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Introduction

Elementary functions:
1 Polynomials, algebraic functions
2 Trigonometric and inverses
3 Exponential and logarithm

4 The gamma function: Γ(α) =

∫ +∞

0
xαe−xdx

5 The error function: erf(x) = 2√
π

∫ x

0
e−t2

dt

6 The Airy functions: solutions of y ′′(z)− zy(z) = 0, particularly
Ai(z) = 1

π
∫ +∞

0 cos(t3/3 + zt)dt
7 ...

Less elementary functions are, for instance, hypergeometric functions
(Kummer, Gauss). Call them special if you wish.
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Introduction

Our principles for computing (special) functions:

1 The main objective is to develop Fortran codes which produce reliable double
precision values. We don’t use Maple or Mathematica in the final product.

2 A given special function is usually a special case of a more general function. Our
approach is bottom-up: starting from the simplest cases. For example: Airy
functions.

3 We accept that it is necessary to combine several methods in order to compute a
function accurately and efficiently for a wide range of its variables.

4 We accept that a theoretical error analysis is usually impossible for functions
with several real or complex variables. We accept more empirical approaches.

5 The accuracy analysis is usually done by using functional relations, such as a
Wronskian relations or by comparing with an alternative method of computation.

6 The selection of methods in different parameter domains is based on speed and
accuracy, where the latter may prevail.

7 Possible scaling factors may be considered when available
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Some basic methods for computing special functions

A case study: Airy functions
Airy functions are the solutions of the ODE:

The Airy equation

y ′′(z)− zy(z) = 0

Relatively recent methods for computing this function in the complex plane
are:

1 Fabijonas, Lozier, Olver (ACM TOMS 2004)
2 Gil, Segura, Temme (ACM TOMS 2002)

The goal: computing a numerically satisfactory pair of solutions of the Airy
equation for unrestricted values of the variable (possibly factoring out an
elementary function). A numerically satisfactory pair should comprise the
recessive solution (Ai(z) is recessive as |z| → ∞, arg(z) < π/3).

I am describing briefly the case of Ai(z), starting with positive real z.
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Some basic methods for computing special functions Convergent series

Convergent series
We try power series and get two independent solutions:

y1(z) =
∞∑

k=0

3k
(

1
3

)
k

z3k

(3k)!
, y2(z) =

∞∑
k=0

3k
(

2
3

)
k

z3k+1

(3k + 1)!

where 3k (α + 1/3)k = (3α + 1)(3α + 4) · · · (3α + 3k − 2)

The series converge in C. Good. Have we finished?

No, we haven’t: limz→+∞ y1(z) = +∞, limz→+∞ y2(z) = +∞, and we need
the solution Ai(z) such that limz→+∞ Ai(z) = 0.

Of course, we have some α, β such that

Ai(z) = αy1(z) + βy2(z)

But this is numerically unstable for large x (we would compute a small
quantity from two much larger ones)
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Some basic methods for computing special functions Divergent series

Divergent series
Now, we transform the equation y ′′ − zy = 0 by considering the functions
Y (z) = z1/4y(z), which, in the variable ζ = 2/3z3/2, satisfy the ODE

Ÿ (ζ) +

[
−1 +

5
36ζ2

]
Y (ζ) = 0

This suggest that Y (ζ) ∼ e±ζ as ζ → +∞ (Liouville-Green approximation).
For a better approximation, write Y (ζ) = e−ζg(ζ). Now g(ζ) satisfies

d2g
dζ2 − 2

dg
dζ

+
λ

ζ2 g = 0, λ =
5

36
,

and using a formal series in powers of ζ−1, that is, g(ζ) =
∑∞

k=0 amζ
−m, we

get

Ai(z) ∼ z−1/4e−ζ
∑∞

m=0 amζ
−m, ζ = 2

3 z3/2 ,

am+1 = −λ+ m(m + 1)
2(m + 1)

am, , a0 = (2
√
π)−1

which is a divergent series with asymptotic nature.
J. Segura (Universidad de Cantabria) χ2 distributions January 31, 2013 7 / 35



Some basic methods for computing special functions Divergent series

Asymptotic expansions

When we say that an expansion of the form

f (z) ∼
∞∑

n=0

anz−n, z →∞

is an asymptotic expansion, we assume that

zN

(
f (z)−

N−1∑
n=0

anz−n

)
, N = 0,1,2, . . . ,

where the sum is empty when N = 0, is a bounded function for large values
of z, with limit aN as z →∞, for any N. This can also be written as

f (z) =
N−1∑
n=0

anz−n +O
(
z−N) , z →∞.
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Some basic methods for computing special functions Other methods: ODEs, numerical quadrature, recurrence

A first algorithm

We have two possible approximations: for x small and large. Can we match
them?

