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Introduction

Elementary functions:
1 Polynomials, algebraic functions
2 Trigonometric and inverses
3 Exponential and logarithm

4 The gamma function: Γ(α) =

∫ +∞

0
xαe−xdx

5 The error function: erf(x) =
2√
π

∫ x

0
e−t2

dt

6 The Airy functions: solutions of y ′′(z)− zy(z) = 0, particularly

Ai(z) =
1
π

∫ +∞

0
cos(t3/3 + zt)dt

7 ...
Less elementary functions are, for instance, hypergeometric functions
(Kummer, Gauss). Call them special if you wish.
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Introduction

Our principles for computing (special) functions:

1 The main objective is to develop Fortran codes which produce reliable double
precision values. Generally, we don’t use Maple or Mathematica in the final
product.

2 A given special function is usually a special case of a more general function. Our
approach is bottom-up: starting from the simplest cases. For example: Airy
functions.

3 We accept that it is necessary to combine several methods in order to compute a
function accurately and efficiently for a wide range of its variables.

4 We accept that a theoretical error analysis is usually impossible for functions
with several real or complex variables. We accept more empirical approaches.

5 The accuracy analysis is usually done by using functional relations, such as a
Wronskian relations or by comparing with an alternative method of computation.

6 The selection of methods in different parameter domains is based on speed and
accuracy, where the latter may prevail.

7 Possible scaling factors may be considered when available
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Introduction Some basic methods for computing special functions

An example: Airy functions
Airy functions are the solutions of the ODE:

The Airy equation

y ′′(z)− zy(z) = 0

Relatively recent methods for computing this function in the complex plane
are:

1 Fabijonas, Lozier, Olver (ACM TOMS 2004)
2 Gil, Segura, Temme (ACM TOMS 2002)

The goal: computing a numerically satisfactory pair of solutions of the Airy
equation for unrestricted values of the variable (possibly factoring out an
elementary function). A numerically satisfactory pair should comprise the
recessive solution (Ai(z) is recessive as |z| → ∞, arg(z) < π/3).

I am describing briefly the case of Ai(z), starting with positive real z.
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Introduction Some basic methods for computing special functions

For small x: we try power series and get two independent solutions:

y1(z) =
∞∑

k=0

3k
(

1
3

)
k

z3k

(3k)!
, y2(z) =

∞∑
k=0

3k
(

2
3

)
k

z3k+1

(3k + 1)!
, z ∈ C

But lim
z→+∞

y1(z) = +∞, lim
z→+∞

y2(z) = +∞, while lim
x→+∞

Ai(x) = 0. The computation of

Ai(x) for large x is numerically unstable using convergent series.

For large x asymptotics can be used.

Ai(z) ∼ z−1/4e−ζ
∞∑

m=0

amζ
−m, ζ =

2
3

z
3
2 , am+1 = −5/36 + m(m + 1)

2(m + 1)
am , a0 = (2

√
π)−1

A first algorithm: use convergent series for x < 5.5 and divergent series for x > 5.5
(10−8 relative precision).

For more precision, we need something else. We can not expect to compute a
function numerically with a single method unless it is quite elementary.

Something else: Chebyshev expansions, integration of the ODE, numerical
quadrature,...
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Introduction Some basic methods for computing special functions

Numerical quadrature

Many (special functions) can be written using integral representations, also
Airy functions. Two interesting representations are:

Ai(z) =
1

2πi

∫ +∞eiπ/3

∞e−iπ/3
exp(t3/3− zt)dt

Ai(z) =
1

√
π(48)1/6Γ(5/6)

e−ζζ−1/6
∫ +∞

0

(
2 +

t
ζ

)−1/6

t−1/6e−tdt

Which one is the best for numerical purposes?

The second one does not have an oscillating integrand and shows explicitly
the dominant factor.

