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Bisection Business

• We shall only consider simplices in what follows ...

• (Arbitrary) bisection and longest-edge (LE-) bisection algorithms:

Remark: In 1D, (arbitrary) bisection ≡ LE-bisection, in

higher dimensions - not the same !

• First applications: Find the root x⋆ of equation F(x) = 0

• Works of 1970–1983: Stynes, Sikorski, Stenger, Kearfott, Adler, ...
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Classical Bisections For Triangular Partitions

• Main idea: Bisection is at the same time applied to each subtriangle in

the current partition, thus, the number of triangles doubles at each step

• Bisecting to the longest side (LE-bisection) seems to be

really attractive (e.g. for finding the roots, etc) as one

may avoid producing too big and too small angles always

undesirable due to various (computational) reasons
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Classical LE–Bisection Algorithm: Main Results

Bisection always only to the longest-edges (as a very precisely defined

procedure) can deliver certain benefits for a priori analysis:

• Rosenberg & Stenger (1975) - no angle of no triangle tends to zero

• Kearfott (1978) - the largest diameter of all newly generated simplices

tends to zero for an arbitrary dimension

• Stynes (1979–80), Adler (1983) - only a finite number of

similarity-distinct subtriangles is produced

Remark: There are also some bisection-like algorithms which

halve not necessarily the longest edges, or not always halving

the edges (longest or non-longest ones) in principle
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• We shall mainly concentrate on those features of the bisection-type

algorithms which are relevant to FEM context

Remark: It is worth to mention here that bisection algorithms

were advised to use for FEMs already in 1975-79 by Rosenberg,

Stenger, and Stynes, however without any concrete details and

analysis, probably due to the problem of the so-called hanging

nodes (this will be discussed later) ...

• Next, we shortly remind the main ideas behind the standard FEM
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Standard FEM Procedure

PDE model: Find u such that

−∆u = f in Ω, u = 0 on ∂Ω

Weak formulation: Find u ∈ H1
0 (Ω) such that

∫

Ω

∇u · ∇w dx =

∫

Ω

fw dx ∀w ∈ H1

0 (Ω)

FE scheme: Find uh ∈ Vh ⊂ H1
0 (Ω) such that

∫

Ω

∇uh · ∇wh dx =

∫

Ω

fwh dx ∀wh ∈ Vh

• Finite-dimensional space Vh is often constructed using certain (e.g.

simplicial) mesh Th (sometimes called a triangulation) over domain Ω,

where the parameter h stands for the characteristic size of Th. It is

generally defined as the length of the longest edge in the mesh Th
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On Conformity of FE Meshes

• For standard (classical) FEM the triangulations must be conforming

(i.e. without hanging nodes)

Remark: Conforming triangulations guarantee continuity of

(linear) FE approximations uh, i.e., uh ∈ H1
0 (Ω)

• In what follows we consider only conforming FE meshes
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Convergence Analysis for FEM

• Principal convergence of computed approximations is the basic

requirement for any meaningful numerical scheme !

• Convergence in FE analysis is usually proved under various mesh

regularity assumptions

Definition: An infinite set F of triangulations of Ω is called a family of

triangulations if for any ε > 0 there exists Th ∈ F with h < ε

• We shall use the following denotation F = {Th}h→0
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The Inscribed Ball Condition

Definition: A family of triangulations F = {Th}h→0 is called regular if

there exists a constant κ > 0 such that for any triangulation Th ∈ F and

for any triangle T ∈ Th there exists a ball BT ⊂ T of a radius ρT such

that
ρT
hT

≥ κ,

where hT = diamT

Theorem: The following error estimate for linear FE approximations of

our PDE model holds

‖u− uh‖1,Ω ≤ Ch|u|2,Ω

for sufficiently small h, provided F = {Th}h→0 is regular and u ∈ H2(Ω)
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Zlámal’s Mimimum Angle Condition

Definition: A family F = {Th}h→0 of triangulations is called regular if

there exists a constant α0 > 0 such that for all triangulations Th ∈ F

and for all triangles T ∈ Th we have

αT ≥ α0 > 0

where αT is the smallest angle in T

Theorem: The inscribed ball condition and Zlámal’s minimum angle

condition are equivalent (in two-dimensional case)
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• Thus, convergence of linear FE approximations in 2D strongly

depends on concrete geometric features of triangulations: values of the

parameter h and value of the minimal angle α0 !

