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Project Santander-Amsterdam
• First email contact: 3 September 1997
• First personal contact: SIAM Annual Meeting

1998 Toronto
• Lecture by Bruce Fabijonas on Scorer functions

motivated research in contour integrals for these
functions.

• The project has been supported with a number of
grants fromMinisterio de Ciencia e Innovación
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Publications and algorithms
• 27 published papers, from 2000,
• of which 5 Algorithms in ACM TOMS
• and 3 Algorithms in CPC (all in FORTRAN 90)
• 1 submitted paper, 1 in preparation
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Publications and algorithms
Special publications:

• 1 book:Numerical methods for Special Functions
• 1 survey paper (2007) inActa Numerica
• 1 survey paper (2011) inRecent Advances in

Computational and Applied Mathematics, Simos
(ed.), Springer

• 1 survey paper (2012) inEncyclopedia of Applied
and Computational Mathematics,
Engquist/Iserles (eds.), Springer

• Contributions to the NIST Handbook of
Mathematical Functions
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Published algorithms
• Zeros of Bessel functions
• Toroidal functions
• Complex Airy and Scorer functions
• Modified Bessel functions of imaginary order
• Real Parabolic Cylinder FunctionsU, V

• Parabolic cylinder functionW,W ′

• Conical functionPm
−1/2+iτ (x)

• Regular and irregular associated Legendre
functions
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Pre-project published algorithms
Amparo & Javier: several algorithms in CPC

• Modified Bessel functions, continued fraction
method

• Zeros of Bessel functions
• Prolate and oblate spheroidal harmonics
• Parabolic cylinder functions of integer and

half-integer orders
• A Monte Carlo code to simulate 3D buffered

diffusion
• Toroidal harmonics
• Legendre functions of argument greater than one
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Numerical topics, methods
Publications on

• Zeros of Scorer and other special functions
• Recurrence relations for hypergeometric

functions (Gauss and Kummer)
• Contour integral representations of PCF’s
• Quadrature methods for contour integrals
• Inversion of cumulative distribution functions
• Computation and inversion of incomplete gamma

functions and the MarcumQ−function
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Details on numerical methods
We give a few comments on the following basic
methods:

• Series expansions; convergent, asymptotic
• Recurrence relations
• Quadrature methods

First: our way of working (paradigms?).
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Details on numerical methods
Our main principles:

1. Generalize or not ?

A given special function is usually a special case of a more

general function. Keep it simple.
2. Error analysis or not ?

For a function with several (complex) variables, detailed

error analysis is usually impossible.
3. How to verify the result ?

For a start: Maple. At the end: functional relations.
4. Which method to use ?

Series, recursions, integrals; all with stable representations.
5. Parameter domain ?

Also large or complex parameters. Use scaling.
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Details on numerical methods
Generalize or not ?
Start withpFq(a1, . . . , ap; b1, . . . , bq; z) or with the Meijer

G−function

Gm,n
p,q (z;a;b) = Gm,n

p,q

(

z; a1,...,ap

b1,...,bq

)

=

1

2πi

∫

L

m
∏

ℓ=1

Γ(bℓ − s)
n
∏

ℓ=1

Γ(1 − aℓ + s)

q−1
∏

ℓ=m

Γ(1 − bℓ+1 + s)
p−1
∏

ℓ=n

Γ(aℓ+1 − s)

zs ds ?

Here the integration pathL separates the poles of the
factorsΓ(bℓ − s) from those of the factors
Γ(1 − aℓ + s).
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Details on numerical methods
Generalize or not ?
A Meijer G−function can be written as a finite sum of
pFq−functions.

These functions can be computed by using their
power series or largez asymptotic expansions.

Example: modified Bessel function

Kν(z) = 1
2π

I−ν(z) − Iν(z)

sin(νπ)
.

This is the approach in SAGE forG−functions, and
perhaps in other computer algebra packages.

Case closed?
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Details on numerical methods
Generalize or not ?
There are two main problems

1. Representation for positive largeℜz:
• The functionIν(z) is exponentially large.
• The functionKν(z) is exponentially small.

