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Sturm theorems and some applications (non-numerical) Sturm theorems for second order ODEs

We consider second order ODEs y ′′(x) + A(x)y(x) = 0 with A(x) continuous
in an interval.

Theorem (Sturm separation theorem)

Let y1 and y2 be independent solutions of y ′′(x) + A(x)y(x) = 0, A(x) > 0.
Between two zeros of each solution there is a zero of the other solution and
only one.

Theorem (Sturm comparison theorem (1st version))

Let yi , i = 1,2, be solutions of y ′′i (x) + Ai (x)yi (x) = 0, i = 1,2 with Ai (x)
continuous and 0 < A1(x) ≤ A2(x) in an interval I.
Let x1, x2 ∈ I such that y1(x1) = y1(x2) = 0. Then, there exist at least one
value c ∈ (x1, x2) such that y2(c) = 0 unless y1(x) = y2(x).
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Sturm theorems and some applications (non-numerical) Sturm theorems for second order ODEs

Theorem (Spacing and convexity)

Let y(x) be a non-trivial solution of y ′′ + A(x)y = 0. Let xk < xk+1 < ... denote
consecutive zeros of y(x) arranged in increasing order.
Then

1 If A(x) ≤ AM in (xk , xk+1), AM > 0, (but A(x) 6≡ AM ) then

∆xk ≡ xk+1 − xk >
π√
AM

.

2 If A(x) ≥ Am > 0 in (xk , xk+1) (but A(x) 6≡ Am) then

∆xk ≡ xk+1 − xk <
π√
Am

.

3 If A(x) is strictly increasing in (xk , xk+2) then ∆2xk ≡ xk+2 − 2xk+1 + xk < 0 .
4 If A(x) is strictly decreasing in (xk , xk+2) then ∆2xk ≡ xk+2 − 2xk+1 + xk > 0 .
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Sturm theorems and some applications (non-numerical) Sturm theorems for second order ODEs

Main idea: the greater is the coefficient A(x) > 0 in the differential
equation y ′′(x) + A(x)y(x) = 0, the more rapid is the oscillation, and
the shorter the distance between zeros.

Equations: y′′(x) + y(x) = 0, y′′(x) + 2.25y(x) = 0

Equation: y′′(x) + x−4y(x) = 0
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Sturm theorems and some applications (non-numerical) Sturm theorems for second order ODEs

The Liouville transformation for ODEs

Given
y ′′ + B(x)y ′ + A(x)y = 0,

then the function Y (z), with Y (z(x)) given by

Y (z(x)) =
√

z ′(x) exp
(

1
2

∫ x
B(x)

)
y(x),

satisfies the equation in normal form

Ÿ (z) + Ω(z)Y (z) = 0

Ω(z(x)) =
1

z ′(x)2

(
Ã(x) +

3z ′′(x)2

4z ′(x)2 −
z ′′′(x)

2z ′(x)

)
,

Ã(x) = A(x)− B′(x)/2− B(x)2/4
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Sturm theorems and some applications (non-numerical) Sturm theorems for second order ODEs

Question (for hypergeometric functions): for which changes of variable is the
analysis of the monotonicity of Ω(x) simple?

Simple: Ω′(x) = 0 equivalent to a quadratic equation.

1 z ′(x) = xp−1(1− x)q−1; p + q = 1 or p = 0 or q = 0 (Gauss
hypergeometric)

2 z ′(x) = xp−1 (confluent)

Examples (Gauss):
p = q = 1/2: bounds on ∆θk , θk the zeros of Pα,β

n (x) (Szegő-like)
p = 0, q = 1: (1− xk )2 > (1− xk+1)(1− xk−1), |α| ≤ 1 (Grosjean-like)
p = 1, q = 0: (1 + xk )2 > (1 + xk+1)(1 + xk−1), |β| ≤ 1
[A. Gil, A. Deaño, JS, JAT 2004]
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Sturm theorems and some applications (non-numerical) First order differential systems (oscillatory case)

Monotonic and oscillating systems

Consider a first order system

y ′(x) = a(x)y(x) + d(x)w(x)
w ′(x) = b(x)w(x) + e(x)y(x)