• In order to provide convergence of linear FE approximations in

two-dimensional case one should be able to construct the sequence of

triangulations Th0
, Th1

, Th2
, ..., where hi → 0 monotonically as i → ∞,

so that all triangles in all the meshes generated “do not shrink”.
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Some Construction of Suitable FE Meshes

• The above technique is called ”2D red refinement”. The triangles,

obviously, do not shrink. The discretization parameter changes as h,

h/2, h/4, ...
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• The above construction is good theoretically but not always suitable in

practice, especially for construction of (economic) adaptive FE meshes

(i.e. when we need meshes be especially fine in some areas of interest)

Remark: The 3D analogue of red refinement ‘‘works’’ already

essentially differently, moreover, for convergence we need to

‘‘control’’ more parameters (e.g. angles within faces,

dihedral angles) ...
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• An ability to construct a regular family of triangulations for the

solution domain is the most essential condition for a construction of a

converging sequence of (linear) FE approximations

• However, it is not an easy task in general. The “red refinement

procedure” is one of possibilities, but it is not always so good as:

1) it is not suitable for adaptivity

2) assosiated elements in the successive refinement steps differ too much

in volume (by factor 4 - in 2D, by factor 8 - in 3D, etc ... ), which might

be undesirable in some situations, e.g. if one needs finer control over the

mesh-size ...
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• In many ways, bisection algorithms can be really a good alternative

then (more slow division of volume - by factor 2 in all dimensions,

simplicity in coding, etc)

• We may also try to apply bisections for some selected triangles only in

order to construct adaptive meshes. Bisection may be good in this

respect as it produces only one new vertex per step, and the red

refinement produces 4 (in 2D), and even more (in higher dimensions) ...
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Simultaneous Bisections of All Triangles

May Produce Hanging Nodes

• In general, hanging nodes appear during classical bisections

• Therefore, the classical bisection algorithms are not always suitable for

mesh generation purposes for standard (conforming) FEMs, at least

without modification
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Bisections of Some Selected Triangles

May Also Produce Hanging Nodes

• Probably, the problem of hanging nodes was a main reason of absense

of a serious analysis of a very high potential of bisection techniques for

FEMs till the mid of 80-th !
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On Works of M.-C. Rivara

• To force conformity of partitions refined by bisections using suitable

post-refinements (e.g. by extra bisections) is, probably, a quite obvious

idea

• However, this topic started to be seriously analysed only since 1984 in

works by M.-C. Rivara, see the first one:

“Algorithms for refining triangular grids suitable for adaptive and

multigrid techniques”. Internat. J. Numer. Methods Engrg. 20 (1984)
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On Forced Mesh Conformity by Bisections
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Properties of Rivara’s Algorithms

• Several different algorithms (in the above spirit) have been proposed

for both, local and global, mesh refinements, see her work:

“Selective refinement/derefinement algorithms for sequences of nested

triangulations”. Internat. J. Numer. Methods Engrg. 28 (1989)

• Guaranteed conformity after a finite number of post-refinements

• Non-degeneracy (regularity) of meshes: α ≥ α0

2
= const > 0

• Smoothness: For any adjacent triangles T1 and T2, one has

min(hT1
, hT2

)

max(hT1
, hT2

)
≥ const > 0
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Remarks on Rivara’s Algorithms

• The above mentioned properties were supported by many

numerical tests presented by Rivara and her coauthors, but

strict mathematical proofs were not always given

• 3D (unfortunately only tests !): M.-C. Rivara and C. Levin.

“A 3D refinement algorithm suitable for adaptive and multigrid

techniques”. Comm. Appl. Numer. Methods Engrg. 8 (1992)

• Works of M.-C. Rivara led to a number of other important publications

on the usage of bisection algorithms for FE methods
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More Results on Bisections for Finite Elements

• Several another algorithms in the same spirit (with strict proofs, also

in higher dimensions) were later developed in papers by Bänsch (1991),

Liu, Joe (1994–1996), Maubach (1995–1996), Arnold, Mukherjee, Pouly

(2000), ...