This can be controlled by including more and
more digits in the computations.

2. For integerν, the relation betweenKν(z) and
Iν(z) is well-defined analytically, but it becomes
useless for numerical computations.

This is difficult to handle, even in computer
algebra packages.
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Details on numerical methods
Series expansions; convergent, asymptotic

• Simple for implementation
• Be careful with stopping criteria
• Bridge the gap: convergent⇔ asymptotic
• For this:

• continued fractions,
• quadrature methods,
• . . .
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Details on numerical methods
Recurrence relations:

Anyn−1 + Bnyn + Cnyn+1 = 0

• Theory: Poincaré, Perron, Kreuser, . . .
• Minimal fn, dominantgn solutions if

lim
n→∞

fn

gn
= 0

• Use backward recursion forfn (Miller, Olver, . . . )
• Use continued fraction methods forfn

• Warning: anomalous convergence may happen
because of the role of other (thann) parameters
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Details on numerical methods
Quadrature methods:

• The standard integral representations may be not
convenient: oscillations, bad convergence, . . .

• Use complex contour integrals through saddle
points

• Use simple quadrature rule: trapezoidal
• Take out dominant factor for scaling
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How to compute this integral ?
Consider

F (λ) =

∫ ∞

−∞
e−t2+2iλ

√
t2+1 dt.

• Maple 14, forλ = 10, gives

F (10) = −.1837516481 + .5305342893i.
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How to compute this integral ?
Consider

F (λ) =

∫ ∞

−∞
e−t2+2iλ

√
t2+1 dt.

• Maple 14, forλ = 10, gives

F (10) = −.1837516481 + .5305342893i.

• With Digits = 40, the answer is

F (10) = −.1837516480532069664418890663053408790017+

0.5305342892550606876095028928250448740020i.
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How to compute this integral ?
Consider

F (λ) =

∫ ∞

−∞
e−t2+2iλ

√
t2+1 dt.

• Maple 14, forλ = 10, gives

F (10) = −.1837516481 + .5305342893i.

• With Digits = 40, the answer is

F (10) = −.1837516480532069664418890663053408790017+

0.5305342892550606876095028928250448740020i.

• So, the first answer seems to be correct in all shown digits.
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How to compute this integral ?
Take another integral, which is almost the same:

F (λ) =

∫ ∞

−∞
e−t2+2iλ

√
t2+1 dt =⇒ G(λ) =

∫ ∞

−∞
e−t2+2iλt dt.

• Maple 14, withevalf(Int...), gives

G(10) = −1.249000903 × 10−16
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How to compute this integral ?
Take another integral, which is almost the same:

F (λ) =

∫ ∞

−∞
e−t2+2iλ

√
t2+1 dt =⇒ G(λ) =

∫ ∞

−∞
e−t2+2iλt dt.

• Maple 14, withevalf(Int...), gives

G(10) = −1.249000903 × 10−16

• With Digits = 40, the answer isG(10) = 1.2 × 10−43.
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How to compute this integral ?
Take another integral, which is almost the same:

F (λ) =

∫ ∞

−∞
e−t2+2iλ

√
t2+1 dt =⇒ G(λ) =

∫ ∞

−∞
e−t2+2iλt dt.

• Maple 14, withevalf(Int...), gives

G(10) = −1.249000903 × 10−16

• With Digits = 40, the answer isG(10) = 1.2 × 10−43.

• The correct answer isG(10) = 0.6593662989 × 10−43.
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How to compute this integral ?
Take another integral, which is almost the same:

F (λ) =

∫ ∞

−∞
e−t2+2iλ

√
t2+1 dt =⇒ G(λ) =

∫ ∞

−∞
e−t2+2iλt dt.

• Maple 14, withevalf(Int...), gives

G(10) = −1.249000903 × 10−16

• With Digits = 40, the answer isG(10) = 1.2 × 10−43.

• The correct answer isG(10) = 0.6593662989 × 10−43.