Typical situation: y = yn, w = yn−1 and coefficients depending on n.
Defining h(x) = y(x)/w(x), we have

h′(x) = d(x)− (b(x)− a(x))h(x)− e(x)h2(x)

Given ∆(x) = (b(x)− a(x))2 + 4e(x)d(x):
1 ∆ < 0 (e(x)d(x) < 0): potentially oscillatory⇒ Sturm
2 ∆ > 0 Monotonic⇒ “sturmish”
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Sturm theorems and some applications (non-numerical) First order differential systems (oscillatory case)

Theorem (Sturm separation theorem)
Let y = yn and w = yn−1 be non-trivial continuous solutions of the first
order system with d(x) and e(x) continuous and not changing sign.
Then, the zeros of yn and yn−1 are simple and they are interlaced
(between two zeros of each solution there is a zero of the other
solutions and only one).
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Sturm theorems and some applications (non-numerical) First order differential systems (oscillatory case)

A first result (same orthogonal sequence):

Theorem
Let pn+1(x) and pn−1(x) be two classical orthogonal polynomials (Hermite,
Laguerre, Jacobi) with respect to the same weight function w(x) in the
interval of orthogonality [a,b]. Then, the zeros of pn+1(x) and pn−1(x) are
interlaced for x > βn and x < βn, with

βn =

∫ b

a
xp2

n(x)w(x)dx∫ b

a
p2

n(x)w(x)dx
∈ (a,b)

If x1 and x2 are the closest zeros of pn+1(x) at both sides of βn (x1 < βn < x2)
then, either there is no zero of pn−1(x) in (x1, x2) or x = βn is a common zero
of pn+1(x) and pn−1(x).
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Sturm theorems and some applications (non-numerical) First order differential systems (oscillatory case)

Some other results (different orthogonal sequences)

Theorem

The zeros of P(α,β)
ν (x) interlace with those of P(α′,β′)

ν′ (x) in (−1, 1) if the differences
δν = ν − ν′ ∈ Z, δα = α− α′ ∈ Z and δβ = β − β′ ∈ Z (not all of them equal to zero)
satisfy simultaneously the following properties:

1 |δν| ≤ 1
2 |δα|+ |δβ| ≤ 2
3 |δν + δα| ≤ 1, |δν + δβ| ≤ 1, |δν + δα+ δβ| ≤ 1

This holds whenever ν > 0, ν + α > 0 and ν + β > 0, ν + α + β > 0 and similarly for
ν′, α′ and β′, with the exception of the zeros for P(+1,β)

ν (x) and P(−1,β)
ν+1 (x) which

coincide in (−1, 1); the same is true for the zeros of P(α,+1)
ν (x) and P(α,−1)

ν+1 (x).

[JS, Numerical Algorithms (2008)]

Interlacing properties of the zeros of orthogonal polynomials have been studied by
K. A. Driver and collaborators.
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Sturm theorems and some applications (non-numerical) First order differential systems (oscillatory case)

Sturm comparison for first order systems
From now on, we consider systems

y ′(x) = η(x)y(x) + w(x),
w ′(x) = −η(x)y(x)− y(x).

and the associated Riccati equation for h(x) = y(x)/w(x):

h′(x) = 1− 2η(x)h(x) + h(x)2

Transformation to reduced form

Given a general system with differentiable coefficients a, b, c and d as before, we take

ỹ(z(x)) =

√√√√ z′(x)

|d|
exp
(
−

1

2

∫ x
(a + b)

)
y(x),

w̃(z(x)) =

√√√√ z′(x)

|e|
exp
(
−

1

2

∫ x
(a + b)

)
w(x)

with z′(x) =
√
|d(x)e(x)|, and the transformed system takes the form

˙̃y(z) = −η̃(z)ỹ(z) + d̃(z)w(z),
˙̃w(z) = η̃(z)w̃(z) + ẽ(z)y(z),
|d̃(z)| = |ẽ(z)| = 1

with

η̃(z) = ẋ
b(z)− a(z)

