
sage: u = ((1-alpha**2)*t+(1+alpha**2*3) ) /((1+3*alpha**2)*t+5*alpha**2-7)
sage: H =  witness([u])
sage: I = implicite_hc(H)
sage: I
Ideal (Y0^2 - 2*Y2^2 - 1/2*Y0*Y4 - 5*Y2*Y4 + 13/2*Y4^2, Y1, Y3) of
Multivariate Polynomial Ring in Y0, Y1, Y2, Y3, Y4 over Rational Field

Another examples, where the linear part is not constant:

sage: var('x')
x
sage: N.<a> = NumberField(x^6 + 6*x^5 + 15*x^4 + 20*x^3 + 15*x^2 + 6*x - 1)
sage: K.<t> = N['t']
sage: u = ((-a^3 - 3*a^2 - 3*a + 1)*t - 2*a^3 - 6*a^2 - 6*a - 1)/((13*a^3 + 39*a^2 + 39*a + 14)*t - 7*a^3 - 21*a^2 - 21*a - 11)
sage: H = witness([u])
sage: I = implicite_hc(H)
sage: I = I.gens()
sage: [I[i](H[0], H[1], H[2], H[3], H[4], H[5], 1) for i in range(len(I))]
[0, 0, 0, 0, 0]
sage: I[1]
Y1 - 3*Y3

REFERENCE:

AGGM algorithm

sage.geometry.hypercircles.hypercircle.inverse_unit(w, var=None)

Compute the inverse of a linear fraction.

INPUT:

  • u: a linear fraction in K(x).
  • var: the variable for the inverse u, by default the same variable as u.

OUTPUT:

  • v: a linear fraction in var such that u(v) = var, v(u) = x

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import inverse_unit, random_linear_fraction
sage: K.<a,b,c,d> = QQ['a,b,c,d']
sage: L.<x> = K.fraction_field()['tr']
sage: u = (a*x+b)/(c*x+d)
sage: inverse_unit(u)
(-d*tr + b)/(c*tr - a)

Note that the variable may be different from the variable of u:

sage: K1.<xx> = QQ['xx']
sage: K2.<t> = QQ['t']
sage: u = random_linear_fraction(K1)
sage: v = inverse_unit(u, t)
sage: u(v)
t
sage: v(u)
xx
sage.geometry.hypercircles.hypercircle.is_com_unit(u)

Check if u is a linear fraction over a univariate polynomial rings.

INPUT:

  • u: a fraction field element.

OUTPUT:

  • True if an only if numerator and denominator are of degree at most one and is not a base_ring element.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import is_com_unit
sage: K.<x> = QQ[]
sage: u = (2*x+1)/(4*x+2)
sage: is_com_unit(u)
False
sage: u = (2*x+1)/(1*x)
sage: is_com_unit(u)
True
sage: u = K.fraction_field()(x)
sage: is_com_unit(u)
True
sage: u = K.fraction_field()(0)
sage: is_com_unit(u)
False
sage: u = K.fraction_field()(1+x^3)
sage: is_com_unit(u)
False
sage.geometry.hypercircles.hypercircle.is_hypercircle(Phi, tstar, verbose=False)

Check if a parametrization is a parametrization of a hypercircle.

INPUT:

  • Phi: the parametrization as a list of elements in K(a)(t).
  • tstar: an element in K(a) such that Phi(tstar) is a point in K.

OUTPUT:

  • An associated unit if Phi is an hypercircle, the string 'Not hypercircle' otherwise.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import *
sage: N = NumberField(x^3-2, 'a')
sage: K.<t> = N[]
sage: u = random_linear_fraction(K)
sage: Phi = witness([u], name=t)
sage: v = is_hypercircle(Phi, inverse_unit(u,t)(0))
sage: simsim(u(v)) in QQ[t].fraction_field()
True

TODO:

Support for non-primitive hypercircles, more tests

REFERENCE:

ACA algorithm

sage.geometry.hypercircles.hypercircle.is_hypercircle_unit_reduced_standar(Num, Den, K, t, a, d, verbose=False)

Auxiliary function to is_hypercircle. It accepts the following data:

INPUT:

  • Num: a list of polynomials in N(a)[t]
  • Den: a polynomial in N(a)[t]
  • K: The ring N(a)[t]
  • t: The variable of K
  • a: The defining algebraic element of N(a)
  • d: The degree of a

Such that the parametrization Num / Den is a unit parametrization passing through the origin in standard form.

