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Introduction

Solving non-linear scalar equations f (x) = 0 is an elementary but
central problem in numerical analysis.

A number of general purpose methods are studied in general NA
courses, from the slow and safe bisection method to the faster but
uncertain Newton method.

As we will see, it is possible to construct methods which are both fast
and reliable for some families of notable equations.

We focus on particular problems where the function satisfies some
functional relation and we exploit these relations (we will call these
functions special, and we later specify how special they are).
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Introduction

Computation of the zeros of special functions

The problem: given a function with several zeros in an interval,
compute all the zeros reliably and efficiently.

Reliability: no zero is missed and the method is convergent without
accurate initial approximations.

Efficiency: the total count of iterations is small (and if the order of
convergence is high so much the better).

We solve the problem for a wide set of functions including important
cases (like computing the zeros of orthogonal polynomials for Gauss
quadrature, computing the zeros of Bessel functions and of their
derivatives,...).
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Introduction

Most published algorithms rely on first approximations + Newton
method.

Reliable?: maybe. There is no proof of convergence.

Efficient?: yes, but can be improved without additional computational
cost.

Additionally, one needs particular approximations for each different
function and sometimes they are hard.

The initial approximations are difficult to handle for functions
depending on several parameters.
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Introduction

By special functions we mean functions satisfying first order linear
systems

y ′n(x) = an(x)yn(x) + dn(x)yn−1(x)
y ′n−1(x) = bn(x)yn−1(x) + en(x)yn(x)

(DDE)

and/or three-term recurrence relations

yn+1(x) + βn(x)yn(x) + αn(x)yn−1(x) = 0 (TTRR)

and/or second order ODEs

y ′′n (x) + Bn(x)y ′n(x) + An(x)yn(x) = 0 (ODE)

For each of the functional relations described above, specific
methods have been developed
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Introduction

An example of special functions
Riccati-Bessel functions Cν(x) =

√
x(cosαJν(x)− sinαYν(x)) satisfy

C′ν(x) = −ην(x)Cν(x) + Cν−1(x),

C′ν−1(x) = ην(x)Cν−1(x)− Cν(x),
(DDE)

where ην(x) =
ν − 1/2

x
.

And from this,

Cν+1(x)−
2ν
x
Cν(x) + Cν−1(x) = 0 (TTRR)

and

C′′ν (x) +

(
1− ν2 − 1/4

x2

)
Cν(x) = 0 (ODE)

Zeros of Bessel functions pop up in many applications: wave scattering, optical wave
guides, quantum physics, quadrature.

Many other relevant functions satisfy these type of relations, and in particular classical
orthogonal polynomials.

For these functions, the three methods (TTRR, DDE and ODE) can be applied.
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TTRR method

TTRR METHODS
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TTRR method

TTRR method

Consider recurrence relations of the form

anyn+1(x) + bnyn(x) + cnyn−1(x) = g(x)yn(x), n = 0,1, . . . ,

Considering the first N relations:

JNYN(x) + aN−1yN(x)eN + c0y−1(x)e1 = g(x)YN(x),

e1 = (1,0, . . . ,0)T , eN = (0, . . . ,0,1)T , YN(x) = (y0(x), . . . , yN−1(x))T

JN =


b0 a0 0 . . 0
c1 b1 a1 0 . 0
0 c2 b2 a2 . 0
. . . . . 0
. . . . . aN−2
0 0 0 . cN−1 bN−1

 . (1)

If for x = x0 aN−1yN(x0) = c0y−1(x0) = 0 we have the equation for an
eigenvalue problem with eigenvalue g(x0).
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TTRR method

For classical OPs of degree N: yN = PN(x), c0P−1 ≡ 0
and the zeros of yN = PN are exactly the eigenvalues of the Jacobi
matrix JN (Wilf (1967), Golub-Welsch (1969)).