2
+

1

4

d

dz
log

∣∣∣∣∣ d(z)

e(z)

∣∣∣∣∣
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Sturm theorems and some applications (non-numerical) First order differential systems (oscillatory case)

This is a starting point for the numerical method in [JS, SIAM J. Numer. Anal. (2002)]
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Sturm theorems and some applications (non-numerical) First order differential systems (oscillatory case)

Theorem (Sturm comparison)

Let {y(x),w(x)} solutions of a system in reduced form with 0 < η1 < η(x) < η2 < 1.
Let x i

y and x (i)
w denote zeros of y and w such that x (1)

w < x (1)
y < x (2)

w then

1√
1− η2

2

arctan


√

1− η2
2

η2

 < x (1)
y − x (1)

w <
1√

1− η2
1

arctan


√

1− η2
1

η1


π

2
√

1− η2
1

< x (2)
w − x (1)

y <
π

2
√

1− η2
2

Theorem (Sturm convexity)

Let {y(x),w(x)} as before and with 0 < η(x) < 1, η′(x) > 0. Let
x (1)

w < x (1)
y < x (2)

w < x (2)
y < x (3)

w then

x (1)
y − x (1)

w > x (2)
y − x (2)

w

and
x (2)

w − x (1)
y < x (3)

w − x (2)
y
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Sturm theorems and some applications (non-numerical) First order differential systems (monotonic case)

Bounds for monotonic differential systems

By the moment, let us consider the case d(x)e(x) > 0.
A first example (modified Bessel functions) [JS, JMAA 2011]:
yν = eiπνKν(x) and Iν(x) satisfy

y ′ν(x) = −ν
x

yν(x) + yν−1(x),

y ′ν−1(x) =
ν − 1

x
yν−1(x) + yν(x),

And from this,

yν+1(x) +
2ν
x

yν(x)− yν−1(x) = 0 (TTRR),

x2y ′′ν (x) + xy ′ν − (x2 + ν2)yν(x) = 0 (ODE)

and
h′ν(x) = 1− 2ν − 1

x
hν(x)− hν(x)2, hν(x) = yν(x)/yν−1(x)
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Sturm theorems and some applications (non-numerical) First order differential systems (monotonic case)

A bound for first kind MBFs:

Solving h′ν(x) = 0 (h′ν(x) = yν(x)/yν−1(x)) we see that

1. h′ν(x) < 0 if hν(x) > λ+
ν (x)

2. h′ν(x) > 0 if 0 < hν(x) < λ+
ν (x)

λ+
ν (x) = x/(ν − 1/2 +

√
(ν − 1/2)2 + x2)

But because hν(x) = Iν(x)/Iν−1(x) is such that hν(0+) > 0 and h′ν(0+) > 0 (ν ≥ 0)
and dλ+

ν/dx > 0 if ν ≥ 1/2, then, necessarily:

0 <
Iν(x)

Iν−1(x)
< λ+

ν (x), x > 0, ν ≥ 1/2
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Sturm theorems and some applications (non-numerical) First order differential systems (monotonic case)

The situation is described in the next graph (blue curve):
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Sturm theorems and some applications (non-numerical) First order differential systems (monotonic case)

More general case
[JS, J. Ineq. Appl. 2012]

y ′n(x) = an(x)yn(x) + dn(x)yn−1(x)
y ′n−1(x) = bn(x)yn−1(x) + en(x)yn(x)

We will consider the case en(x)dn(x) > 0

h′n(x) = dn(x)− (bn(x)− an(x))hn(x)− en(x)hn(x)2

We have h′n(x) = 0 when hn(x) = λ±n (x) and the following holds

Monotonicity of the roots

Let yk (x), k = n, n − 1 satisfying

y ′n(x) = an(x)yn(x) + dn(x)yn−1(x),
y ′n−1(x) = bn(x)yn−1(x) + en(x)yn(x)

with dn(x)en(x) > 0 and y ′′k (x) + B(x)y ′k (x) + Ak (x)yk (x) = 0. Then, if
An(x) 6= An−1(x), the characteristic roots λ±n (x) are monotonic in (a, b). dλ±n (x)/dx
have the same sign as An−1(x)− An(x) and −η′n(x).
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Sturm theorems and some applications (non-numerical) First order differential systems (monotonic case)

y ′(x) = a(x)y(x) + d(x)w(x),
w ′(x) = b(x)w(x) + e(x)y(x)