OUTPUT:

  • The string 'Not reduced hypercircle' if Num/Den does not define a reduced hypercircle or a linear fraction associated to the reduced hypercircle.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import is_hypercircle_unit_reduced_standar
sage: N.<a> = QQ[I]
sage: K.<t> = N[]
sage: d = 2
sage: Num = 29*t^2 - 26*a*t, -29*a*t^2
sage: Den = 58*t - 26*a
sage: is_hypercircle_unit_reduced_standar(Num, Den, K, t, a, d)
1/(t - 29/26*I)

TODO:

Support for non-primitive hypercircles, more tests

REFERENCE:

ACA algorithm

sage.geometry.hypercircles.hypercircle.is_reduced_hypercircle(Phi, verbose=False)

Check if a parametrization is a parametrization of a reduced hypercircle.

INPUT:

  • Phi: the parametrization as a list of elements in K(a)(t)

OUTPUT:

  • An associated unit if Phi is a reduced hypercircle, a ValueError otherwise.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import *
sage: N = NumberField(x^3-2, 'a')
sage: K.<t> = N[]
sage: u = random_linear_fraction(K, reduced = True)
sage: Phi = witness([u], name=t)
sage: v = is_reduced_hypercircle(Phi)
sage: simsim(u(v)) in QQ[t].fraction_field()
True

TODO:

Support for non-primitive hypercircles, more tests

REFERENCE:

ACA algorithm

sage.geometry.hypercircles.hypercircle.my_gcd(list_of_polys)

Compute the gcd of a list of polys.

The difference with the general gcd is that, once a gcd is computed, before computed next, check if the gcd already divides next element. In most cases, for long lists, one only needs to check a few (expect one) gcd to obtain the gcd of the whole list, and division is cheaper, at least in the conjugation process of the hypercircle model.

INPUT:

  • list_of_poly: a list of univariate polynomials.

OUTPUT:

  • g: The gcd of the elements of the list.

EXAPLES:

sage: from sage.geometry.hypercircles.hypercircle import my_gcd
sage: K.<x> = QQ[x]
sage: f = [K.random_element() for i in range(5)]
sage: gcd(f) - my_gcd(f)
0
sage: h = K.random_element()
sage: f = [ h*m for m in f]
sage: gcd(f) - my_gcd(f)
0
sage.geometry.hypercircles.hypercircle.my_inverse_big_absnfield(s)

Algorithm to compute the inverse of an element over an absolute number field. This is faster than current sage code for big number fields with big defining coefficients and big s, maybe due to flint faster xgcd.

INPUT:

  • s: an absolute number field element

OUTPUT:

  • The inverse of s

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import my_inverse_big_absnfield
sage: N = NumberField(x^7+1213451*x^4 -135156164614,'a')
sage: c = 0
sage: while c.is_zero(): c = N.random_element()
...
sage: my_inverse_big_absnfield(c) * c
1
sage.geometry.hypercircles.hypercircle.my_lcm(list_of_polys)

Compute the monic lcm of a list of polynomials, avoiding calling to Singular.

INPUT:

  • list_of_polys: A list of univariate polynomials

OUTPUT:

  • g: The lcm of the list

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import my_lcm
sage: K.<x> = NumberField(x^3-2, 'a')[]
sage: f = [K.random_element(3) for i in range(3)]
sage: l = my_lcm(f)
sage: [ l % m for m in f]
[0, 0, 0]
sage: f = [x-1, x+1, x^2-1]
sage: my_lcm(f)
x^2 - 1
sage.geometry.hypercircles.hypercircle.my_quo_rem(self, other)

TEST:

sage: from sage.geometry.hypercircles.hypercircle import my_quo_rem sage: N = QQ[I] sage: K.<t> = N[] sage: f = K.random_element(10) sage: g = K.random_element(10) sage: f.quo_rem(g) == my_quo_rem(f,g) True

sage.geometry.hypercircles.hypercircle.newton_sums(N)

Compute Newton sums of the generator of a NumberField

INPUT:

  • N: a number fields of degree > 1

OUTPUT:

  • If b is the generator of N over its base field, and N is of degree n over its base, compute the traces of 1, b, ..., b**(n-1)

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import newton_sums
sage: N=NumberField(x^3+x^2-1,'b')
sage: newton_sums(N)
[3, -1, 1]
sage: f = x^5-3
sage: N.<b> = NumberField(f)
sage: vector(newton_sums(N)) - vector((b**i).trace() for i in range(5))
(0, 0, 0, 0, 0)
sage.geometry.hypercircles.hypercircle.parametrization_to_common_denominator(Phi)

Take a list of rational functions representing a parametrization and reduce it to common denominator.