1 Small positive x Convergent series

2 Large positive x Divergent series

We get 10−8 relative precision using convergent series for x < 5.5 and
divergent series for x > 5.5.

For more precision, we need something else.

We can not expect to compute a function numerically with a single
method unless it is quite elementary.
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Some basic methods for computing special functions Other methods: ODEs, numerical quadrature, recurrence

For improving the computation of Airy functions, additional
approximations should be considered for intermediate z. Some
possibilities:

1 Chebyshev expansions (for real x only)
2 Numerical quadrature [Gil, Segura, Temme 2002]
3 Numerical integration of the ODE [Fabijonas, Olver, Lozier 2004]

Let us describe the last two methods (very briefly).
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Some basic methods for computing special functions Other methods: ODEs, numerical quadrature, recurrence

ODE integration

Conditioning: because limx→+∞ Ai(x)/Bi(x) = 0, one should never compute
numerically Ai(x) integrating from x = 0.

Instead, the problem must be put this way for Ai(x):

Compute Ai(x) in [0,b] starting from Ai(b) and Ai′(b). Take large b, such that
Ai(b) and Ai′(b) can be approximated by asymptotics.

A possible integration method is Taylor’s method:

y(x − h) =
+∞∑
n=0

y (n)(x)

n!
(−h)n

and the derivatives can be computed from y(x), y ′(x) considering
y ′′(x) = xy(x) and

y (n+2)(x)− xy (n)(x)− ny (n−1)(x) = 0, n ≥ 1

Is the application of the recurrence stable?
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Some basic methods for computing special functions Other methods: ODEs, numerical quadrature, recurrence

Numerical quadrature

Many (special functions) can be written using integral representations, also
Airy functions. Two representations are:

Ai(x) =
1
π

∫ +∞

0
cos(t3/3 + xt)dt

Ai(z) =
1

2πi

∫ +∞eiπ/3

∞e−iπ/3
exp(t3/3− zt)dt

Ai(z) =
1

√
π(48)1/6Γ(5/6)

e−ζζ−1/6
∫ +∞

0

(
2 +

t
ζ

)−1/6

t−1/6e−tdt

Which one is the best for numerical purposes?

The second one does not have an oscillating integrand and shows explicitly
the dominant factor. But the first integrals can be transformed by complex
integration methods (saddle point analysis).
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Some basic methods for computing special functions Other methods: ODEs, numerical quadrature, recurrence

Numerical quadrature: a trivial example of contour deformation

I =
∫ +∞
−∞ cos(w2/2 + xw)dw = <(F ),

F =
∫ +∞
−∞ eφ(w)dw , φ(t) = i(w2/2 + xw)

φ′(w0) = 0→ w0 = −x

The path w = v − x + iv , v ∈ (−∞,+∞) is of steepest descent (SD)
and one can deform the original path to the SD path, where
dw = (1 + i)dv , <(φ(w)) = −v2 and:

F =

∫ +∞

−∞
eφ(w)dw = eφ(w0)(1 + i)

∫ +∞

−∞
e−v2

dv

The remaining integral is suited for the trapezoidal rule (not needed).
With this F = e−ix2/2(1 + i)

√
π and I =

√
2π cos(x2/2− π/4).
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Some basic methods for computing special functions Other methods: ODEs, numerical quadrature, recurrence

Our recipe for complex Airy functions:

1 MacLaurin series.
2 Asymptotic expansions
3 Gauss-Laguerre quadrature (but also the trapezoidal rule)
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Some basic methods for computing special functions Other methods: ODEs, numerical quadrature, recurrence

Recurrence relations

Many special functions satisfy difference equations, and n particular,

yn+1 + bnyn + anyn−1 = 0

Examples: U(a, x) and V (a, x) (a ≡ n) or Pm
−1/2+iτ (x) (m ≡ n)

Recurrence relations are simple methods of computation, if applied correctly.

Example: Consider the recurrence yn+1 − yn − yn−1 = 0, (Fibonacci) with
general solution yn = αφn + β(−φ−1)n ,φ = (1 +

√
5)/2.

Consider the numerical computation of the (−φ)−n starting from y0 = 1,
y1 = −2/(1 +

√
5). We compute up to n = 50.

We should get y50/y49 = −2/(1 +
√

5), but we get y50/y49 = 1.618150 . . .