For minimal solutions of three-term recurrence relations
aN−1yN(x) ≈ 0 for large enoguh N and the zeros of y−1(x) are
obtained from a truncated eigenvalue problem (see Grad and
Zakrajšek (1973), Ikebe (1975),..., Ball (2000))

Given a recurrence relation anyn+1 + bnyn + cnyn−1 = 0, we say that {fn} is a minimal

solution as n→ +∞ if lim
n→+∞

fn
gn

= 0 for any other solution {gn} linearly independent

of {fn}. Example: the Bessel function Jν(x) is minimal as ν → +∞.
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TTRR method

The pros and cons of using TTRR methods

Pros

1 For the orthogonal polynomial cases, all the zeros can be computed
simultaneously.

2 Complex zeros, and not only real zeros, can be computed when they exist.
3 The method only requires the coefficients of the recursion, and no function

values need to be computed.

Cons

1 Conditioning is not always good.
2 The type of recurrences is quite restrictive.
3 For minimal solutions: where to truncate?
4 Efficiency?
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TTRR method

DDE METHODS
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TTRR method

We are not discussing these methods.

They are more general than TTRR in some sense (they can be used
for any solution and the equations are less restrictive) and less in a
different sense (only real zeros). The method computes with certainty
all the zeros in any given interval.

More details in our book “Numerical Methods for Special Functions”,
SIAM (2007).
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ODE methods

ODE METHODS
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ODE methods Method for second orde ODEs (real case)

First observation: the equation may be used to speed-up a method.
For computing zeros of solutions of

w ′′(x) + B(x)w ′(x) + C(x)w(x) = 0 (2)

using the Newton method we have order 2 generally.
But, assuming that B(x) is differentiable we can transform (2) by setting

y(x) = exp
(∫

1
2

B(x)dx
)

w(x)

Then, y ′′(x) + A(x)y(x) = 0, with A(x) = C(x)− 1
2

B′(x)− 1
4

B(x)2 and

y(x)
y ′(x)

=
w(x)

1
2

B′(x)w(x) + w ′(x)

The Newton method xn+1 = xn −
y(xn)

y ′(xn)
is now of third order.

The reason: if α is such that y(α) = 0, then y ′′(α) = 0.
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ODE methods Method for second orde ODEs (real case)

Using one of the coefficients of the ODE we have obtained a third
order method which uses the function and the first derivative. This
means that

εn+1 ≈ Cε3n, εk = xk − α

where α is a zero.

In the equation
y ′′(x) + A(x)y(x) = 0

we have a remaining coefficient we can use. This is our next step.
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ODE methods Method for second orde ODEs (real case)

Construction of a fixed point method of order 4

Taking h(x) = y(x)/y ′(x), we have h′(x) = 1 + A(x)h(x)2.

If y(α) = 0 and A(x) has slow variation:∫ x

α

h′(ζ)
1 + A(x)h(ζ)2 dζ ≈ x − α,

and assuming A(x) > 0

α ≈ x − 1
w(x)

arctan (w(x)h(x)) , w(x) =
√

A(x)

A classroom exercise:

Prove that the fixed point method xn+1 = g(xn),

g(x) = x − 1√
A(x)

arctan
(√

A(x)
y(x)
y ′(x)

)
with y ′′(x) + A(x)y(x) = 0, A(x) differentiable, has order order of convergence four.

But the goal is to compute all the zeros in a given interval. How to be sure?
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ODE methods The global method as a consequence of Sturm comparison

Theorem (Sturm comparison)

Let y(x) and w(x) be solutions of y ′′(x) + Ay (x)y(x) = 0 and
w ′′(x) + Aw (x)w(x) = 0 respectively, with Ay (x) > Aw (x) > 0. If
y(x0)w ′(x0)− y ′(x0)w(x0) = 0 and xy and xw are the zeros of y(x) and
w(x) closest to x0 and larger (or smaller) than x0, then xy < xw (or
xy > xw ).