But the first integral can be transformed by complex integration methods
(saddle point analysis).
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Introduction Some basic methods for computing special functions

Numerical quadrature: a trivial example of contour deformation

I =

∫ +∞

−∞
cos(w2/2 + xw)dw = <(F ),

F =

∫ +∞

−∞
eφ(w)dw , φ(t) = i(w2/2 + xw)

φ′(w0) = 0→ w0 = −x

The path w = v − x + iv , v ∈ (−∞,+∞) is of steepest descent (SD)
and one can deform the original path to the SD path, where
dw = (1 + i)dv , <(φ(w)) = −v2 and:

F =

∫ +∞

−∞
eφ(w)dw = eφ(w0)(1 + i)

∫ +∞

−∞
e−v2

dv

The remaining integral is suited for the trapezoidal rule (not needed).
With this F = e−ix2/2(1 + i)

√
π and I =

√
2π cos(x2/2− π/4).
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Introduction Some basic methods for computing special functions

For Airy:

Ai(z) =
1

2πi

∫
C

e
1
3 w3−zw dw, ph z ∈ [0,

2

3
π]

C: contour starting at∞e−iπ/3 and terminating at∞e+iπ/3 (in the valleys of the integrand).
Let

φ(w) = 1
3 w3 − zw

The saddle points are w0 =
√

z and−w0 and follow from solving φ′(w) = w2 − z = 0.
The saddle point contour (the path of steepest descent) that runs through the saddle point w0 is defined by

=[φ(w)] = =[φ(w0)].

We write
z = x + iy = reiθ

, w = u + iv, w0 = u0 + iv0.

Then
u0 =

√
r cos 1

2 θ, v0 =
√

r sin 1
2 θ, x = u2

0 − v2
0 , y = 2u0v0.

The path of steepest descent through w0 is given by the equation

u = u0 +
(v − v0)(v + 2v0)

3
[

u0 +
√

1
3 (v

2 + 2v0v + 3u2
0 )

] , −∞ < v <∞.

The resulting integral is suited for the trapezoidal rule.
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Introduction Some basic methods for computing special functions

Our recipe for complex Airy functions:

1 Maclaurin series.
2 Asymptotic expansions
3 Gauss-Laguerre quadrature (but also the trapezoidal rule)
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Introduction Some basic methods for computing special functions

Recurrence relations
Many special functions satisfy difference equations, and n particular,

yn+1 + bnyn + anyn−1 = 0

Examples: U(a, x) and V (a, x) (a ≡ n) or Pm
−1/2+iτ (x) (m ≡ n)

Recurrences are interesting methods, but have to be applied correctly.

Example: Consider the recurrence yn+1 − yn − yn−1 = 0, (Fibonacci) with
general solution yn = αφn + β(−φ−1)n ,φ = (1 +

√
5)/2.

Consider the numerical computation of the (−φ)−n starting from y0 = 1,
y1 = −2/(1 +

√
5). We compute up to n = 50.

We should get y50/y49 = −2/(1 +
√

5), but we get y50/y49 = 1.618150 . . .

The solution yn = φn dominates over (−φ−1)n (minimal). Any small numerical
error introduces the dominant solution. This is a conditioning problem; we
need information on the conditioning of the solutions.
Similar precautions have to be considered when integrating initial value
problems for ODEs.
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Introduction Some basic methods for computing special functions

Recurrences: main results to be considered

1 Perron-Kreuser theorem, which essentially says that for a linear
difference equation of order k , yn+k+1 + a(n+k)

n yn+k + . . .+ a(0)
n yn = 0

there exist different solutions such the ratios yn+1/yn behave as n→ +∞
as the solutions of the characteristic equation
λn+k+1 + a(n+k)

n λn+k + . . .+ a(0)
n = 0 (in the non-degenerate case).

2 The asymptotic behaviour of the solution we want to compute, to be
compared with the Perron-Kreuser predictions. Is the solution recessive
(minimal), dominant or none of them?