The solution yn = φn dominates over (−φ−1)n (minimal). Any small numerical
error introduces the dominant solution. This is a conditioning problem; we
need information on the conditioning of the solutions.
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Some basic methods for computing special functions Other methods: ODEs, numerical quadrature, recurrence

Recurrences: main results to be considered

1 Perron-Kreuser theorem, which essentialy says that for a linear
difference equation of order k , yn+k+1 + a(n+k)

n yn+k + . . .+ a(0)
n yn = 0

there exist different solutions such the ratios yn+1/yn behave as n→ +∞
as the solutions of the characteristic equation
λn+k+1 + a(n+k)

n λn+k + . . .+ a(0)
n = 0 (in the non-degenerate case).

2 The asymptotic behavior of the solution we want to compute, to be
compared with the Perron-Kreuser predictions. Is the solution recessive
(minimal), dominant or none of them?

3 Pincherle’s theorem for three term recurrence relations:
yn+1 + bnyn + anyn−1 = 0 has minimal solution {fn} if and only if:

fn
fn−1

=
−an

bn +
−an+1

bn+1 + . . .
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Some basic methods for computing special functions Other methods: ODEs, numerical quadrature, recurrence

Additional examples of computation

We have solved some other problems, like:

1 Various types of Legendre functions of real parameters.
2 Inhomogeneous Airy functions.
3 Solution of the Bessel equation x2y ′′ + xy + (x2 + a2)y = 0

(2004). Numerically satisfactory pair {Kia(x),Lia(x)}.
4 Solution of the parabolic cylinder equation y ′′ + (a± x2/4)y = 0

(2006 for −, 2011 and 2012 for +). Pairs of solutions
{U(a, x),V (a, x)} (− case) and {W (a, x),W (a,−x)}

5 Conical functions, that is, Legendre functions Pm
−1/2+iτ (x) (2009,

2012).
6 Incomplete gamma functions γ(a, x), Γ(a, x) (2012)

The last four problems are harder because they involve two or more
variables. A good number of methods are usually needed to cover a
large range.
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Some basic methods for computing special functions Other methods: ODEs, numerical quadrature, recurrence

Case of the parabolic cylinder equation (−):
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Computation of χ2 cumulative distributions Central distribution

Computation of χ2 cumulative distributions

Recent activity involves the computation of inversion of χ2 cumulative
distributions.

The central distributions are given by the incomplete gamma function ratios

P(a, x) =
1

Γ(a)

∫ x

0
ta−1e−tdt , Q(a, x) =

1
Γ(a)

∫ +∞

x
ta−1e−tdt

Because P(a, x) + Q(a, x) = 1 we only need to compute one function. We
compute the smallest of the two.

For large values of a, x we have a transition at a ∼ x , with

P(a, x) . 1
2 when a & x ,

Q(a, x) . 1
2 when a . x .
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Computation of χ2 cumulative distributions Central distribution

Accordingly, the methods of computation are divided in two zones, with
several methods of computation in each one.

10

20

30

40

50

10 20 30 40 50

x = 0.3 a

x = 2.35 a

 a

 x

a = α(x)

a = 12

1.5

UA

CF

PT

QT

PT: Taylor series for P
QT: Taylor series for Q (small triangle)
UA: Uniform asymptotic expansions (Temme, 1979)
CF: continued fraction for the Q (Gautschi, 1977)
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Computation of χ2 cumulative distributions Central distribution

Inversion of the cumulative central χ2 distribution

For probability distributions, the inversion is also needed in applications. For
fixed a, we invert P(a, x) = p or, equivalently, Q(a, x) = q.

Our approach:

1 Invert P(a, x) (Q(a, x)) if p < q (p > q)
2 Use the existent approximation methods (PT, Poincaré asymptotics for

Q, UA) to find starting values.
3 Apply higher order Newton methods from the resulting starting values.

The different type of starting values are chosen according to the next figure.
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Computation of χ2 cumulative distributions Central distribution

An example of inversion:
For small p, we use PT to write

x = r

(
1 +

∞∑
n=1

a(−1)nxn

(a + n)n!

)−1/a

, r = (pΓ(1 + a))1/a
,

We write x = r +
∑∞

n=2 ck r k , and by expanding the first few coefficients are

c2 =
1

a + 1
,

c3 =
3a + 5

2(a + 1)2(a + 2)
,

c4 =
8a2 + 33a + 31

3(a + 1)3(a + 2)(a + 3)
,

c5 =
125a4 + 1179a3 + 3971a2 + 5661a + 2888

24(1 + a)4(a + 2)2(a + 3)(a + 4)
.
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Computation of χ2 cumulative distributions Central distribution

The accuracy of the starting values (except for small a) is shown in this figure

With a fourth order Newton-like method, 2 or 3 iterations are enough for an
accuracy better than 10−12.
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Computation of χ2 cumulative distributions Non-central distribution

The Marcum Q-function
The generalized Marcum Q-function is the non-central cumulative χ2

distribution, up to elementary redefinition of the variables. It is defined as

Qµ(x , y) = x
1
2 (1−µ)

∫ +∞

y
t

1
2 (µ−1)e−t−x Iµ−1

(
2
√

xt
)

dt ,

where µ > 0 and Iµ(z) is the modified Bessel function. For µ = 1 the function
is know as the Marcum Q-function.