• They all are also oriented to adaptive mesh reconstruction after a

posteriori error analysis (after some “selected” elements (i.e. not

necessarily all) have been bisected), and therefore include a very

non-trivial post-refinement procedure of “conforming mesh closure”

• They also introduce and prove another interesting property - on shapes

of elements in generated simplicial meshes - the finitness of the number

of similarity-distinct simplices ...
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• In general, the algorithms designed so far for post-refinements (to

provide conformity) are quite complicated algorithmically

• Some algorithms have serious drawbacks, for example, in order to

refine just one element they may refine in some situations all (or almost

all) elements in the whole current mesh ...

• Further, we will present our own new global and local

refinement bisection algorithms not having this type of

problem at all. We shall also discuss some useful properties

of generated triangulations, present tests, and pose some open

problems
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Conforming LE-Bisection (CLEB)

• In “Strong regularity of a family of face-to-face partitions generated by

the longest-edge bisection algorithm”. Comput. Math. Math. Phys. 48

(2008), by S. Korotov, M. Kř́ıžek, A. Kropáč, a new LE-bisection

method has been proposed and analysed in detail. It is called conforming

LE-bisection (CLEB) algorithm

• Main idea: to bisect at each step only those (simplicial) elements which

surround the longest edge in the whole partition. CLEB does not

produce hanging nodes at all !
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Conforming LE-Bisection (CLEB)
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CLEB in Higher Dimensions

• CLEB is very easy to use for any tetrahedral meshes

• It is simple to use it for simplicial meshes in any dimension !
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CLEB Refinement is Always Very Local
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Numerical Experiments in 2D

• Performance of CLEB algorithm: initial triangulation, and

triangulations after 10 and 1000 refinements

• We fix one triangle in the initial triangulation and monitor all

refinements within it. What happens ?
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The number of nonsimilar subtriangles

• Angles in triangles are between 18.5◦ and 143◦

• Moreover, number of nonsimilar triangles is between 4 and 6

• The algorithm seems to produce a regular family of nested

triangulations, since Zlámal’s condition holds

• Moreover, the subtriangles in triangulations are visually

becoming of approximately the same size
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Regularity & Strong Regularity

• Zlámal’s minimal angle condition is equivalent to the following

Definition: A family F = {Th}h→0 of triangulations is called regular if

there exists a constant C > 0 such that for all triangulations Th ∈ F and

for all triangles T ∈ Th we have

measT ≥ C h2

T

Definition: A family F = {Th}h→0 of triangulations is called strongly

regular if there exists a constant C > 0 such that for all triangulations

Th ∈ F and for all triangles T ∈ Th we have

measT ≥ C h2

Remark: Strong regularity implies regularity, but not vice versa.

Strong regularity ≡ triangles are of approximately the same size.
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Results Proved for CLEB

Theorem 1: The CLEB algorithm yields a family of nested

triangulations F = {Th}, where h tends to zero monotonically

Theorem 2: Let α0 be the minimal angle of all triangles from an initial

triangulation. Then CLEB algorithm yields the following lower bound

upon any angle α of any triangle from any Th ∈ F

α ≥
α0

2

Theorem 3: The CLEB algorithm yields a strongly regular family of

triangulations F = {Th}h→0
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Open Problems

• To prove in detail that CLEB in 2D produces a finite number of

similarity-distinct triangles
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Figure 1: Various colours indicate the value of the decimal logarithm

of the number of similarity-distinct subtriangles for α ≤ β ≤ γ,

α ∈ (0, π/3], β ∈ (0, π/2).
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• To prove that 3D CLEB produces a strongly regular family of

tetrahedral meshes

• To prove that 3D CLEB produces a finite number of similarity-distinct

(sub)-tetrahedra

• To prove the above results for CLEB in any dimensions, possibly give a

general proof independent of dimension
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Variant of CLEB Suitable for Adaptivity