, h(x) = y(x)/w(x)

We take d(x) > 0, e(x) > 0 (λ+ > 0 and λ− < 0)

Lemma (Bounds for the case h(a+) > 0)

If h(a+) > 0, λ+(x) is monotonic and h′(a+)λ′+(a+) > 0 (or, equivalently,
(h(a+)− λ+(a+))λ′+(a+) < 0) then (h(x)− λ+(x))λ′+(x) < 0 in (a, b).

If h(a+) > 0, λ+(x) is monotonic and h′(a+)λ′+(a+) < 0 then either h(x) reaches
one relative extremum at xe ∈ (a, b) (a minimum if λ′+(x) > 0 and a maximum if
λ′+(x) < 0) or (h(x)− λ+(x))λ′+(x) > 0 in (a, b).

The case h(b−) < 0 is analogous but with respect to λ−.
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Sturm theorems and some applications (non-numerical) First order differential systems (monotonic case)

Bounds in an interval (a,b). Case h(a+) > 0
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Sturm theorems and some applications (non-numerical) First order differential systems (monotonic case)

Bounds and the asymptotics of the TTRR

en+1yn+1(x) + (bn+1(x)− an(x))yn(x)− dnyn−1(x) = 0,

Characteristic roots: en+1λ̄
2
n + (bn+1 − an)λ̄n − dn = 0,

Theorem (Perron-Kreuser)

If lim
n→+∞

|λ̄(+)
n /λ̄

(−)
n | 6= 1 solutions {y (1)

k , y (2)
k } exist such that

lim
n→+∞

1
λ̄+

n

y (1)
n

y (1)
n−1

= 1, lim
n→+∞

1
λ̄−n

y (2)
n

y (2)
n−1

= 1.

Charac. roots of Riccati equation: enλ
2
n + (bn − an)λn − dn = 0.

Consequence: as n→∞ the bounds tend to be sharper.
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Sturm theorems and some applications (non-numerical) First order differential systems (monotonic case)

Iteration of the TTRR

The TTRR can be used to generate sequences of bounds (convergent sequences for
minimal solutions of TTRR).

For instance, if bn+1 − an and yn+1/yn > 0 the solution is minimal and with the
backward iteration

yn(x)

yn−1(x)
= dn

(
bn+1 − an + en+1

yn+1(x)

yn(x)

)−1

sequences of upper and lower bounds are obtained.
This gives additional Perron-Kreuser bounds.

Forward iteration gives sequences of bounds for dominant solutions.
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Sturm theorems and some applications (non-numerical) First order differential systems (monotonic case)

From the upper and lower bounds: Turán-type inequalities.

ln = min
x

(Ln(x)) < Ln(x) <
yn

yn+1

yn

yn−1
< Un(x) < max

x
(Un(x)) = un

Using the differential system: bounds on logarithmic derivatives

LG bounds

Under appropriate conditions the following holds if dλs
n/dx > 0,

s = sign(yn(x)/yn−1(x)):

s
y ′n−1(x)

yn−1(x)
< s

an(x) + bn(x)

2
+
√

dn(x)en(x)
√

1 + ηn(x)2 < s
y ′n(x)

yn(x)

If dλs
n/dx < 0 the inequalities are reversed
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Sturm theorems and some applications (non-numerical) First order differential systems (monotonic case)

1. Modified Bessel functions

Bounds for Iν (x), Kν (x), as well as new Turán-type inequalities, like for, instance

Kν−1(x)

Kν (x)

Kν+1(x)

Kν (x)
<

|ν|
|ν| − 1

, x > 0, ν /∈ [−1, 1]

Used in the literature (related to a parameter of a probablity distribution) without proof [JS, JMAA (2011)]
[Baricz, Bull. Aust. Math. Soc (2010)]
See also Laforgia and Natalini, J. Inequal. Appl. (2010)

2. Parabolic cylinder functions, solutions of y′′ − (x2
/4 + n)y = 0, a > 0. hn(x) = −U(n, x)/U(n − 1, x), hn(0+) < 0

For n > 1/2 and x ≥ 0 the following holds

2
(

x +
√

4n + 2 + x2
)−1

<
U(n, x)

U(n − 1, x)
< 2

(
x +

√
4n − 2 + x2

)−1

The lower bound also holds if n ∈ (−1/2, 1/2) and this inequality turns to an equality if n = −1/2.