3 Pincherle’s theorem for three term recurrence relations:
yn+1 + bnyn + anyn−1 = 0 has minimal solution {fn} if and only if:

fn
fn−1

=
−an

bn +
−an+1

bn+1 + . . .
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Introduction Some basic methods for computing special functions

Additional examples of computation

We (AG, NT and myself) have solved some other problems, like:
1 Various types of Legendre functions of real parameters

(1997,1998,2000)
2 Inhomogeneous Airy functions (2000).
3 Solution of the Bessel equation x2y ′′ + xy + (x2 + a2)y = 0

(2004). Numerically satisfactory pair {Kia(x),Lia(x)}.
4 Solution of the parabolic cylinder equation y ′′ + (a± x2/4)y = 0

(2006 for −, 2011 and 2012 for +). Pairs of solutions
{U(a, x),V (a, x)} (− case) and {W (a, x),W (a,−x)}

5 Conical functions, that is, Legendre functions Pm
−1/2+iτ (x) (2009,

2012).
6 Incomplete gamma functions γ(a, x), Γ(a, x) (2012)

The last four problems are harder because they involve two or more
variables. A good number of methods are usually needed to cover a
large range.
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Computation of χ2 cumulative distributions Central distribution

Computation of χ2 cumulative distributions

Recent activity involves the computation and inversion of χ2 cumulative
distributions.

The central distributions are given by the incomplete gamma function ratios

P(a, x) =
1

Γ(a)

∫ x

0
ta−1e−tdt , Q(a, x) =

1
Γ(a)

∫ +∞

x
ta−1e−tdt

Because P(a, x) + Q(a, x) = 1 we only need to compute one function. We
compute the smallest of the two.

For large values of a, x we have a transition at a ∼ x , with

P(a, x) .
1
2

when a & x ,

Q(a, x) .
1
2

when a . x .
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Computation of χ2 cumulative distributions Central distribution

Accordingly, the methods of computation are divided in two zones, with several
methods of computation in each one.

10

20

30

40

50

10 20 30 40 50

x = 0.3 a

x = 2.35 a

 a

 x

a = α(x)

a = 12

1.5

UA

CF

PT

QT

PT: Taylor series for P
QT: Taylor series for Q (small triangle)
UA: Uniform asymptotic expansions (Temme, 1979)
CF: continued fraction for the Q (Gautschi, 1977)

See A. Gil, JS, N.M. Temme, SIAM J. Sci. Comput. (2012)

J. Segura (Universidad de Cantabria) Computation of special functions Orthonet 2013, Feb. 22-23 15 / 51



Computation of χ2 cumulative distributions Central distribution

Inversion of the cumulative central χ2 distribution

For probability distributions, the inversion is also needed in applications. For
fixed a, we invert P(a, x) = p or, equivalently, Q(a, x) = q.

Our approach:

1 Invert P(a, x) (Q(a, x)) if p < q (p > q)
2 Use the existent approximation methods (PT, Poincaré asymptotics for

Q, UA) to find starting values.
3 Apply higher order Newton methods from the resulting starting values.

The different type of starting values are chosen according to the next figure.
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Computation of χ2 cumulative distributions Central distribution

An example of inversion:
For small p, we use PT to write

x = r

(
1 +

∞∑
n=1

a(−1)nxn

(a + n)n!

)−1/a

, r = (pΓ(1 + a))1/a
,

We write x = r +
∞∑

n=2

ck r k , and by expanding the first few coefficients are

c2 =
1

a + 1
,

c3 =
3a + 5

2(a + 1)2(a + 2)
,

c4 =
8a2 + 33a + 31

3(a + 1)3(a + 2)(a + 3)
,

c5 =
125a4 + 1179a3 + 3971a2 + 5661a + 2888

24(1 + a)4(a + 2)2(a + 3)(a + 4)
.
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Computation of χ2 cumulative distributions Central distribution

The accuracy of the starting values (except for small a) is shown in this figure

With a fourth order Newton-like method, 2 or 3 iterations are enough for an
accuracy better than 10−12.
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Computation of χ2 cumulative distributions Non-central distribution

The generalized Marcum Q-function
The generalized Marcum Q-function is the non-central cumulative χ2

distribution, up to an elementary change of variables. It is defined as

Qµ(x , y) = x
1
2 (1−µ)

∫ +∞

y
t

1
2 (µ−1)e−t−x Iµ−1

(
2
√

xt
)

dt ,

where µ > 0 and Iµ(z) is the modified Bessel function. For µ = 1 the function
is know as the Marcum Q-function.