INPUT:

  • Phi: a list of rational functions.

OUTPUT:

  • Num: a list of polynomials
  • Den: a polynomial

The length of Num equals the length of Phi and Phi[i] = Num[i]/Den

gcd of Num[0], ..., Num[-1], Den is 1

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import parametrization_to_common_denominator
sage: K = QQ[x].fraction_field()
sage: Phi = [K.random_element(3) for i in range(5)]
sage: Num, Den = parametrization_to_common_denominator(Phi)
sage: [Num[i] / Den - Phi[i] for i in range(5)]
[0, 0, 0, 0, 0]
sage: from sage.rings.polynomial.polynomial_element import is_Polynomial
sage: is_Polynomial(Den)
True
sage: [is_Polynomial(i) for i in Num]
[True, True, True, True, True]
sage.geometry.hypercircles.hypercircle.random_linear_fraction(K, n_bound=100, d_bound=1, reduced=False)

Return a linear fraction on the fraction field of K

INPUT:

  • K: a ring of the form N[t]
  • reduced: a bolean
  • n_bound: option passed to the random polynomial generator
  • d_bound: option passed to the random polynomial generator

OUPUT:

A linear fraction u with monic denominator:

  • If reduced is true, witness([u]) is a reduced hypercircle.
  • If reduced is false, witness([u]) is NOT a reduced hypercircle. Moreover, the denominator is of degree 1.

Warning

Note that if the base_ring is of relative degree 1, reduced is ignored, since this does not make sense.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import *
sage: L.<t> = NumberField(x^3-2, 'a')[]
sage: u = random_linear_fraction(L)
sage: is_com_unit(u)
True
sage: Phi = witness([u])
sage: l = is_hypercircle(Phi, inverse_unit(u,t)(0))
sage: is_com_unit(l)
True
sage: is_reduced_hypercircle(Phi)
Traceback (most recent call last):
...
ValueError: Not reduced hypercircle
sage: v = random_linear_fraction(L, reduced=True)
sage: is_com_unit(v)
True
sage: Psi = witness([v])
sage: l = is_reduced_hypercircle(Psi)
sage: is_com_unit(l)
True
sage.geometry.hypercircles.hypercircle.rational_point_conic(Phi, parameter, verbose=False)

Compute a parameter t0 such that Phi(t0) is a rational point:

INPUT:

  • Phi: a standar parametrization of a conic as hypercircle in QQ[alpha][beta].
  • parameter: an element in QQ[alpha][beta] such that Phi(parameter) gives an odd divisor over QQ[alpha]. alpha must be of odd degree over QQ.

OUPUT:

  • t0: element in QQ[alpha][beta] such that Phi(t0) is a rational point.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import rational_point_conic
sage: N.<beta, alpha> = NumberField([x^2+23, x^3+2], 'beta, alpha')
sage: K.<t> = N[]
sage: conic = [(1/2*t^2 - 10/69*beta*t - 49/3)/(t - 10/69*beta - 20/3),         (-1/46*beta*t^2 + 20/69*beta*t - 49/69*beta)/(t - 10/69*beta - 20/3)]
sage: t_odd = (-1/108*alpha^2 + 8/27*alpha + 19/54)*beta -         187/108*alpha^2 + 38/27*alpha + 421/54
sage: conic[0](t_odd), conic[1](t_odd) # An odd point
(-187/108*alpha^2 + 38/27*alpha + 421/54, -1/108*alpha^2 + 8/27*alpha +
19/54)
sage: t0 = rational_point_conic(conic, t_odd)
sage: t0
5/6*beta + 11/2
sage: conic[0](t0), conic[1](t0)
(11/2, 5/6)

TODO:

Do not ask the parameter to give an element in QQ[alpha]. Needed if the original curve is of odd degree but alpha is of even degree.

sage.geometry.hypercircles.hypercircle.rel_trace(new_sums, element)

Compute the trace of an element on a relative number field over its base field. Uses newton_sums.