Turán-type inequalities for PCFs

Let F (x) =
U(n, x)2

U(n − 1, x)U(n + 1, x)
.

The following holds for all real x : √
n − 3/2

n + 1/2
<

n − 1/2

n + 1/2
F (x) < 1 < F (x) <

√
n + 3/2

n − 1/2

The first inequality holds for n > 3/2 and the rest for n > 1/2. For x < 0 the third inequality also holds if n ∈ (−1/2, 1/2).

Baricz & Ismail also considered related inequalities recently (Const. Aprox. (2012))
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Sturm theorems and some applications (non-numerical) First order differential systems (monotonic case)

LG bounds for PCFs

For all real x and n ≥ 1/2 the following holds:

−
√

x2/4 + n + 1/2 <
U′(n, x)

U(n, x)
< −

√
x2/4 + n − 1/2

The left inequality also holds for n > −1/2.

Consequence of the previous inequality

Bn+1/2(x) <
U(a, x)

U(a, 0)
< Bn−1/2(x)

where

Bα(x) = exp

− x

2

√
x2

4
+ α

 x

2
√
α

+

√
x2

4α
+ 1

−α
Some Turán-type inequalities for OPs

Hn(ix)
2 −

√
(n − 1)/(n + 1)Hn−1(ix)Hn+1(ix) > 0, n even.

3. Associated Legendre functions of imaginary variable

Pm
n (ix)2

Pm
n−1(ix)P

m
n+1(ix)

< 1 +
1

n − m
, n − m odd

4. Laguerre functions

For any ν ≥ 0 and α ≥ 0, x > 0 the following holds:

ν

ν + 1

α

α + 1
<

Lα−1
ν+1 (−x)

Lαν (−x)

Lα+1
ν−1(−x)

Lαν (−x)
<

ν

ν + 1
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Sturm theorems and some applications (non-numerical) First order differential systems (monotonic case)

Case dn(x)en(x) < 0 (an example)

© Hermite polynomials x ∈ R.

Hn(x)

Hn−1(x)
> x +

√
x2 − 2(n − 1), x >

√
2(n − 1)

Therefore, the largest zero of Hn(x) is smaller than
√

2(n − 1) if n > 1

Two iterations with the recurrence relation give:

Theorem

The largest zero of Hn(x) is smaller than
√

2(n − 2) if n > 2 and smaller than√
2(n − 3) if n > 6

(The bounds in Dimitrov, Nikolov, JAT(2010) are slightly better)
Continuing with the iterations:

√
2n − 12 is an upper bound for n ≥ 39 (but

asymptotics is more powerful for large n, see Elbert, Muldoon, Contemp.
Math (2008))
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Numerical applications: computing real zeros Methods for first order systems

Numerical applications: computation of zeros

The Sturm separation and comparison theorems for first order systems can
be used to construct globally convergent fixed point methods for computing
zeros of special functions.

These are (like Newton) second order methods but with the advantage that a
scheme to compute with certainty all the zeros in an interval becomes
available (JS, SIAM J Numer Anal, 2002). Global third order methods are
also possible, but

we move to the recent and more powerful fourth order methods based on
Sturm theorems for second order ODEs.
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Numerical applications: computing real zeros A fourth order method for second order ODEs

Theorem (Sturm comparison)

Let y(x) and w(x) be solutions of y ′′(x) + Ay (x)y(x) = 0 and
w ′′(x) + Aw (x)w(x) = 0 respectively, with Ay (x) > Aw (x) > 0. If
y(x0)w ′(x0)− y ′(x0)w(x0) = 0 and xy and xw are the zeros of y(x) and w(x)
closest to x0 and larger (or smaller) than x0, then xy < xw (or xy > xw ).

