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Abstract

Summary
Representation of intervals that, instead of both end points,
uses the low point and the width of the interval

More efficient
Width of the interval is represented with a smaller number
of bits than the endpoint
Better utilization of the number of bits available

The number of bits of the low point and of the width is
determined so that the rounding error is minimized
The representation is evaluated with several examples

Narrower than those obtained with the traditional
representation
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Interval arithmetic

What is interval arithmetic?
Each value belongs to an interval such as the true value
lies in the interval
Used to

Bound roundoff errors in numerical computations
Evaluate the effects of approximation errors
Evaluate the effects of inaccurate inputs

Disadvantage: produces large intervals
Special algorithms to avoid large intervals
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Interval arithmetic as an error monitoring method

Rounding error in floating–point computations
Rounding introduces an error every FP operation

rounding error ≤ 0.5 ulp if exact rounding
rounding error ≤ 1 ulp if faithful rounding

Errors can propagate and can be amplified (cancellations,
normalizations)
Errors can produce inaccurate results for some
computations
Accumulation of rounding errors, wider intervals
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Other solutions for error monitoring

Hardware methods
Significance arithmetic

Specification of the number of correct bits of the result
Number of correct bits updated only when there is a
cancellation in efective subtraction
Does not include rounding errors

Error estimate
Estimation of the rounding errors including propagation,
amplification and cancellation of errors
Concurrently with the program execution
The estimate is not exact and can be inaccurate

FP double–double and quad–double arithmetic
Results as non–evaluated sum of two or four DP–FP
numbers
Rounding errors accumulate in the least significant part
Slow, several operations to determine the errors
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Other solutions for error monitoring

Software methods: much slower implementation and
modification of the program

Running error
Error bound during the execution of a program

Error computation
Based on automatic partial differentation

Stochastic arithmetic
Several executions of the program with different rounding
error approximations
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Interval arithmetic

Traditional representation
Traditional representation: lower and upper end points
LU representation

Two floating–point numbers
Not efficient

interval of size 2−j ⇒ the j MS bits of L and U are the same

Implementation
Hardware

Enhancements of the ISA of a processor
Special functional units
Variable precision to avoid wide intervals

Mainly used in software
Rounding modes of the IEEE standard
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Alternative interval representations

Interval representations
Lower and upper points (LU representation)
Lower point and width of the interval (LW representation)
Center point and radius (CR representation)
Width (or radius) can be represented with less bits than
low point (or center)

L U

L W

C

R
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LW representation

Enclosing the real number x

LU: xl (low) and xu (up) , such as

xl ≤ x ≤ xu

LW: xl (low) and xw (width), such as

xl ≤ x ≤ xl + xw

xl , xu, xl + xw standard FP numbers
xw FP number with a smaller precision and different range

Low point: xl = (−1)ls × (1.lf )× 2le

Width: xw = (1.wf )× 2we
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Number of bits for the low point and the interval width

Variable or fixed number of bits?
1 Low is a floating–point number (double precision), width a

floating–point number with a reduced precision
Number of bits of low same as for LU representation
Add the representation of width
Efficiency: reduction in number of bits with respect to LU

2 Total number of bits is fixed (2 doubles) and partitioned
between the low and width

Same total number of bits as for LU representation
Efficiency: reduction in interval size for given number of bits

The second approach seems more appropiate: t = f + m
t: total number of bits,
f, m: number of bits of the low point and the width
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Number of bits for the low point and the interval width

Fixed number of bits

fraction exponent

8 bits 7 bits

101 bits 11 bits1 bit

sign fraction exponent
low point

width

(113 bits)

(15 bits)

Total number of bits: 128
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Fixed number of bits

Optimal width size
z = x op y
zw is the sum of the propagated width and the generated
width

The propagated width (wp) depends on the operation
The generated width (wg) is due to the roundoff of zl and zw

wg < 2el−f + 2ew−m

Considering j = el − ew , f = t −m

wg < (2−(t−m) + 2−(j+m))2el

Mimimum width is

mmim = (t − j)/2 and
f = t −mmim = (t + j)/2



Abstract Interval arithmetic Alternative interval representation LW representation Examples Conclusions

