Recent software developments for special functions in the Santander-Amsterdam project

Nico M. Temme, Amparo Gil and Javier Segura
Nico.Temme@cwi.nl, amparo.gil@unican.es, javier.segura@unican.es

CWI, Amsterdam \& Universidad de Cantabria, Santander

Keywords

- Algorithms for special functions
- Power series, asymptotic expansions
- Recurrence relations
- Uniform asymptotic expansions
- Numerical quadrature
- Continued fractions
- Inversion of distribution functions
- Incomplete gamma functions
- Marcum's Q-function, noncentral χ^{2}

Project Santander-Amsterdam

- First email contact: 3 September 1997
- First personal contact: SIAM Annual Meeting 1998 Toronto
- Lecture by Bruce Fabijonas on Scorer functions motivated research in contour integrals for these functions.
- The project has been supported with a number of grants from Ministerio de Ciencia e Innovación

Publications and algorithms

- 27 published papers, from 2000,
- of which 5 Algorithms in ACM TOMS
- and 3 Algorithms in CPC (all in FORTRAN 90)
- 1 submitted paper, 1 in preparation

Publications and algorithms

Special publications:

- 1 book: Numerical methods for Special Functions
- 1 survey paper (2007) in Acta Numerica
- 1 survey paper (2011) in Recent Advances in Computational and Applied Mathematics, Simos (ed.), Springer
- 1 survey paper (2012) in Encyclopedia of Applied and Computational Mathematics, Engquist/Iserles (eds.), Springer
- Contributions to the NIST Handbook of Mathematical Functions

Published algorithms

- Zeros of Bessel functions
- Toroidal functions
- Complex Airy and Scorer functions
- Modified Bessel functions of imaginary order
- Real Parabolic Cylinder Functions U, V
- Parabolic cylinder function W, W^{\prime}
- Conical function $P_{-1 / 2+i \tau}^{m}(x)$
- Regular and irregular associated Legendre functions

Pre-project published algorithms

Amparo \& Javier: several algorithms in CPC

- Modified Bessel functions, continued fraction method
- Zeros of Bessel functions
- Prolate and oblate spheroidal harmonics
- Parabolic cylinder functions of integer and half-integer orders
- A Monte Carlo code to simulate 3D buffered diffusion
- Toroidal harmonics
- Legendre functions of argument greater than one

Numerical topics, methods

Publications on

- Zeros of Scorer and other special functions
- Recurrence relations for hypergeometric functions (Gauss and Kummer)
- Contour integral representations of PCF's
- Quadrature methods for contour integrals
- Inversion of cumulative distribution functions
- Computation and inversion of incomplete gamma functions and the Marcum Q-function

Details on numerical methods

We give a few comments on the following basic methods:

- Series expansions; convergent, asymptotic
- Recurrence relations
- Quadrature methods

First: our way of working (paradigms?).

Details on numerical methods

Our main principles:

1. Generalize or not?

A given special function is usually a special case of a more general function. Keep it simple.
2. Error analysis or not?

For a function with several (complex) variables, detailed error analysis is usually impossible.
3. How to verify the result?

For a start: Maple. At the end: functional relations.
4. Which method to use ?

Series, recursions, integrals; all with stable representations.
5. Parameter domain?

Also large or complex parameters. Use scaling.

Details on numerical methods Generalize or not?

Start with ${ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; z\right)$ or with the Meijer G-function

$$
\begin{aligned}
& G_{p, q}^{m, n}(z ; \mathbf{a} ; \mathbf{b})=G_{p, q}^{m, n}\left(z ; \begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array}\right)= \\
& \frac{1}{2 \pi i} \int_{\mathcal{L}} \frac{\prod_{\ell=1}^{m} \Gamma\left(b_{\ell}-s\right) \prod_{\ell=1}^{n} \Gamma\left(1-a_{\ell}+s\right)}{\prod_{\ell=m}^{q-1} \Gamma\left(1-b_{\ell+1}+s\right) \prod_{\ell=n}^{p-1} \Gamma\left(a_{\ell+1}-s\right)} z^{s} \mathrm{~d} s ?
\end{aligned}
$$

Here the integration path \mathcal{L} separates the poles of the factors $\Gamma\left(b_{\ell}-s\right)$ from those of the factors $\Gamma\left(1-a_{\ell}+s\right)$.