• Maple 14, with procedureint, givesG(10) = e−100
√

π.
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How to compute this integral ?
The message is: one should have some feeling about
the computed result.

Otherwise a completely incorrect answer can be
accepted.

Mathematica 7 is more reliable here, and gives a
warning with answer0. × 10−16 + 0. × 10−17i.
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Incomplete gamma ratios
Forx > 0, a > 0:

P (a, x) =
1

Γ(a)

∫ x

0

ta−1e−t dt,

Q(a, x) =
1

Γ(a)

∫ ∞

x

ta−1e−t dt,

with
P (a, x) + Q(a, x) = 1.

Compute firstmin(P,Q), then the other one.
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Incomplete gamma ratios
Many tools are available:

• Recursion; not used
• Series; convergent, asymptotic
• Continued fractions
• Uniform asymptotic expansions
• Simple or contour integrals; not used

Motivation: inversion methods; MarcumQ.

Main source: Gautschi (1979), who used a different
domain (alsoa < 0) and a different pair of functions
(different scaling ofP andQ).
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Incomplete gamma ratios
Taylor expansions:

P (a, x) =
xae−x

Γ(a + 1)

∞
∑

n=0

xn

(a + 1)n

,

where

(a)n = a(a+1) · · · (a+n−1) =
Γ(a + n)

Γ(a)
, n = 0, 1, 2, . . .

Also, for 0 < x < 1.5, x > a,

Q(a, x) = 1 − xa

Γ(a + 1)
− xa

Γ(a)

∞
∑

n=1

(−1)nxn

(a + n)n!
.
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Incomplete gamma ratios
The tricky terms for smallx anda:

1 − xa

Γ(a + 1)
= 1 − 1

Γ(a + 1)
+

1 − xa

Γ(a + 1)
.

We write

1 − 1

Γ(a + 1)
= a(1 − a)g(a),

and provide an algorithm forg(a).

And 1 − xa = 1 − ea lnx can be expanded.
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Incomplete gamma ratios
Continued fraction:

Q(a, x) =
xae−x

(x + 1 − a)Γ(a)

(

1

1+

a1

1+

a2

1+

a3

1+

a4

1+
. . .

)

,

where

ak =
k(a − k)

(x + 2k − 1 − a)(x + 2k + 1 − a)
, k ≥ 1.

This fraction is very useful forx ≥ 1.5 andx > a,
although for largex ∼ a we took a different approach.
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Incomplete gamma ratios
Uniform expansion:

Q(a, x) = 1
2 erfc(η

√

a/2) + Ra(η),

P (a, x) = 1
2 erfc(−η

√

a/2) − Ra(η),

where

erfc x =
2√
π

∫ ∞

x

e−t2 dt,

and

Ra(η) =
e−

1

2
aη2

√
2πa

Sa(η), Sa(η) ∼
∞

∑

n=0

Cn(η)

an
,
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Incomplete gamma ratios
where

η = (λ − 1)

√

2(λ − 1 − ln λ)

(λ − 1)2
, λ =

x

a
,

and

C0(η) =
1

λ − 1
− 1

η
= −1

3 + 1
12η + . . . .

OtherCn(η) follow from a recurrence relation.

Evaluation of these coefficients whenλ ∼ 1 is tricky;
a different approach is used for that case.
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Incomplete gamma ratios
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PT: Taylor series forP (a, x)

QT: Taylor series forQ(a, x)

CF: continued fraction forQ(a, x)

UA: uniform method formin(P,Q)
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Incomplete gamma ratios
Testing: we used the recurrence relations

P (a+1, x) = P (a, x)−D(a, x), Q(a+1, x) = Q(a, x)+D(a, x),

where

D(a, x) =
xae−x

Γ(a + 1)
.