Optimal width size

Optimal width internal
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Optimal width size

A numerical example

zl = 1.3× 2−3, zw = 1.27× 2−25

Number of total bits is t = 32
LU: 16 bits each end point (most of the bits are equal)

zl16 = 1.0100110011001100× 2−3

zu16 = 1.0100110011001101× 2−3

LW: j = el − ew , m = (t − j)/2

j = 22,⇒ m = 5, f = 27

Interval width is

zw = 1.01010 ∗ 2−25
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Optimal width size

A numerical example

m f zw

0 32 1 ∗ 2−24

2 30 1.10 ∗ 2−25

4 28 1.0101 ∗ 2−25

5 27 1.01010 ∗ 2−25

6 26 1.010110 ∗ 2−25

8 24 1.10000110 ∗ 2−25

10 22 1.001000101 ∗ 2−24

12 20 1.01010001010 ∗ 2−23

14 18 1.0001010001010 ∗ 2−21

16 16 1.0000010100010100 ∗ 2−19

Table: Widths of interval for different values of m
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Optimal width size

The best partition depends on m
The best partition depends on the relative value of m
The width varies, then the best partition is variable

Depends on the specific computation
Depends on the stage of the computation

The variable width is difficult to implement
Use a fixed m which would not be optimal

The utilization of the 32 bits is better in LW than in the LU
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The operations

Addition/subtraction
Addition

zl = fpd(xl + yl)

zw = fpu(xw + yw + ulp(zl))

Subtraction

zl = fpd(xl − (yl + yw ))

zw = fpu(xw + yw + ulp(zl))
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The operations

Multiplication

xl yl xl + xw yl + yw zw

≥ 0 ≥ 0 – – (xl + xw )× yw + xw × yl
< 0 ≥ 0 < 0 – xw × yl + |xl | × yw
< 0 ≥ 0 ≥ 0 – xw × (yl + yw )
≥ 0 < 0 – < 0 xl × yw + xw × |yl |
≥ 0 < 0 – ≥ 0 (xl + xw )× yw
< 0 < 0 < 0 < 0 |xl + xw | × yw + xw × |yl |
< 0 < 0 ≥ 0 < 0 xw × |yl |
< 0 < 0 < 0 ≥ 0 |xl | × yw
< 0 < 0 ≥ 0 ≥ 0 max(|xl | × yw , xw × |yl |,

(xl + xw )× yw , xw × (yl + yw ))

Propagated interval width for multiplication
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The operations

Division
xl yl xl + xw yl + yw zw

≥ 0 > 0 – – ((xl + xw )× yw + xw × yl)/(yl × (yl + yw ))
< 0 > 0 < 0 – (xw × yl + |xl | × yw )/(yl × (yl + yw ))
< 0 > 0 ≥ 0 – xw/yl

≥ 0 < 0 – < 0 (xw × |yl |+ xl × yw )/(|yl | × |yl + yw |)
< 0 < 0 < 0 < 0 (|xl + xw | × yw + xw × |yl |)/(|yl | × |yl + yw |)
< 0 < 0 ≥ 0 < 0 xw/|yl + yw |
– ≤ 0 – ≥ 0 divisor interval includes 0

Propagated interval width for division
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The operations

Implementation issues
LW representation is intended for a processor with interval
instructions and hardware implementation of the functional
units
Fixed number of bits for the width (implementation with a
variable number of bits for the width might be impractical)
Rounding of zl and zw

Towards minus infinity for zl , towards plus infinity for zw
Guarantees the enclosure of the real value

Operations to compute the width
Can be performed in the precision of the width, narrow
datapath
Every operation introduces a rounding error, width might be
somewhat larger
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Some examples

Objective: comparison with LU representation
Effect of LW representation on interval width
Effect of precision of width m for fixed m
Effect of having a variable m
Tightness of the enclosure (error of the floating-point
computation).