Details on numerical methods Generalize or not?

A Meijer G-function can be written as a finite sum of ${ }_{p} F_{q}$-functions.

These functions can be computed by using their power series or large z asymptotic expansions.

Example: modified Bessel function

$$
K_{\nu}(z)=\frac{1}{2} \pi \frac{I_{-\nu}(z)-I_{\nu}(z)}{\sin (\nu \pi)} .
$$

This is the approach in SAGE for G-functions, and perhaps in other computer algebra packages.

Case closed?

Details on numerical methods Generalize or not?

There are two main problems

1. Representation for positive large $\Re z$:

- The function $I_{\nu}(z)$ is exponentially large.
- The function $K_{\nu}(z)$ is exponentially small. This can be controlled by including more and more digits in the computations.

2. For integer ν, the relation between $K_{\nu}(z)$ and $I_{\nu}(z)$ is well-defined analytically, but it becomes useless for numerical computations.
This is difficult to handle, even in computer algebra packages.

Details on numerical methods

Series expansions; convergent, asymptotic

- Simple for implementation
- Be careful with stopping criteria
- Bridge the gap: convergent \Leftrightarrow asymptotic
- For this:
- continued fractions,
- quadrature methods,

Details on numerical methods

Recurrence relations:

$$
A_{n} y_{n-1}+B_{n} y_{n}+C_{n} y_{n+1}=0
$$

- Theory: Poincaré, Perron, Kreuser, . . .
- Minimal f_{n}, dominant g_{n} solutions if

$$
\lim _{n \rightarrow \infty} \frac{f_{n}}{g_{n}}=0
$$

- Use backward recursion for f_{n} (Miller, Olver, ...)
- Use continued fraction methods for f_{n}
- Warning: anomalous convergence may happen because of the role of other (than n) parameters

Details on numerical methods

Quadrature methods:

- The standard integral representations may be not convenient: oscillations, bad convergence, ...
- Use complex contour integrals through saddle points
- Use simple quadrature rule: trapezoidal
- Take out dominant factor for scaling

How to compute this integral ?

Consider

$$
F(\lambda)=\int_{-\infty}^{\infty} e^{-t^{2}+2 i \lambda \sqrt{t^{2}+1}} \mathrm{~d} t
$$

- Maple 14 , for $\lambda=10$, gives

$$
F(10)=-.1837516481+.5305342893 i .
$$

How to compute this integral ?

Consider

$$
F(\lambda)=\int_{-\infty}^{\infty} e^{-t^{2}+2 i \lambda \sqrt{t^{2}+1}} \mathrm{~d} t
$$

- Maple 14 , for $\lambda=10$, gives

$$
F(10)=-.1837516481+.5305342893 i .
$$

- With Digits $=40$, the answer is
$F(10)=-.1837516480532069664418890663053408790017+$
$0.5305342892550606876095028928250448740020 i$.

How to compute this integral ?

Consider

$$
F(\lambda)=\int_{-\infty}^{\infty} e^{-t^{2}+2 i \lambda \sqrt{t^{2}+1}} \mathrm{~d} t
$$

- Maple 14 , for $\lambda=10$, gives

$$
F(10)=-.1837516481+.5305342893 i .
$$

- With Digits $=40$, the answer is
$F(10)=-.1837516480532069664418890663053408790017+$
$0.5305342892550606876095028928250448740020 i$.
- So, the first answer seems to be correct in all shown digits.

How to compute this integral ?

Take another integral, which is almost the same:

$$
F(\lambda)=\int_{-\infty}^{\infty} e^{-t^{2}+2 i \lambda \sqrt{t^{2}+1}} \mathrm{~d} t \Longrightarrow G(\lambda)=\int_{-\infty}^{\infty} e^{-t^{2}+2 i \lambda t} \mathrm{~d} t .
$$

- Maple 14, with evalf(Int...), gives

$$
G(10)=-1.249000903 \times 10^{-16}
$$

How to compute this integral ?