We also use a complementary function such that Pµ(x , y) + Qµ(x , y) = 1 :

Pµ(x , y) = x
1
2 (1−µ)

∫ y

0
t

1
2 (µ−1)e−t−x Iµ−1

(
2
√

xt
)

dt .

Particular values are

Qµ(x ,0) = 1, Qµ(x ,+∞) = 0,

Qµ(0, y) = Qµ(y), Qµ(+∞, y) = 1,

Q+∞(x , y) = 1.
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Computation of χ2 cumulative distributions Non-central distribution

As for incomplete gamma functions, we compute the smallest of the two
functions. Asymptotic analysis gives that for large values of µ, x , y , we have a
transition at y ∼ x + µ, with

Pµ(x , y) . Qµ(x , y) when y . x + µ,

Qµ(x , y) . Pµ(x , y) when y & x + µ.

Ingredients in the computation:

1 Series in terms of incomplete gamma functions

2 Recurrence relations.

3 Asymptotic expansions for large µ in terms of the error function (both for
P and Q).

4 Quadrature methods.

We give some details of the first two items.
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Computation of χ2 cumulative distributions Non-central distribution

Series in incomplete gamma functions

Plugging the Maclaurin series for the modified Bessel function into the integral
representation, we readily obtain the series expansions

Pµ(x , y) = e−x
∞∑

n=0

xn

n!
Pµ+n(y),

Qµ(x , y) = e−x
∞∑

n=0

xn

n!
Qµ+n(y).

in terms of the incomplete gamma function ratios (which we can compute).
Recurrences can be used to compute rapidly the series. We have

Qµ+1(y) = Qµ(y) +
yµe−y

Γ(µ+ 1)
,

Pµ+1(y) = Pµ(y)− yµe−y

Γ(µ+ 1)
,

stable for Qµ(y) in the forward direction, and for Pµ(y) in the backward direction.
Equivalently, we have µQµ+1(y)− (µ+ y)Qµ(y) + yQµ−1(y) = 0.
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Computation of χ2 cumulative distributions Non-central distribution

Recurrence relations
Integration by parts gives the following recurrences

Qµ+1(x , y) = Qµ(x , y) +
(y

x

)µ/2
e−x−y Iµ(2

√
xy),

Pµ+1(x , y) = Pµ(x , y)−
(y

x

)µ/2
e−x−y Iµ(2

√
xy),

It is possible to eliminate the Bessel function and obtain a homogeneous third order
recurrence relation.

xQµ+2(x , y) = (x − µ)Qµ+1(x , y) + (y + µ)Qµ(x , y)− yQµ−1(x , y),

and Pµ(x , y) satisfies the same relation, but its computation with this recurrence is
badly conditioned (it is subdominant, but not minimal)
A better possibility is:

yµ+1 − (1 + cµ)yµ + cµyµ−1 = 0, cµ =

√
y
x

Iµ (2
√

xy)

Iµ−1 (2
√

xy)
.

P is minimal and Q is dominant. Pincherle’s theorem gives:

Pµ(x , y)

Pµ−1(x , y)
=

cµ
1 + cµ−

cµ+1

1 + cµ+1−
. . .
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Computation of χ2 cumulative distributions Non-central distribution

The methods are combined as follows:
Let f1(x , µ) = x + µ− 0.25

√
4x + 2µ, f2(x , µ) = x + µ+ 0.25

√
4x + 2µ.

1 If µ > 60, compute the Marcum functions using either with asymptotic
expansions for f1(x , µ) < y < f2(x , µ) and use numerical quadrature in
the other case.

2 If µ ≤ 60, compute the Marcum functions as follows:

If µ ≤ 10, x < 15, y < 15, compute the series expansion.
In other case: if y < f1(x , µ) or y > f2(x , µ) compute by
numerical quadrature; if f1(x , µ) < y < f2(x , µ) compute
the Marcum functions using the recurrence relation.