This is intended to be used with the method newton_sums.

INPUT:

  • new_sums: if b is the generator of the number field, this list contains the traces of the powers of b.
  • element: algebraic element to compute the traces.

OUTPUT:

  • trace: The trace of element over the base ring defining the extension

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import rel_trace, newton_sums
sage: N = NumberField([x^3-2,x^2+4], 'a,b')
sage: nn = newton_sums(N)
sage: r = N.random_element()
sage: rel_trace(nn, r) - r.trace(N.base_ring())
0
sage.geometry.hypercircles.hypercircle.simplify_unit(U)

Take a linear fraction U with coefficients on a number field and return a linear fraction V such that V = U(S), where S is a linear fraction in QQ.

It is expected that V has smaller coefficients that U.

INPUT:

  • U: A linear fraction with coefficients in a number field N.

OUTPUT:

  • V = U(S), with S a linear fraction with coefficients in QQ, it is expected that V is simpler than U.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import *
sage: K.<x> = QQ[I][]
sage: I = QQ[I].gen()
sage: u = (125*x+I) / (125*x-I)
sage: simplify_unit(u)
(x + I)/(x - I)
sage: u = random_linear_fraction(K)
sage: v = simplify_unit(u)
sage: w = inverse_unit(u)(v)
sage: w in K.fraction_field()
True
sage.geometry.hypercircles.hypercircle.simsim(f)

Given a rational fraction a / b, return a canonical representative with monic denominator.

INPUT:

  • f: a fraction field element of a polynomial rings

OUTPUT:

  • The unique representative of f such that f.denominator().leading_coefficient() = 1

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import simsim
sage: K.<x> = QQ[x]
sage: f =  (3*x^2+1) /(3*x^3)
sage: f
(3*x^2 + 1)/(3*x^3)
sage: simsim(f)
(x^2 + 1/3)/x^3
sage: f = K.fraction_field().random_element(20,10**6,10)
sage: f - simsim(f)
0
sage: f = NumberField(x^4+2,'a')[x].fraction_field().random_element(10, 10,10)
sage: g = simsim(f)
sage: f - g
0
sage: g.denominator().leading_coefficient()
1
sage.geometry.hypercircles.hypercircle.sums_alpha(Nu, De, alpha)

Compute the sum

sum( [( Nu[i] * alpha**i ) for i in range(len(Nu)) ] ) / De

Horner is not significant here alpha**i is immediate. It is expected to be used to deal with unit-parametrizations in terms of alpha.

INPUT:

  • Nu: a list or tuple (expected a list of univariate polynomials)
  • alpha: an element (expected an algebraic number of degree len(Nu))
  • De: an element (expected a polynomial)

Expected to be used if [X/De for X in Nu] is a unit parametrization.

OUTPUT:

  • sum([(Nu[i]*alpha**i) for i in range(len(Nu))]) / De

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import *
sage: N.<i> = NumberField(x^2+1)
sage: K.<t> = N[]
sage: Nu = [t^2 - i*t, -i*t^2 + 2*i*t]
sage: De = 2*t - i - 2
sage: sums_alpha(Nu, De, i)
t

A random example:

sage: N.<a> = NumberField(x^3-2, 'a')
sage: K.<t> = N[]
sage: u = random_linear_fraction(K)
sage: r = witness([u],name = 't')
sage: D = my_lcm([f.denominator() for f in r])
sage: Nu = [K(f*D) for f in r]
sage: sums_alpha(Nu, D, a)
t
sage.geometry.hypercircles.hypercircle.unit_to_hc_sqrt(U, name=None, verbose=False)

Take a unit for a extension of degree 2 of the form N[sqrt(x)] and compute the parametrization of the associated conic. Units under composition are isomorphic to GL(2,F)

INPUT:

  • U: a linear fraction with coefficients in N[beta] and beta is of degree 2.

OUPUT:

  • S: The standar parametrization of the hypercircle associated to [U], this is much faster than witness, specially if the ground field is complicated.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import *
sage: N.<I> = QQ[I]
sage: K.<xul> = N[]
sage: u = random_linear_fraction(K)
sage: unit_to_hc_sqrt(u) == witness([u], name = xul,check = False)
True
sage.geometry.hypercircles.hypercircle.unitfrom3points(Map, T)

Compute an automorphism of P^1 from the images of three points.