We also use a complementary function such that Pµ(x , y) + Qµ(x , y) = 1 :

Pµ(x , y) = x
1
2 (1−µ)

∫ y

0
t

1
2 (µ−1)e−t−x Iµ−1

(
2
√

xt
)

dt .

Particular values are
Qµ(x ,0) = 1, Qµ(x ,+∞) = 0,

Qµ(0, y) = Qµ(y), Qµ(+∞, y) = 1,

Q+∞(x , y) = 1.
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Computation of χ2 cumulative distributions Non-central distribution

As for incomplete gamma functions, we compute the smallest of the two
functions. Asymptotic analysis gives that for large values of µ, x , y , we have a
transition at y ∼ x + µ, with

Pµ(x , y) . Qµ(x , y) when y . x + µ,

Qµ(x , y) . Pµ(x , y) when y & x + µ.

Ingredients in the computation:

1 Series in terms of incomplete gamma functions

2 Recurrence relations.

3 Asymptotic expansions for large µ in terms of the error function (both for
P and Q).

4 Quadrature methods.

We give some details of these methods.
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Computation of χ2 cumulative distributions Non-central distribution

Series in incomplete gamma functions

Plugging the Maclaurin series for the modified Bessel function into the integral
representation, we readily obtain the series expansions

Pµ(x , y) = e−x
∞∑

n=0

xn

n!
Pµ+n(y),

Qµ(x , y) = e−x
∞∑

n=0

xn

n!
Qµ+n(y).

in terms of the incomplete gamma function ratios (which we can compute).
Recurrences can be used to compute rapidly the series. We have

Qµ+1(y) = Qµ(y) +
yµe−y

Γ(µ+ 1)
,

Pµ+1(y) = Pµ(y)− yµe−y

Γ(µ+ 1)
,

stable for Qµ(y) in the forward direction, and for Pµ(y) in the backward direction.
Equivalently, we have µQµ+1(y)− (µ+ y)Qµ(y) + yQµ−1(y) = 0.
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Computation of χ2 cumulative distributions Non-central distribution

The series

Qµ(x , y) = e−x
∞∑

n=0

xn

n!
Qµ+n(y)

can be computed from two values Qµ(y) and Qµ+1(y) and forward recursion with

Qµ+1(y) =

(
1 +

y
µ

)
Qµ(y)− y

µ
Qµ−1(y)

For the other series, we write

Pµ(x , y) ' e−x Pµ(y)

n0∑
n=0

xn

n!

Pµ+n(y)

Pµ(y)
,

estimate the value n0 which gives sufficient accuracy and compute using the
backward recursion

Qµ−1(y) = −µ
y

Qµ+1(y) +

(
1 +

µ

y

)
Qµ(y)
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Computation of χ2 cumulative distributions Non-central distribution

Recurrence relations
Integration by parts gives the following recurrences

Qµ+1(x , y) = Qµ(x , y) +
(y

x

)µ/2
e−x−y Iµ(2

√
xy),

Pµ+1(x , y) = Pµ(x , y)−
(y

x

)µ/2
e−x−y Iµ(2

√
xy),

It is possible to eliminate the Bessel function and obtain a homogeneous third order
recurrence relation.

xQµ+2(x , y) = (x − µ)Qµ+1(x , y) + (y + µ)Qµ(x , y)− yQµ−1(x , y),

and Pµ(x , y) satisfies the same relation, but its computation with this recurrence is
badly conditioned (it is subdominant, but not minimal)
A better possibility is:

yµ+1 − (1 + cµ)yµ + cµyµ−1 = 0, cµ =

√
y
x

Iµ (2
√

xy)

Iµ−1 (2
√

xy)
.

P is minimal and Q is dominant. Pincherle’s theorem gives:

Pµ(x , y)

Pµ−1(x , y)
=

cµ
1 + cµ−

cµ+1

1 + cµ+1−
. . .
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Asymptotic expansions

We start from

Qµ+1(µx , µy) =
µe−µx

(2x)µ+1

∫ ∞
ξ

ze−µφ(z)e−µη(z)Iµ(µz) dz,

where

φ(z) = − ln z +
1

4x
z2 − η(z), η(z) =

√
1 + z2 + log

z

1 +
√

1 + z2
, ξ = 2

√
xy

The saddle point follows from the equation φ′(z) = 0. It follows that the positive
saddle point z0 is given by

z0 = 2
√

x(1 + x). (1)

The transition line in the scaled variables is y = x + 1.