The algorithm has been implemented in a Fortran 90 module MarcumQ,
which includes the Fortran 90 routine marcum for the computation of
Qµ(x , y) and Pµ(x , y). We have tested that an accuracy ∼ 10−12 can be
obtained in the parameter region (x , y , µ) ∈ [0, 200]× [0, 200]× [1, 200]
(submitted to ACM Trans. Math. Softw.)
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Computation of χ2 cumulative distributions Non-central distribution

Inversion of the generalized Marcum Q-function

For a three variable function, we have to fix what we mean by inversion.
It appears that in applications the inversion process is as follows (Helstrom,
1998):
We are given two numbers q0,q1, both in (0,1), and we assume a fixed value
of m.

Step 1: Find y from the equation Qµ(0, y) = q0, and denote this value
with y0. Because Qµ(0, y) = Qµ(y) (the normalized incomplete
gamma function) we already known how to do this step.

Step 2: Find x from the equation Qµ(x , y0) = q1, and denote this value
with x1. The value y0 is obtained in Step 1.

Ingredients of the inversion algorithm

1 Asymptotic inversion for large µ.

2 Analyze the converge of Newton or secant methods, not only for large µ.
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Computation of χ2 cumulative distributions Non-central distribution

For the second purpose: we need to analyze monotonicity and convexity. We have

∂Q(x , y)

∂x
= Qµ+1(x , y)−Qµ(x , y) =

(y
x

)µ/2
e−x−y Iµ(2

√
xy) > 0

Taking the second derivative and using the TTRR

∂2Q(x , y)

∂x2 = (cµ(x , y)− 1)(Qµ+1(x , y)−Qµ(x , y))

It is easy to prove that cµ(x , y) is monotonically decreasing a a function of x , and
using that (JS, J. Math. Anal. Appl., 2011)

fµ+1(z) <
1
z

Iµ(z)

Iµ−1(z)
< fµ+1/2(z), fν(z) = (ν +

√
ν2 + z2)−1

we see that
∂2Q
∂x2 < 0 if x > x+ = y − µ− 1

2
,

∂2Q
∂x2 > 0 if x < x− = y − µ− 1

Consequence: for solving the second step (computing x in Q(x , y) = q1), x− and x+

are safe starting values for the secant method when they are positive. Otherwise,
taking two small positive values is safe.
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Fast and reliable computation of the real zeros of SFs

Computation of the zeros of special functions

The problem: given a function with several zeros in an interval,
compute all the zeros reliably and efficiently.

Reliability: no zero is missed and the method is convergent without
accurate initial approximations.

Efficiency: the total count of iterations is small (and if the order of
convergence is high so much the better).

We solve the problem for a wide set of functions which includes many
important cases (like computing the zeros of orthogonal polynomials
for Gauss quadrature, computing the zeros of Bessel functions and of
their derivatives,...).
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Fast and reliable computation of the real zeros of SFs

Most published algorithms rely on first approximations + Newton
method.

Reliable?: maybe (therefore, certainly not). There is no proof of
convergence.

Efficient?: yes, but can be improved without additional computational
cost.

Additionally, one needs particular approximations for each different
function and sometimes they are hard.

The initial approximations are difficult to handle for functions
depending on several parameters (say Jacobi polynomials).
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Fast and reliable computation of the real zeros of SFs

“Our” SFs:

Solutions of linear second order ODEs

w ′′(x) + B(x)w ′(x) + C(x)w(x) = 0 (1)

In particular, we will consider equations in normal form

y ′′(x) + A(x)y(x) = 0

.
We can transform (1) by setting

y(x) = exp
(∫

1
2

B(x)dx
)

w(x)

Then y ′′(x) + A(x)y(x) = 0, with A(x) = C(x)− 1
2

B′(x)− 1
4

B(x)2
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Fast and reliable computation of the real zeros of SFs

Construction of a fixed point method of order 4

Taking h(x) = y(x)/y ′(x), we have h′(x) = 1 + A(x)h(x)2.