Take another integral, which is almost the same:

$$
F(\lambda)=\int_{-\infty}^{\infty} e^{-t^{2}+2 i \lambda \sqrt{t^{2}+1}} \mathrm{~d} t \Longrightarrow G(\lambda)=\int_{-\infty}^{\infty} e^{-t^{2}+2 i \lambda t} \mathrm{~d} t .
$$

- Maple 14, with evalf(Int...), gives

$$
G(10)=-1.249000903 \times 10^{-16}
$$

- With Digits $=40$, the answer is $G(10)=1.2 \times 10^{-43}$.

How to compute this integral ?

Take another integral, which is almost the same:

$$
F(\lambda)=\int_{-\infty}^{\infty} e^{-t^{2}+2 i \lambda \sqrt{t^{2}+1}} \mathrm{~d} t \Longrightarrow G(\lambda)=\int_{-\infty}^{\infty} e^{-t^{2}+2 i \lambda t} \mathrm{~d} t .
$$

- Maple 14, with evalf(Int...), gives $G(10)=-1.249000903 \times 10^{-16}$
- With Digits $=40$, the answer is $G(10)=1.2 \times 10^{-43}$.
- The correct answer is $G(10)=0.6593662989 \times 10^{-43}$.

How to compute this integral ?

Take another integral, which is almost the same:

$$
F(\lambda)=\int_{-\infty}^{\infty} e^{-t^{2}+2 i \lambda \sqrt{t^{2}+1}} \mathrm{~d} t \Longrightarrow G(\lambda)=\int_{-\infty}^{\infty} e^{-t^{2}+2 i \lambda t} \mathrm{~d} t .
$$

- Maple 14, with evalf(Int...), gives $G(10)=-1.249000903 \times 10^{-16}$
- With Digits $=40$, the answer is $G(10)=1.2 \times 10^{-43}$.
- The correct answer is $G(10)=0.6593662989 \times 10^{-43}$.
- Maple 14, with procedure int, gives $G(10)=e^{-100} \sqrt{\pi}$.

How to compute this integral ?

The message is: one should have some feeling about the computed result.

Otherwise a completely incorrect answer can be accepted.

Mathematica 7 is more reliable here, and gives a warning with answer $0 . \times 10^{-16}+0 . \times 10^{-17} i$.

Incomplete gamma ratios

For $x>0, a>0$:

$$
\begin{aligned}
& P(a, x)=\frac{1}{\Gamma(a)} \int_{0}^{x} t^{a-1} e^{-t} d t \\
& Q(a, x)=\frac{1}{\Gamma(a)} \int_{x}^{\infty} t^{a-1} e^{-t} d t
\end{aligned}
$$

with

$$
P(a, x)+Q(a, x)=1 .
$$

Compute first $\min (P, Q)$, then the other one.

Incomplete gamma ratios

Many tools are available:

- Recursion; not used
- Series; convergent, asymptotic
- Continued fractions
- Uniform asymptotic expansions
- Simple or contour integrals; not used

Motivation: inversion methods; Marcum Q.
Main source: Gautschi (1979), who used a different domain (also $a<0$) and a different pair of functions (different scaling of P and Q).

Incomplete gamma ratios

Taylor expansions:

$$
P(a, x)=\frac{x^{a} e^{-x}}{\Gamma(a+1)} \sum_{n=0}^{\infty} \frac{x^{n}}{(a+1)_{n}},
$$

where

$$
(a)_{n}=a(a+1) \cdots(a+n-1)=\frac{\Gamma(a+n)}{\Gamma(a)}, \quad n=0,1,2, \ldots
$$

Also, for $0<x<1.5, x>a$,

$$
Q(a, x)=1-\frac{x^{a}}{\Gamma(a+1)}-\frac{x^{a}}{\Gamma(a)} \sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{(a+n) n!}
$$

Incomplete gamma ratios

The tricky terms for small x and a :

$$
1-\frac{x^{a}}{\Gamma(a+1)}=1-\frac{1}{\Gamma(a+1)}+\frac{1-x^{a}}{\Gamma(a+1)} .
$$

We write

$$
1-\frac{1}{\Gamma(a+1)}=a(1-a) g(a)
$$

and provide an algorithm for $g(a)$.
And $1-x^{a}=1-e^{a \ln x}$ can be expanded.