Equations: y ′′(x) + y(x) = 0, y ′′(x) + 2.25y(x) = 0

Algorithm (Zeros of y ′′(x) + A(x)y(x) = 0, A(x) monotonic)

Given xn, the next iterate xn+1 is computed as follows: find a solution
of the equation

w ′′(x) + A(xn)w(x) = 0

such that y(xn)w ′(xn)− y ′(xn)w(xn) = 0. If A′(x) < 0 (A′(x) > 0) take
as xn+1 the zero of w(x) closer to xn and larger (smaller) than xn.

Equations: y ′′(x) + A(x)y(x) = 0, w ′′(x) + A(xn)w(x) = 0, (A′(x) < 0)
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ODE methods The global method as a consequence of Sturm comparison

The method is equivalent to iterating xn+1 = T (xn) with the following
fixed point iteration.

Let j = sign(A′(x)), we define

T (x) = x − 1√
A(x)

arctanj(
√

A(x)h(x))

with

arctanj(ζ) =


arctan(ζ) if jz > 0,
arctan(ζ) + jπ if jz ≤ 0,
jπ/2 if z = ±∞

This method converges to α for any x0 in [α′, α) if A′(x) < 0, with α′ the
largest zero smaller than α (analogously for A′(x) > 0).
The method has fourth order convergence:

εn+1 =
A′(α)

12
ε4n +O(ε5n), εk = xk − α
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ODE methods The global method as a consequence of Sturm comparison

Computing the zeros in an interval where A(x) is monotonic.
Example: zeros of y(x) = x sin(1/x), satisfying y ′′(x) + x−4y(x) = 0 (4 digits of acc.).

1 T (x [1]) = x [2], T (x [2]) = x [3] (with four digits acc.)

2 x [4] = x [3] + π/
√

A(x [3]) (smaller than the next zero by Sturm comparison)

3 T (x [4]) = x [5], T (x [5]) = x [6] (with four digits acc.)
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ODE methods The global method as a consequence of Sturm comparison

The algorithm

The basic algorithm is as simple as this:

Algorithm

Computing zeros for A′(x) < 0
1 Iterate T (x) starting from x0 until an accuracy target is reached. Let α be the

computed zero.
2 Take x0 = T (α) = α+ π/

√
A(α) and go to 1.

Repeat until the interval where the zeros are sought is swept. For A′(x) > 0 the same
ideas can be applied but the zeros are computed in decreasing order.
See JS, SIAM J. Numer. Anal. (2010).

Requirement: the monotonicity properties of A(x) should be known in advance in
order to compute zeros in sub-intervals where A(x) is monotonic.
But we already did that job for Gauss and confluent hypergeometric functions (A.
Deaño, A. Gil, JS, JAT (2004))
For 100D accuracy, 3-4 iterations per root are enough and the method has
proved reliability.

J. Segura (Universidad de Cantabria) Zeros of Special Functions 3rd BCAM Workshop on CM 20 / 42



ODE methods The global method as a consequence of Sturm comparison

ODE METHOD FOR
COMPLEX ZEROS
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Fast computation of the complex zeros of special functions

Computing complex zeros of special functions

The complex zeros of solutions of ODEs

y ′′(z) + A(z)y(z) = 0,

with A(z) a complex meromorphic function, lie over certain curves.

Zeros of the Bessel function Yν (z) of order ν = 40.35

Zeros of the Bessel function of order ν = 40.35 and with a zero at z = 30i .
Zeros of L(α)

n (z), n = 26.2, α = −83 + 20i
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Fast computation of the complex zeros of special functions
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Fast computation of the complex zeros of special functions

Which are those curves?
Consider that two independent solutions of the ODE in a domain D can be written as

y±(z) = q(z)−1/2 exp (±iw(z)) , w(z) =
∫ z

q(ζ)dζ

If y(z) is a solution such that y(z(0)) = 0 then

y(z) = Cq(z)−1/2 sin
(∫ z

z(0)
q(ζ)dζ

)
Considering the parametric curve z(λ), with z(0) = z(0) and satisfying

q(z(λ))
dz
dλ

= 1

then z(kπ) are zeros of y(z) because
∫ z(kπ)

z(0)
q(ζ)dζ = kπ, k ∈ Z.