If y(α) = 0 and A(x) has slow variation:∫ x

α

h′(ζ)

1 + A(x)h(ζ)2 dζ ≈ x − α,

and assuming A(x) > 0

α ≈ x − 1
w(x)

arctan (w(x)h(x)) , w(x) =
√

A(x)

A classroom exercise:

Prove that the fixed point method xn+1 = g(xn),

g(x) = x − 1√
A(x)

arctan
(√

A(x)
y(x)

y ′(x)

)
with y ′′(x) + A(x)y(x) = 0, A(x) differentiable, has order order of convergence four.

But the goal is to compute all the zeros in a given interval. How to be sure?
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Fast and reliable computation of the real zeros of SFs The global method as a consequence of Sturm comparison

Theorem (Sturm comparison)

Let y(x) and w(x) be solutions of y ′′(x) + Ay (x)y(x) = 0 and
w ′′(x) + Aw (x)w(x) = 0 respectively, with Ay (x) > Aw (x) > 0. If
y(x0)w ′(x0)− y ′(x0)w(x0) = 0 and xy and xw are the zeros of y(x) and w(x)
closest to x0 and larger (or smaller) than x0, then xy < xw (or xy > xw ).

Equations: y ′′(x) + y(x) = 0, y ′′(x) + 2.25y(x) = 0

Algorithm (Zeros of y ′′(x) + A(x)y(x) = 0, A(x) monotonic)

Given xn, the next iterate xn+1 is computed as follows: find a solution
of the equation w ′′(x) + A(xn)w(x) = 0 such that
y(xn)w ′(xn)− y ′(xn)w(xn) = 0. If A′(x) < 0 (A′(x) > 0) take as xn+1
the zero of w(x) closer to xn and larger (smaller) than xn.

Equations: y ′′(x) + A(x)y(x) = 0, w ′′(x) + A(xn)w(x) = 0, (A′(x) < 0)
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Fast and reliable computation of the real zeros of SFs The global method as a consequence of Sturm comparison

The method is equivalent to iterating xn+1 = T (xn) with the following
fixed point iteration.

Let j = sign(A′(x)), we define

T (x) = x − 1√
A(x)

arctanj(
√

A(x)h(x))

with

arctanj(ζ) =


arctan(ζ) if jz > 0,
arctan(ζ) + jπ if jz ≤ 0,
jπ/2 if z = ±∞

This method converges to α for any x0 in [α′, α) if A′(x) < 0, with α′ the
largest zero smaller than α (analogously for A′(x) > 0).
The method has fourth order convergence:

εn+1 =
A′(α)

12
ε4n +O(ε5n), εk = xk − α
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Fast and reliable computation of the real zeros of SFs The global method as a consequence of Sturm comparison

Computing the zeros in an interval where A(x) is monotonic.
Example: zeros of y(x) = x sin(1/x), satisfying y ′′(x) + x−4y(x) = 0 (4 digits of acc.).

1 T (x [1]) = x [2], T (x [2]) = x [3] (with four digits acc.)

2 x [4] = x [3] + π/
√

A(x [3]) (smaller than the next zero by Sturm comparison)

3 T (x [4]) = x [5], T (x [5]) = x [6] (with four digits acc.)
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Fast and reliable computation of the real zeros of SFs The global method as a consequence of Sturm comparison

The algorithm

The basic algorithm is as simple as this:

Algorithm

Computing zeros for A′(x) < 0
1 Iterate T (x) starting from x0 until an accuracy target is reached. Let α be the

computed zero.
2 Take x0 = T (α) = α + π/

√
A(α) and go to 1.

Repeat until the interval where the zeros are sought is swept. For A′(x) > 0 the same
ideas can be applied but the zeros are computed in decreasing order.
See JS, SIAM J. Numer. Anal. (2010).

Requirement: the monotonicity properties of A(x) should be known in advance in
order to compute zeros in sub-intervals where A(x) is monotonic.
But we already did that job for Gauss and confluent hypergeometric functions (A.
Deaño, A. Gil, JS, JAT (2004))
For 100D accuracy, 3-4 iterations per root are enough and the method has
proved reliability.
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Fast computation of the complex zeros of special functions

Computing complex zeros of special functions

The complex zeros of solutions of ODEs

y ′′(z) + A(z)y(z) = 0,

with A(z) a complex meromorphic function, lie over certain curves.