Incomplete gamma ratios

Continued fraction:

$$
Q(a, x)=\frac{x^{a} e^{-x}}{(x+1-a) \Gamma(a)}\left(\frac{1}{1+} \frac{a_{1}}{1+} \frac{a_{2}}{1+} \frac{a_{3}}{1+} \frac{a_{4}}{1+} \ldots\right),
$$

where

$$
a_{k}=\frac{k(a-k)}{(x+2 k-1-a)(x+2 k+1-a)}, \quad k \geq 1 .
$$

This fraction is very useful for $x \geq 1.5$ and $x>a$, although for large $x \sim a$ we took a different approach.

Incomplete gamma ratios

Uniform expansion:

$$
\begin{aligned}
& Q(a, x)=\frac{1}{2} \operatorname{erfc}(\eta \sqrt{a / 2})+R_{a}(\eta), \\
& P(a, x)=\frac{1}{2} \operatorname{erfc}(-\eta \sqrt{a / 2})-R_{a}(\eta),
\end{aligned}
$$

where

$$
\operatorname{erfc} x=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t
$$

and

$$
R_{a}(\eta)=\frac{e^{-\frac{1}{2} a \eta^{2}}}{\sqrt{2 \pi a}} S_{a}(\eta), \quad S_{a}(\eta) \sim \sum_{n=0}^{\infty} \frac{C_{n}(\eta)}{a^{n}}
$$

Incomplete gamma ratios

where

$$
\eta=(\lambda-1) \sqrt{\frac{2(\lambda-1-\ln \lambda)}{(\lambda-1)^{2}}}, \quad \lambda=\frac{x}{a},
$$

and

$$
C_{0}(\eta)=\frac{1}{\lambda-1}-\frac{1}{\eta}=-\frac{1}{3}+\frac{1}{12} \eta+\ldots .
$$

Other $C_{n}(\eta)$ follow from a recurrence relation.
Evaluation of these coefficients when $\lambda \sim 1$ is tricky; a different approach is used for that case.

Incomplete gamma ratios

PT: Taylor series for $P(a, x)$
QT: Taylor series for $Q(a, x)$
$\boldsymbol{C F}$: continued fraction for $Q(a, x)$
$\boldsymbol{U A}$: uniform method for $\min (P, Q)$

Incomplete gamma ratios

Testing: we used the recurrence relations

$$
P(a+1, x)=P(a, x)-D(a, x), \quad Q(a+1, x)=Q(a, x)+D(a, x),
$$

where

$$
D(a, x)=\frac{x^{a} e^{-x}}{\Gamma(a+1)} .
$$

For large values of a and x we can use a scaled version:

$$
p(a, x)=P(a, x) / D(a, x), \quad q(a, x)=Q(a, x) / D(a, x),
$$

and these functions satisfy the recursion

$$
\frac{x}{a+1} p(a+1, x)=p(a, x)-1, \quad \frac{x}{a+1} q(a+1, x)=q(a, x)+1 .
$$

Incomplete gamma ratios

The maximum relative errors for the first recursions using 10^{6} and 10^{7} random points for two regions of the (x, a)-plane:

1. $(0,1] \times(0,1]: 1.710^{-15}$,
2. $(0,500] \times(0,500]: 1.910^{-13}$.

The use of the scaled recursion with 10^{7} and 10^{8} random points for two regions of the (x, a)-plane (excluding the UA region) gives maximum relative errors:

1. $\left(0,10^{4}\right] \times\left(0,10^{4}\right]: 8.310^{-15}$,
2. $\left(0,10^{5}\right] \times\left(0,10^{5}\right]: 9.110^{-15}$.

With 10^{7} random points in the region $\left(0,10^{4}\right] \times\left(0,10^{4}\right]$, the maximum relative error obtained in the UA region is 4.010^{-14}.