• In the described above form, CLEB does not allow any local mesh

refinement, it only solves the problem of generating a (strongly) regular

family of (nested) triangulations

• Our very recent efforts have been focused on a development of some

variant of CLEB which can be used also for mesh adaptivity purposes

• A. Hannukainen, S. Korotov, M. Kř́ıžek. On global and local mesh

refinements by a generalized conforming bisection algorithm, Journal of

Computational and Applied Mathematics 235 (2010), 419–436
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Main Idea in Short

• The idea of a new variant of CLEB suitable for mesh adaptivity is to

use some (positive) mesh density function, defined over the whole

solution domain and coming e.g. from a posteriori error estimation, or

defined in some another way a priori. Such function should be large over

those parts of Ω where we need a very fine mesh and small over those

parts of Ω where we do not need a fine mesh.

• Then, with each edge in the mesh, we associate a number equal

to the product of the lenth of this edge and the value of the

mesh density function taken e.g. at the midpoint of this edge

• Further, as for CLEB, we bisect the elements around that edge which

has the largest number. It is clear that this procedure can be easily used

in any dimension. Defining a mesh density function we thus dictate the

”adaptivity shape” of the generating meshes
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Current Theoretical Result on GCB

• The work on this algorithm, called Generalized Conforming Bisection,

is currently in progress ...

Let the mesh density function m be Lipschitz continuous, i.e.

|m(x)−m(y)| ≤ L |x− y|, x, y ∈ Ω

From the positiveness and continuity of m we have

0 < m0 ≤ m(x) ∀x ∈ Ω

Theorem: GCB algorithm yields a family of nested conforming

triangulations F = {Th}h→0 if the initial mesh Tinit satisfies the

following condition

LT diamT ≤ 0.03 min
x∈T

m(x) ∀T ∈ Tinit,

where LT is the minimal possible Lipschitz constant of m on T
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GCB in L-Shaped Domain

Set the mesh density function as

m(x) =
1

1 + 4|x|
(1)
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Figure 2: The initial mesh over solution domain (left). The right

picture shows the behaviour of function (1).
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Figure 3: Resulting meshes after 100 and 500 refinements.
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GCB for Boundary Layer

The domain in Ω = (−1, 1)2 and K =

{

(x, y)

∣

∣

∣

∣

x = −1

}

. The applied

mesh density function for iterations 1− 499 is

m1(x) =
1

0.1 + dist(K,x)
(2)

and for iterations 500− 1000

m2(x) =
1

0.01 + dist(K,x)
. (3)
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Figure 4: Mesh density function for iterations 1 − 499 on left and

mesh density function for iterations 500− 1000 on right.
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Figure 5: Initial mesh, meshes after 10 and 50 iterations.
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Figure 6: Meshes after 100, 200, 500, and 1000 iterations.
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GCB for Interior Layer

The domain in Ω = (−1, 1)2 and K =

{

(x, y)

∣

∣

∣

∣

y = x

}

. The applied

mesh density function for iterations 1− 499 is

m1(x) =
1

0.1 + dist(K,x)
(4)

and for iterations 500− 1000

m2(x) =
1

0.01 + dist(K,x)
. (5)
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Figure 7: Mesh density function for iterations 1 − 499 on left, and

mesh density function for iterations 500− 1000 on right.
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Figure 8: Initial mesh, meshes after 10 and 50 iterations.
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Figure 9: Resulting meshes after 100, 200, 500, and 1000 iterations.
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More Examples
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Open Research Directions

3D case: Set A = (−1, 0, 0), B = (1, 0, 0), C = (−2, 2,−1), and

D = (2, 2, 1). Then we have:

25.21◦ at |CD| = 4.47, 28.56◦ at |BD| = |AC| = 2.45,

53.13◦ at |AB| = 2, 133.09◦ at |BC| = |AD| = 3.75.

The largest angle IS NOT OPPOSITE to the longest edge CD

Weaker Angle Conditions: There are some weaker geometric

conditions on the FE meshes still providing convergence (e.g. the

maximum angle condition)

Adaptive FE Calculations: Establish a link between some popular a

posteriori error estimation procedures and our GCB-type remeshing
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THANK YOU FOR YOUR ATTENTION !
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