Zeros of the Bessel function Yν (z) of order ν = 40.35

Zeros of the Bessel function of order ν = 40.35 and with a zero at z = 30i .
Zeros of L(α)

n (z), n = 26.2, α = −83 + 20i
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Fast computation of the complex zeros of special functions

Which are those curves?
Consider that two independent solutions of the ODE in a domain D can be written as

y±(z) = q(z)−1/2 exp (±iw(z)) , w(z) =

∫ z

q(ζ)dζ

If y(z) is a solution such that y(z(0)) = 0 then

y(z) = Cq(z)−1/2 sin
(∫ z

z(0)
q(ζ)dζ

)
Considering the parametric curve z(λ), with z(0) = z(0) and satisfying

q(z(λ))
dz
dλ

= 1

then z(kπ) are zeros of y(z) because
∫ z(kπ)

z(0)
q(ζ)dζ = kπ, k ∈ Z.

Therefore, we have zeros over the integral curve (an exact anti-Stokes line)

dy
dx

= − tan(φ(x , y)), q(z) = |q(z)|eiφ(x,y) (2)

passing through z(0) = x(0) + iy(0)
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Fast computation of the complex zeros of special functions

Problem: for computing q(z) we need to solve

1
2

q(z)
d2q(z)

dz2 − 3
4

(
dq(z)

dz

)2

− q(z)4 − A(z)q(z)2 = 0

which seems worse than our original problem, which was solving

y ′′(z) + A(z)y(z) = 0.
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Fast computation of the complex zeros of special functions

A drastic simplification

If A(z) is constant the general solution of y ′′(z) + A(z)y(z) = 0 is

y(z) = C sin(
√

A(z)(z − ψ)),

and the zeros are over the line

z = ψ + e−i ϕ2 λ, λ ∈ R, ϕ = arg A(z)

The zeros lie over the integral lines

dy
dx

= − tan(ϕ/2). (3)

Ansatz: the zeros are approximately over (3) even if A(z) is not a constant.
This approximation is equivalent to consider q(z) ≈

√
A(z). This is the WKB (or

Liouville-Green) approximation:

y(z) ≈ CA(z)−1/4 sin
(∫ z

z(0)
A(ζ)1/2dζ

)
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Fast computation of the complex zeros of special functions

A Sturm-like result for the WKB approximation

Let z(0), z(1) be consecutive zeros of the WKB approximation over an approximate
anti-Stokes line (ASL). Then ∫ z(1)

z(0)
A(ζ)1/2dζ = ±π

And if |A(z(0))| > |A(z)| over the ASL between both zeros

L >
π√
|A(z(0))|

with L the length of the ASL arc. This is a Sturm-like result for the WKB approx.
If A(z) has slow variation and <z(1) > <z(0)

z(1) ≈ z1 = z(0) +
π√

A(z(0))
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Fast computation of the complex zeros of special functions

First step towards an algorithm:
Let z(0) such that y(z(0)) = 0. If |A(z)| decreases for increasing <z the next zero can
be computed as follows:

1 z0 = H+(z(0)) = z(0) + π/
√

A(z(0))

2 Iterate zn+1 = T (zn) until |zn+1 − zn|/|zn| < ε, with

T (z) = z − 1√
A(z)

arctan
(√

A(z)
y(z)

y ′(z)

)

a Step 1 depends on WKB and the fact that A(z) has slow variation.

b The straight line joining the points y z(0) y z0 is tangent to the ASL arc at z(0). It is a
step in the right direction and with an appropriate size if A(z) varies slowly enough.

c Step 2 is a fixed point method of order 4, independently of the WKB approx.
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Fast computation of the complex zeros of special functions

Numerical example for Y10.35(z).
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Fast computation of the complex zeros of special functions

Things to consider before constructing an algorithm:
1 Where to start the iterations for computing a first zero
2 How to choose the appropriate direction
3 When to stop
4 How many ASLs do we need to consider

It is important to determine the structure of anti-Stokes and Stokes
lines.