Equations: y ′′(x) + y(x) = 0, y ′′(x) + 2.25y(x) = 0

Algorithm (Zeros of y ′′(x) + A(x)y(x) = 0, A(x) monotonic)

Given xn, the next iterate xn+1 is computed as follows: find a solution of the
equation w ′′(x) + A(xn)w(x) = 0 such that y(xn)w ′(xn)− y ′(xn)w(xn) = 0. If
A′(x) < 0 (A′(x) > 0) take as xn+1 the zero of w(x) closer to xn and larger
(smaller) than xn.
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Numerical applications: computing real zeros A fourth order method for second order ODEs

The method is equivalent to iterating xn+1 = T (xn) with the following fixed
point iteration.

Let j = sign(A′(x)), we define

T (x) = x − 1√
A(x)

arctanj (
√

A(x)h(x))

with

arctanj (ζ) =

 arctan(ζ) if jz > 0,
arctan(ζ) + jπ if jz ≤ 0,
jπ/2 if z = ±∞

This method converges to α for any x0 in [α′, α) if A′(x) < 0, with α′ the
largest zero smaller than α (analogously for A′(x) > 0).
The method has fourth order convergence:

εn+1 =
A′(α)

12
ε4n +O(ε5n), εk = xk − α
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Numerical applications: computing real zeros A fourth order method for second order ODEs

Computing the zeros in an interval where A(x) is monotonic.
Example: zeros of y(x) = x sin(1/x), satisfying y ′′(x) + x−4y(x) = 0 (4 digits of acc.).

1 T (x [1]) = x [2], T (x [2]) = x [3] (with four digits acc.)

2 x [4] = x [3] + π/A(x [3]) (smaller than the next zero by Sturm comparison)

3 T (x [4]) = x [5], T (x [5]) = x [6] (with four digits acc.)
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Numerical applications: computing real zeros A fourth order method for second order ODEs

The algorithm

The basic algorithm is as simple as this:

Algorithm

Computing zeros for A′(x) < 0
1 Iterate T (x) starting from x0 until an accuracy target is reached. Let α be the

computed zero.
2 Take x0 = T (α) = α + π/

√
A(α) and go to 1.

Repeat until the interval where the zeros are sought is swept.
For A′(x) > 0 the same ideas can be applied but the zeros are computed in
decreasing order.

See JS, SIAM J. Numer. Anal. (2010).
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Numerical applications: computing real zeros A fourth order method for second order ODEs

Features of the method

1 Faster than Newton-Raphson (order 4), and globally convergent.

2 No initial guesses for the roots needed.

3 Computes with certainty all the roots in an interval, without missing any
one.

4 Good non-local behavior and low total count of iterations

5 For 100D accuracy, 3-4 iterations per root are enough.

Requirement: the monotonicity properties of A(x) should be known in
advance in order to compute zeros in subintervals where A(x) is monotonic.
But we already did that job for Gauss and confluent hypergeometric functions!
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Numerical applications: computing real zeros A fourth order method for second order ODEs

Other examples:

1 In some cases, computing the regions of monotony may be not so
straightforward. An example is provided by the zeros of

xCν + γC′ν(x)

For computing these zeros, we first obtain the second order ODE
satisfied by ỹ(x) = y ′(x). Transform to normal form with a change of
function. Solve the monotonicity and then apply the fourth order method.

Studying of the monotonicity of the resulting coefficient A(x) implies
solving cubic equations (see M. Muldoon, Archivum Mathematicum
(1982)).

The resulting method is very efficient (order 4) and is reliable, also for the
computation of double zeros (A. Gil, JS, Comput Math. Appl. (2012)).

2 Fixed point methods T (x) = x − w(x)−1 arctan(w(x)y(x)/y ′(x)) are
regularized Newton methods of local frequency w(x). They can be
applied to other functions, not necessarily solutions of ODEs. Example:
cross products of Bessel functions.
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Complex zeros

Computing complex zeros of special functions
The complex zeros of solutions of ODEs

y ′′(z) + A(z)y(z) = 0,

with A(z) a complex meromorphic function lie over certain curves.