For large values ofa andx we can use a scaled version:

p(a, x) = P (a, x)/D(a, x), q(a, x) = Q(a, x)/D(a, x),

and these functions satisfy the recursion

x

a + 1
p(a+1, x) = p(a, x)−1,

x

a + 1
q(a+1, x) = q(a, x)+1.
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Incomplete gamma ratios
The maximum relative errors for the first recursions using106

and107 random points for two regions of the(x, a)-plane:

1. (0, 1] × (0, 1]: 1.7 10−15,

2. (0, 500] × (0, 500]: 1.9 10−13.

The use of the scaled recursion with107 and108 random points

for two regions of the(x, a)-plane (excluding the UA region)

gives maximum relative errors:

1. (0, 104] × (0, 104]: 8.3 10−15,

2. (0, 105] × (0, 105]: 9.1 10−15.

With 107 random points in the region(0, 104] × (0, 104] , the
maximum relative error obtained in the UA region is4.0 10−14.
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Inversion ofP (a, x), Q(a, x)

Inversion of the equations

P (a, x) = p, Q(a, x) = q

with a, p, q given,p + q = 1.

In the algorithm we request bothp andq.

If p ≤ q then try to findx(p, a) else try to findx(q, a).

Use analytic estimates obtained from several
representations to start a safe Newton or other process.
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Inversion ofP (a, x), Q(a, x)

Whena is large we start with

P (a, x) ∼ 1
2 erfc(−η

√

a/2) = p,

giving a starting valueη0(p, a), and we can expand

η ∼ η0 +
ε1(η0, a)

a
+

ε2(η0, a)

a2
+

ε3(η0, a)

a3
+ . . . .

The firstεj can be computed easily.

This method can be used fora ≥ 1; this means, the
approximated is a reliable starting value for a few
Newton steps.
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Inversion ofP (a, x), Q(a, x)

p

a

1

1

q small

p small

a
 s

m
a
ll

a large

There are several cases which are schematically
indicated here.

The algorithms improve both the accuracy and ranges
of those in DiDonato & Morris (1986).
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Inversion ofP (a, x), Q(a, x)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

x

a

 

 
N

iter
=2

N
iter

=3

N
iter

=4

Number of Newton iterations used in the inversion algorithmin

the region(x, a) ∈ (0, 100] × (0, 100].

Usually, 2 or 3 iterations are enough here.
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Inversion ofP (a, x), Q(a, x)
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Accuracy of the initial estimates: points correspond to relative

distancesdr(x, xini) = ‖1 − xini/x‖, with xini the initial

estimate,x the true value.

Largerx give better results. Also, the poorest estimate is located

at a relative distance less than5.0 10−3 to the real value.
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Marcum’s Q−function
Definition in terms of the modified Bessel function:

Qµ(x, y) =

∫ ∞

y

(z

x

)
1

2
(µ−1)

e−z−xIµ−1(2
√

xz) dz.

The complementary function is needed in
computations:

Pµ(x, y) =

∫ y

0

(z

x

)
1

2
(µ−1)

e−z−xIµ−1(2
√

xz) dz,

with Pµ(x, y) + Qµ(x, y) = 1.
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Marcum’sQ−function
By expanding the Bessel function:

Pµ(x, y) = e−x
∞

∑

n=0

xn

n!
P (µ + n, y),

Qµ(x, y) = e−x
∞

∑

n=0

xn

n!
Q(µ + n, y),

in terms of the incomplete gamma functions. In this
way, these functions are called noncentral
χ2-distributions

These and several other relations motivated us to start
with P (a, x) andQ(a, x).
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Marcum’sQ−function
Asymptotic analysis shows a transition wheny passes
the valuex + µ. There is a fast transition from 0 to 1.
In fact we have for large parametersx, y:

Qµ(x, y) ∼















1 if x + µ > y,
1
2 if x + µ = y,

0 if x + µ < y,

and complementary behaviour for
Pµ(x, y) = 1 − Qµ(x, y).

Uniform asymptotic expansions include againerfc x.
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Marcum’sQ−function
Tools for computation:

• Recursions
• Series; convergent, asymptotic
• Uniform asymptotic expansions

Work in progress.
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Congratulations!
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