J. Segura (Universidad de Cantabria) Computation of special functions Orthonet 2013, Feb. 22-23 41 / 51



Fast computation of the complex zeros of special functions

Stokes line through z0: the curve

<
∫ z

z0

√
A(ζ)dζ = 0,

Anti-Stokes line through z0: the curve

=
∫ z

z0

√
A(ζ)dζ = 0.

Some properties:
1 If z0 ∈ C is not a zero or a singularity of A(z) there is one and only one ASL

passing through that point. The same is true for the Stokes lines.
2 If z0 is not a zero or a singularity of A(z) the ASL and the SL passing through

that point intersect perpendicularly at z0.
3 If z0 is a zero of A(z) of multiplicity m, m + 2 ASLs (and SLs) emerge from z0

Studying the ASLs and SLs for

y ′′(z) + az−my(z) = 0,

we see that indeed m + 2 ASLs (and SLs) emerge from z = 0 if m 6= 2.
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Fast computation of the complex zeros of special functions

Example: Bessel functions

Principal (dashed line) and anti-Stokes (solid line) for the equation

d2y
dζ2 + (1− ζ−2)y = 0

(Bessel equation of orders |ν| > 1/2 with the change z = ζ
√
ν2 − 1/2).

Principal lines of y ′′(z) + A(z)y(z) = 0 are those emerging from the zeros of A(z).
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Fast computation of the complex zeros of special functions

This explains the different patterns of zeros shown before.

Zeros of the Bessel function Yν (z) of order ν = 40.35

Zeros of the Bessel function of order ν = 40.35 and with a zero at 30i .

Zeros of the Bessel function of order ν = 15.8 and with a zero at z = 10.
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Fast computation of the complex zeros of special functions
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Fast computation of the complex zeros of special functions
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Fast computation of the complex zeros of special functions

The strategy combines the use of H(±) = z ± π√
A(z)

and

T (z) = z +
1√
A(z)

arctan
(√

A(z)
y(z)

y ′(z)

)
, following these rules:

1 Divide the complex plane in disjoint domains separated by the principal ASLs
and SLs and compute separately in each domain.

2 In each domain, start away of the principal SLs, close to a principal ASL and/or
singularity (if any). Iterate T (z) until a first zero is found. If a value outside the
domain is reached, stop the search in that domain.

3 Proceed with the basic algorithm, choosing the displacements H(±)(z) in the
direction of approach to the principal SLs and/or singularity.

4 Stop when a value outside the domain is reached.

No exception has been found (so far tested for Bessel functions, PCFs and Bessel
polynomials). See JS, Numerische Mathematik, to appear.
The method has fourth order convergence.

We finish with some graphical examples, with zeros computed using our algorithm in
Maple.
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Fast computation of the complex zeros of special functions

Zeros of the Bessel function Yν (z) of order ν = 40.35

J. Segura (Universidad de Cantabria) Computation of special functions Orthonet 2013, Feb. 22-23 47 / 51



Fast computation of the complex zeros of special functions

Stokes and anti-Stokes lines for the Bessel equation of order ν = 25 + 5i , together with the zeros of Yν (x) (+), Jν (x) (•) and

J−ν (x) (◦).
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Fast computation of the complex zeros of special functions

Zeros of the two Bessel functions y(k)
ν = eiφk αJν (z) + e−iφk βJ−ν (z), φk = 2νkπ, k = 0,−1, with α and β such that

y(0)
ν (−1 + 0+ i) = 0. ν = 25 + 5i .
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Fast computation of the complex zeros of special functions

Zeros of the Bessel polynomials L(1−2n−a)
n (2z) in the variable ζ = z/|γ|, |γ| =

√
(n + a/2)(n + a/2− 1). All the cases

shown share the same ASLs and SLs in the variable ζ. The symbols× and + correspond to the polynomial solutions n = 10,

a = 8 and n = 11, a = 8.572394... Triangles correspond to the non-polynomial case n = 10.6, a = 8.343446..
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Fast computation of the complex zeros of special functions

THANK YOU!
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