Zeros of the Bessel function Yν (z) of order ν = 40.35

Zeros of the Bessel function of order ν = 40.35 and with a zero at z = 30i .
Zeros of L(α)

n (z), n = 26.2, α = −83 + 20i
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Complex zeros

Which are those curves?
Consider that two independent solutions of the ODE in a domain D can be written as

y±(z) = q(z)−1/2 exp (±iw(z)) , w(z) =

∫ z

q(ζ)dζ

If y(z) is a solution such that y(z(0)) = 0 then

y(z) = Cq(z)−1/2 sin
(∫ z

z(0)
q(ζ)dζ

)
Considering the parametric curve z(λ), with z(0) = z(0) and satisfying

q(z(λ))
dz
dλ

= 1

then z(kπ) are zeros of y(z) because
∫ z(kπ)

z(0)
q(ζ)dζ = kπ, k ∈ Z.

Therefore, we have zeros over the integral curve (an exact anti-Stokes line)

dy
dx

= − tan(φ(x , y)), q(z) = |q(z)|eiφ(x,y) (1)

passing through z(0) = x(0) + iy(0)
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Complex zeros

Problem: for computing q(z) we need to solve

1
2

q(z)
d2q(z)

dz2 − 3
4

(
dq(z)

dz

)2

− q(z)4 − A(z)q(z)2 = 0

which seems worse than our original problem, which was solving

y ′′(z) + A(z)y(z) = 0.
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Complex zeros

A drastic simplification

If A(z) is constant the general solution of y ′′(z) + A(z)y(z) = 0 is

y(z) = C sin(
√

A(z)(z − ψ)),

and the zeros are over the line

z = ψ + e−i ϕ2 λ, λ ∈ R+, ϕ = arg A(z)

The zeros lie over the integral lines

dy
dx

= − tan(ϕ/2). (2)

Ansatz: the zeros are approximately over (2) even if A(z) is not a constant.
This approximation is equivalent to consider q(z) ≈

√
A(z). This is the WKB

approximation:

y(z) ≈ CA(z)−1/4 sin
(∫ z

z(0)
A(ζ)1/2dζ

)
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Complex zeros

A Sturm-like result for the WKB approximation

Let z(0), z(1) be consecutive zeros of the WKB approximation over an approximate
anti-Stokes line (ASL). Then ∫ z(1)

z(0)
A(ζ)1/2dζ = ±π

And if |A(z(0))| > |A(z)| over the ASL between both zeros

L >
π√
|A(z(0))|

with L the length of the ASL arc. This is a Sturm-like result for the WKB approx.
If A(z) has slow variation and <z(1) > <z(0)

z(1) ≈ z1 = z(0) +
π√

A(z(0))
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Complex zeros

First step towards an algorithm:
Let z(0) such that y(z(0)) = 0. If |A(z)| decreases for increasing <z the next zero can
be computed as follows:

1 z0 = H+(z(0)) = z(0) + π/
√

A(z(0))

2 Iterate zn+1 = T (zn) until |zn+1 − zn| < ε, with

T (z) = z − 1√
A(z)

arctan
(√

A(z)
y(z)

y ′(z)

)

a Step 1 depends on WKB and the fact that A(z) has slow variation.

b The straight line joining the points y z(0) y z0 is tangent to the ASL arc at z(0). It is a
step in the right direction and with an appropiate size if A(z) varies slowly enough.

c Step 2 is a fixed point method of order 4, independently of the WKB approx.
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Complex zeros

Numerical example for Y10.35(z).
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Complex zeros

Things to consider before constructing an algorithm:

1 Where to start the iterations for computing a first zero

2 How to choose the appropriate direction

3 When to stop

4 How many ASLs do we need to consider

It is important to determine the structure of anti-Stokes and Stokes lines.
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Complex zeros

Stokes line through z0: the curve

<
∫ z

z0

√
A(ζ)dζ = 0,

Anti-Stokes line through z0: the curve

=
∫ z

z0

√
A(ζ)dζ = 0.