INPUT:

  • Map: a list of the form [[i_1,j_1], [i_2, j_2], [i_3, j_3]] representing an automorphism of P^1
  • T: a variable

OUTPUT:

  • A linear fraction u with monic denominator such that u(i_k) = j_k, k=1..3

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import unitfrom3points, is_com_unit
sage: K.<i1, i2, i3, j1, j2, j3> = QQ[]
sage: L.<t> = K.fraction_field()[]
sage: M = [[i1, j1], [i2, j2], [i3, j3]]
sage: u = unitfrom3points(M,t)
sage: is_com_unit(u)
True
sage: u(i1)
j1
sage: u(i2)
j2
sage: u(i3)
j3
sage: K.<t> = NumberField(x^3 - 2, 'a')[]
sage: u = (t+4) / (t + 1)
sage: i1, i2, i3 = randint(0, 10^6), randint(0, 10^6), randint(0, 10^6)
sage: M = [[i1, u(i1)], [i2, u(i2)], [i3, u(i3)] ]
sage: v = unitfrom3points(M,t)
sage: u - v
0
sage.geometry.hypercircles.hypercircle.witness(Phi, check=True, name='t', verbose=False)

Compute the a witness variety of the parametrization of a rational curve. The witness variety is represented by its standard parametrization.

INPUT:

  • Phi: a list of rational functions in one variable representing a proper parametrization of a rational curve.
  • check: a bolean value, if True, it will perform a deterministic test to check that the original curve is defined over the base field. If False, there will be no check. Note that, even if there are no check, the probability that the result is wrong is very unlikely.
  • name: the variable that parametrizes the parametric Weil variety.

OUTPUT:

  • Psi: a list. If the parametrization phi has coefficients in N(a), Psi is the parametrization is standard form of the witness variety of Phi for the extension N in N(a) with primitive element a. Psi will be an hypercircle if and only if the curve contains points in N.

EXAMPLES:

sage: from sage.geometry.hypercircles.hypercircle import *
sage: N.<a> = NumberField(x^3 - 2)
sage: K.<t> = N[]
sage: u = random_linear_fraction(K)
sage: Phi = witness([u])
sage: Phi2 = witness(Phi)
sage: Phi == Phi2
True
sage: v = inverse_unit(u,t)
sage: L = QQ[t].fraction_field()
sage: [simsim(f(v)) in L for f in Phi]
[True, True, True]
sage: Phi[0] + a*Phi[1] + a^2*Phi[2]
t

Relative fields are supported (somehow, if it does not work, please report):

sage: KalphaX.<xl> = NumberField([x^2-2, x^2-3], 's2,s3')[]
sage: Kalpha = KalphaX.base_ring()
sage: K = Kalpha.base_ring()
sage: u = random_linear_fraction(KalphaX, 10, 1)
sage: Phi = witness([u], name = xl)
sage: change = is_hypercircle(Phi, inverse_unit(u,xl)(0))
sage: is_com_unit(change)
True

Non-primitive hypercircle and relative extensions. See Fields of Parametrization and Optimal Affine Reparametrization of Rational Curves:

sage: Kalpha.<a> = NumberField(x^4-4*x^3+12*x^2-16*x+8,'a')
sage: K = Kalpha.base_ring()
sage: KalphaX.<t> = Kalpha['t']
sage: Den = -22+26*a-9*a^2+2*a^3+4*t
sage: Phi = [ (-6 + 18*a -9*a^2 + 6*a^3 + (44 -52*a +18*a^2 -4*a^3)*t -4*t^2) / Den, (-12 -2*a +9*a^2 -a^3 +(4+4*a+4*a^2)*t +(12-16*a+6*a^2-2*a^3)*t^2) / Den]
sage: W = witness(Phi,name = 't')
sage: W[0]+a*W[1]+a^2*W[2]+a^3*W[3]
t
sage: [p.denominator().degree() for p in W]
[1, 1, 1, 1]

It is a conic, so we compute an intermediate field:

sage: point_infinity = [simsim(p(1/t)*t)(0) for p in W]
sage: gamma = point_infinity[0]
sage: gamma.minpoly().degree()
2

gamma is a primitive element of a field such that QQ(gamma) in QQ(a) defines a line as hypercircle, relativize is broken:

sage: gamma *= gamma.lift().denominator() #Bug in relativize
sage: Kgamma_alpha.<new_alpha, new_gamma> = Kalpha.relativize(gamma)