The saddle point coalesces with the end point of integration as y → x + 1. Bleinstein’s
method is a good choice (we omit details).

Q is computed for y > x + 1 (in the unscaled variables y > x + µ).
For P analogous expansions can be worked out (y < x + µ)
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Qµ(µx, µy) ∼ 1
2 erfc

(
−ζ
√
µ/2

)
+

√
µ

2π

∞∑
k=1

Bk − e−
1
2µζ

2
e−µη(ξ)Iµ(µξ).

Bk =
k∑

j=0

fj,k−j Ψj (ζ)

µk−j

Ψj (ζ) =

( 2

µ

)(j+1)/2 ∫ ∞
−ζ
√
µ/2

e−s2
sj ds.

which can be written in terms of incomplete gamma functions.

ζ = sign(x + 1− y)
√

2 (φ(ξ)− φ(z0)).

fk (w) =
z

2x

uk (t)

(1 + z2)
1
4

dz

dw
=
∞∑
j=0

fjk (w − ζ)j
, t = 1/

√
1 + z2

φ(z)− φ(ξ) = 1
2 w2 − ζw, ξ = 2

√
xy

u0(t) = 1, u1(t) =
3t − 5t3

24
, u2(t) =

81t2 − 462t4 + 385t6

1152
,

and other coefficients can be obtained by applying the formula

uk+1(t) = 1
2 t2(1− t2)u′k (t) + 1

8

∫ t

0
(1− 5s2)uk (s) ds, k = 0, 1, 2, . . . .
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Numerical quadrature

Starting point:

Qµ(µx , µy) =
e−µ(x+y)

2πi

∫
LQ

eµφ(s)

1− s
ds,

where LQ is a vertical line that cuts the real axis in a point s0, with
0 < s0 < 1, and

φ(s) =
x
s

+ ys − ln s.

A similar representation can be obtained for P.

The contour is deformed in such a way that it passes through the saddle point
of φ, similarly as we did in our simple example and then the trapezoidal rule is
used.

We omit details.
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The methods are combined as follows:
Let f1(x , µ) = x + µ− 0.25

√
4x + 2µ, f2(x , µ) = x + µ+ 0.25

√
4x + 2µ.

1 If µ > 60, compute the Marcum functions using either with asymptotic
expansions for f1(x , µ) < y < f2(x , µ) and use numerical quadrature in
the other case.

2 If µ ≤ 60, compute the Marcum functions as follows:

If µ ≤ 10, x < 15, y < 15, compute the series expansion.
In other case: if y < f1(x , µ) or y > f2(x , µ) compute by
numerical quadrature; if f1(x , µ) < y < f2(x , µ) compute
the Marcum functions using the recurrence relation.

The algorithm has been implemented in a Fortran 90 module MarcumQ,
which includes the Fortran 90 routine marcum for the computation of
Qµ(x , y) and Pµ(x , y). We have tested that an accuracy ∼ 10−12 can be
obtained in the parameter region (x , y , µ) ∈ [0, 200]× [0, 200]× [1, 200]
(submitted to ACM Trans. Math. Softw.)
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Inversion of the Marcum Q-function
For a three variable function, we have to fix what we mean by inversion.
It appears that in applications the inversion process is as follows (Helstrom,
1998):
We are given two numbers q0,q1, both in (0,1), and we assume a fixed value
of m.

Step 1: Find y from the equation

Qµ(0, y) = q0,

and denote this value with y0. Because Qµ(0, y) = Qµ(y) (the
normalized incomplete gamma function) we already known
how to do this step.

Step 2: Find x from the equation

Qµ(x , y0) = q1, (2)

and denote this value with x1. The value y0 is obtained in
Step 1.

Work in progress
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Next steps:
1 Consider asymptotic inversion (large µ). Nearly done.
2 Analyze the converge of Newton-like methods, not only for large µ.
3 About direct computation: should we consider a generalization of

Marcum-Q?

Nutall function:

Qη,µ(x , y) = x
1
2 (1−µ)

∫ +∞

y
tη+ 1

2 (µ−1)e−t−x Iµ−1

(
2
√

xt
)

dt ,

Q0,µ(x , y) = Qµ(x , y)

Or should we go back to hypergeometric functions? We will see...
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Thank you!
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