Some properties:
1 If z0 ∈ C is not a zero or a singularity of A(z) there is one and only one ASL

passing through that point. The same is true for the Stokes lines.
2 If z0 is not a zero or a singularity of A(z) the ASL and the SL passing through

that point intersect perpendicularly at z0.
3 If z0 is a zero of A(z) of multiplicity m, m + 2 ALSs (and SLs) emerge from z0

Studying the ASLs and SLs for

y ′′(z) + az−my(z) = 0,

we see that indeed m + 2 ASLs (and SLs) emerge from z = 0 if m 6= 2.
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Complex zeros

Example: Bessel functions

Principal (dashed line) and anti-Stokes (solid line) for the equation

d2y
dζ2 + (1− ζ−2)y = 0

(Bessel equation of orders |ν| > 1/2 with the change z = ζ
√
ν2 − 1/2).

Principal lines of y ′′(z) + A(z)y(z) = 0 are those emerging from the zeros of A(z).
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Complex zeros

This explains the different patterns of zeros shown before.

Zeros of the Bessel function Yν (z) of order ν = 40.35

Zeros of the Bessel function of order ν = 40.35 and with a zero at 30i .

Zeros of the Bessel function of order ν = 15.8 and with a zero at z = 10.
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Complex zeros

The stategy combines the use of H(±) = z ± π√
A(z)

and

T (z) = z +
1√
A(z)

arctan
(√

A(z)
y(z)

y ′(z)

)
, following these rules:

1 Divide the complex plane in disjoint domains separated by the principal ASLs
and SLs and compute separately in each domain.

2 In each domain, start away of the principal SLs, close to a principal ASL and/or
singularity (if any). Iterate T (z) until a first zero is found. If a value outside the
domain is reached, stop the search in that domain.

3 Proceed with the basic algorithm, choosing the displacements H(±)(z) in the
direction of approach to the principal SLs and/or singularity.

4 Stop when a value outside the domain is reached.

No exception has been found (so far tested for Bessel functions, PCFs and Bessel
polynomials).
The method has fourth order convergence.
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Complex zeros

Zeros of the Bessel function Yν (z) of order ν = 40.35
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Complex zeros

Stokes and anti-Stokes lines for the Bessel equation of order ν = 25 + 5i , together with the zeros of Yν (x) (+), Jν (x) (•) and

J−ν (x) (◦).
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Complex zeros

Zeros of the two Bessel functions y(k)
ν = eiφk αJν (z) + e−iφk βJ−ν (z), φk = 2νkπ, k = 0,−1, with α and β such that

y(0)
ν (−1 + 0+ i) = 0. ν = 25 + 5i .
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Complex zeros

Zeros of the Bessel polynomials L(1−2n−a)
n (2z) in the variable ζ = z/|γ|, |γ| =

√
(n + a/2)(n + a/2− 1). All the cases

shown share the same ASLs and SLs in the variable ζ. Black and white circles correspond to the polynomial solutions n = 10,

a = 8 and n = 11, a = 8.572394... Triangles correspond to the non-polynomial case n = 10.6, a = 8.343446..
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Complex zeros

For finishing:

Conjecture

The zeros of the generalized Bessel polynomials θn(z/γ, a) cluster over the curve

|p(z)| = 1,<(z) < cosφ,

p(z) = eV (z)
(

V (z)− z + cosφ
sinφ

)cosφ z sinφ
1− z cosφ+ V (z)

,

V (z) =
√

1− 2z cosφ+ z2

cosφ = (1− a/2)/γ, γ =
√

(n + a/2)(n + a/2− 1)

(3)

when n→∞, with a or a/n fixed.

The case a = 2 (cosφ = 0) gives a known result (Bruin, Saff & Varga 1981): a
n→ +∞ the zeros of θn(z/n; a) ≡ θn(z/n) cluster over the curve |q(z)| = 1, <z < 0,
where

q(z) = exp(
√

z2 + 1)
z

1 +
√

z2 + 1
(4)
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Complex zeros

THANK YOU!
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