Recompute the original parametrization in Kgamma_alpha:

sage: to_Kgamma_alpha = Kgamma_alpha.structure()[1]
sage: Kgamma_alpha.register_coercion(to_Kgamma_alpha)
sage: NewPhi = [conjugate_pol(p, to_Kgamma_alpha, Kgamma_alpha[t]) for p in Phi]
sage: W2 = witness(NewPhi)
sage: W2
[t + (1/4*new_gamma + 1/2)*new_alpha, -1/4*new_gamma - 1/2]

The new hypercircle is a line. It can be parametrized by [t, -1/4*new_gamma - 1/2] We have found an algebraically optimal affine reparametrization.:

sage: change = t + W2[1] * new_alpha
sage: [simsim(p(change)) for p in NewPhi]
[(-t^2 + (1/6*new_gamma + 5/3)*t - 1/6*new_gamma - 1/6)/(t -
1/12*new_gamma - 5/6), ((-1/6*new_gamma + 1/3)*t^2 + (1/3*new_gamma -
5/3)*t - 1/6*new_gamma + 4/3)/(t - 1/12*new_gamma - 5/6)]

The reparametrization is over QQ[new_gamma].

Now an example not defined over K but over an strict intermediate field:

sage: x = var('x')
sage: N = NumberField(x^4-2,'a')
sage: a = N.gen()
sage: K = N['t']
sage: t = K.gen()
sage: Phi = [(t^2-a^2)/(t^2+(2+a^2)*t-a^2-3), ((4*a^4+3)*t-2)/(t^2+(2+a^2)*t-a^2-3)]
sage: u = random_linear_fraction(K)
sage: Phi = [f(u) for f in Phi]
sage: witness(Phi)
['N', 1, a^2]
sage: witness([t,a*t])
['N', 1, a, a^2, a^3]
sage: N = NumberField(x^9-2, 'a')
sage: a = N.gen()
sage: K = N['t']
sage: t = K.gen()
sage: Phi = [(t^2-a^3)/(t^2+(2+a^3+3*a^6)*t-a^6-3), ((4*a^3+3*a^6+1)*t-2-3*a^6)/(t^2+(2+a^3+3*a^6)*t-a^6-3)]
sage: u = random_linear_fraction(K)
sage: Phi = [f(u) for f in Phi]
sage: witness(Phi)
['N', 1, a^3, a^6]

sage: N = NumberField((x^7-1)/(x-1),'a')
sage: a = N.gen()
sage: K = N['t']
sage: t = K.gen()
sage: Phi = [t^3+1, (3*a+3*a**6+a^3+a^4)*t]
sage: u = random_linear_fraction(K)
sage: Phi = [f(u) for f in Phi]
sage: witness(Phi)
['N', 1, a^5 + a^2, a^4 + a^3]

TODO:

  • Add a non primitive example with relative K
  • Add nonprimitive example
  • Add degree one example

TESTS:

The following used to fail:

sage: N.<I> = QQ[I]
sage: K.<x> = N[]
sage: u = (x-I)/(x+I)
sage: witness([u])
[0, -I*t]
sage: var('x')
x
sage: N.<a> = NumberField(x^4-5, 'a')
sage: K.<x> = N[]
sage: u = (a**2*x-(a**2+1))/((4-a**2)*x+(a**2+3))
sage: witness([u])
[(1/2*t^2 - 1/10*a^2*t + 1/4)/(t - 1/10*a^2 - 1/4), 0, (1/10*a^2*t^2 -
1/20*a^2*t - 1/20*a^2)/(t - 1/10*a^2 - 1/4), 0]

For higher towers there were problems, they should be fixed now with Nbase_to_M morphism:

sage: var('x')
x
sage: KalphaX.<xl> = NumberField([x^2-2, x^2-3, x^2-5], 's2, s3, s5')[]
sage: Kalpha = KalphaX.base_ring()
sage: K = Kalpha.base_ring()
sage: u = random_linear_fraction(KalphaX, 10, 1)
sage: Phi = witness([u], name = xl)
sage: change = is_hypercircle(Phi, inverse_unit(u,xl)(0))
sage: is_com_unit(change)
True

This Page