Inversion of $P(a, x), Q(a, x)$

Inversion of the equations

$$
P(a, x)=p, \quad Q(a, x)=q
$$

with a, p, q given, $p+q=1$.
In the algorithm we request both p and q.
If $p \leq q$ then try to find $x(p, a)$ else try to find $x(q, a)$.
Use analytic estimates obtained from several representations to start a safe Newton or other process.

Inversion of $P(a, x), Q(a, x)$

When a is large we start with

$$
P(a, x) \sim \frac{1}{2} \operatorname{erfc}(-\eta \sqrt{a / 2})=p,
$$

giving a starting value $\eta_{0}(p, a)$, and we can expand

$$
\eta \sim \eta_{0}+\frac{\varepsilon_{1}\left(\eta_{0}, a\right)}{a}+\frac{\varepsilon_{2}\left(\eta_{0}, a\right)}{a^{2}}+\frac{\varepsilon_{3}\left(\eta_{0}, a\right)}{a^{3}}+\ldots .
$$

The first ε_{j} can be computed easily.
This method can be used for $a \geq 1$; this means, the approximated is a reliable starting value for a few Newton steps.

Inversion of $P(a, x), Q(a, x)$

There are several cases which are schematically indicated here.

The algorithms improve both the accuracy and ranges of those in DiDonato \& Morris (1986).

Inversion of $P(a, x), Q(a, x)$

Number of Newton iterations used in the inversion algorithm in the region $(x, a) \in(0,100] \times(0,100]$.

Usually, 2 or 3 iterations are enough here.

Inversion of $P(a, x), Q(a, x)$

Accuracy of the initial estimates: points correspond to relative distances $d_{r}\left(x, x_{i n i}\right)=\left\|1-x_{i n i} / x\right\|$, with $x_{i n i}$ the initial estimate, x the true value.

Larger x give better results. Also, the poorest estimate is located at a relative distance less than 5.010^{-3} to the real value.

Marcum's Q-function

Definition in terms of the modified Bessel function:

$$
Q_{\mu}(x, y)=\int_{y}^{\infty}\left(\frac{z}{x}\right)^{\frac{1}{2}(\mu-1)} e^{-z-x} I_{\mu-1}(2 \sqrt{x z}) d z
$$

The complementary function is needed in computations:

$$
P_{\mu}(x, y)=\int_{0}^{y}\left(\frac{z}{x}\right)^{\frac{1}{2}(\mu-1)} e^{-z-x} I_{\mu-1}(2 \sqrt{x z}) d z
$$

with $P_{\mu}(x, y)+Q_{\mu}(x, y)=1$.

Marcum's Q-function

By expanding the Bessel function:

$$
\begin{aligned}
& P_{\mu}(x, y)=e^{-x} \sum_{n=0}^{\infty} \frac{x^{n}}{n!} P(\mu+n, y), \\
& Q_{\mu}(x, y)=e^{-x} \sum_{n=0}^{\infty} \frac{x^{n}}{n!} Q(\mu+n, y),
\end{aligned}
$$

in terms of the incomplete gamma functions. In this way, these functions are called noncentral χ^{2}-distributions

These and several other relations motivated us to start © ${ }^{\text {cith }} P(a, x)$ and $Q(a, x)$.

Marcum's Q-function

Asymptotic analysis shows a transition when y passes the value $x+\mu$. There is a fast transition from 0 to 1 . In fact we have for large parameters x, y :

$$
Q_{\mu}(x, y) \sim\left\{\begin{array}{cc}
1 & \text { if } x+\mu>y \\
\frac{1}{2} & \text { if } x+\mu=y \\
0 & \text { if } x+\mu<y
\end{array}\right.
$$

and complementary behaviour for
$P_{\mu}(x, y)=1-Q_{\mu}(x, y)$.
Uniform asymptotic expansions include again erfc x.

Marcum's Q-function

Tools for computation:

- Recursions
- Series; convergent, asymptotic
- Uniform asymptotic expansions

Work in progress.

Congratulations!

Entn Vai Dfolfonharh / Deultine