Parameters
Relative width to reflect the accuracy of the result
LU: endpoints are DP FP numbers (64 + 64 bits)
LW: 128 bits, 109 bits for significands of L and W (109−m
bits and m bits, respectively)
The exact error is the ratio between the FP value and high
precision result obtained with Maple
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Number of bits for the low point and the interval width

Fixed number of bits

fraction exponent

8 bits 7 bits

101 bits 11 bits1 bit

sign fraction exponent
low point

width

(113 bits)

(15 bits)

Total number of bits: 128
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Some examples

Simple examples
Evaluation of a polynomial

Relative error large when x is close to root value
Inner product computation

Large errors if generated errors are accumulated
Generated errors can cancel
Final error large if there is a massive cancellation

Logistic iteration

xn+1 = a× xn(1− xn), 0 < a < 4, 0 < x0 < 1

a < 3. Converges to a fixed point, whatever x0.
3.0 ≤ a ≤ 3.57. Periodic and the periodicity depends on a.
a > 3.57. Chaotic, with an unpredictable trajectory.
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Simple examples

Evaluation of a polynomial

p(x) = x4 − 8x3 + 24x2 − 32x + 16 root is x = 2
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Simple examples

Inner product with cancellation

z =
5∑

i=1

xi × yi
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Simple examples

Logistic iteration

xn+1 = a× xn(1− xn), a = 3.59, 0 < x0 < 1, 150 iterations
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Simple examples

Results
Interval width of LW much smaller than that for LU

Larger number of bits used in the low point (same number
of total bits)

Width for the LW varies with m.
Best m depends on the computation, m between 6 and 8
Variable m produces a smaller width than the best fixed m

Interval width vs FP error
Width in LU significantly larger than the FP error: rounding
errors are compensated by the rounding-to-nearest
scheme, which is not the case for the enclosure of LU.
Width in LW much smaller than the FP error: higher
precision of low point.
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Some examples

Gaussian elimination (GE)
Solution of linear system A× x = b
GE with partial pivoting can lead to inaccurate results due

Accumulation of rounding errors
Cancellations
Bad selection of the pivots

We have simulated GE for several matrices and dimension:
LW representation produces narrower intervals.
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Gaussian Elimination (A× x = b)

A =



10 45 120 210 252 210 120 45 10 1
55 330 990 1848 2310 1980 1155 440 99 10

220 1485 4752 9240 11880 10395 6160 2376 540 55
715 5148 17160 34320 45045 40040 24024 9360 2145 220

2002 15015 51480 105105 140140 126126 76440 30030 6930 715
5005 38610 135135 280280 378378 343980 210210 83160 19305 2002

11440 90090 320320 672672 917280 840840 517440 205920 48048 5005
24310 194480 700128 1485120 2042040 1884960 1166880 466752 109395 11440
48620 393822 1432080 3063060 4241160 3938220 2450448 984555 231660 24310
92378 755820 2771340 5969040 8314020 7759752 4849845 1956240 461890 48620


b = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10),

Result and error
Exact result: x = (0, 1,−2, 3,−4, 5,−6, 7,−8, 9)
DP FP result:

fpx = (9.8407492921 × 10−9
, 0.9999999055,−1.9999994966, 2.9999980387,−3.9999937636,

4.9999828578,−5.9999578189, 6.9999049037,−7.9998003422, 8.9996049158)

Absolute error: from 2−12 (for x9) to 2−27 (for x0).

For the LU representation the interval of divisors include 0
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Gaussian Elimination (A× x = b)

Interval width for x1
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Conclusions

Main conclusions
LW representation as a more efficient alternative to the
traditional LU representation of intervals
LW representation and a fixed total number of bits,

Partition among the bits for the low point and the width
The rounding error is minimized.
Variable partition is optimal but difficult to implement.
Fixed partition can produce good results.

The examples show that
LW representation results in a substantial reduction in the
width of the interval with respect to the LU with the same
number of bits (128 bits).
This reduction is mainly due to the increased precision of
the low point, possible by the small number of bits required
for the width.
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