Therefore, we have zeros over the integral curve (an exact anti-Stokes line)

dy
dx

= − tan(φ(x , y)), q(z) = |q(z)|eiφ(x,y) (3)

passing through z(0) = x(0) + iy(0)
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Fast computation of the complex zeros of special functions

Problem: for computing q(z) we need to solve

1
2

q(z)
d2q(z)

dz2 − 3
4

(
dq(z)

dz

)2

− q(z)4 − A(z)q(z)2 = 0

which seems worse than our original problem, which was solving

y ′′(z) + A(z)y(z) = 0.
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Fast computation of the complex zeros of special functions

A drastic simplification

If A(z) is constant the general solution of y ′′(z) + A(z)y(z) = 0 is

y(z) = C sin(
√

A(z)(z − ψ)),

and the zeros are over the line

z = ψ + e−i ϕ2 λ, λ ∈ R, ϕ = arg A(z)

The zeros lie over the integral lines

dy
dx

= − tan(ϕ/2). (4)

Ansatz: the zeros are approximately over (4) even if A(z) is not a constant.
This approximation is equivalent to consider q(z) ≈

√
A(z). This is the WKB (or

Liouville-Green) approximation:

y(z) ≈ CA(z)−1/4 sin
(∫ z

z(0)
A(ζ)1/2dζ

)
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Fast computation of the complex zeros of special functions

First step towards an algorithm:
Let z(0) such that y(z(0)) = 0. If |A(z)| decreases for increasing <z the next zero can
be computed as follows:

1 z0 = H+(z(0)) = z(0) + π/
√

A(z(0))

2 Iterate zn+1 = T (zn) until |zn+1 − zn|/|zn| < ε, with

T (z) = z − 1√
A(z)

arctan
(√

A(z)
y(z)
y ′(z)

)

a Step 1 depends on WKB and the fact that A(z) has slow variation.

b The straight line joining the points y z(0) y z0 is tangent to the ASL arc at z(0). It is a
step in the right direction and with an appropriate size if A(z) varies slowly enough.

c Step 2 is a fixed point method of order 4, independently of the WKB approx.
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Fast computation of the complex zeros of special functions

Numerical example for Y10.35(z).
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Fast computation of the complex zeros of special functions

Things to consider before constructing an algorithm:
1 Where to start the iterations for computing a first zero
2 How to choose the appropriate direction
3 When to stop
4 How many ASLs do we need to consider

It is important to determine the structure of anti-Stokes and Stokes
lines.
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Fast computation of the complex zeros of special functions

Stokes line through z0: the curve

<
∫ z

z0

√
A(ζ)dζ = 0,

Anti-Stokes line through z0: the curve

=
∫ z

z0

√
A(ζ)dζ = 0.

Some properties:
1 If z0 ∈ C is not a zero or a singularity of A(z) there is one and only one ASL

passing through that point. The same is true for the Stokes lines.
2 If z0 is not a zero or a singularity of A(z) the ASL and the SL passing through

that point intersect perpendicularly at z0.
3 If z0 is a zero of A(z) of multiplicity m, m + 2 ASLs (and SLs) emerge from z0
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Fast computation of the complex zeros of special functions

Example: Bessel functions

Principal Stokes (dashed line) and anti-Stokes lines (solid) for the equation

d2y
dζ2 + (1− ζ−2)y = 0

(Bessel equation of orders |ν| > 1/2 with the change z = ζ
√
ν2 − 1/2).

Principal lines of y ′′(z) + A(z)y(z) = 0 are those emerging from the zeros of A(z).
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Fast computation of the complex zeros of special functions

This explains the different patterns of zeros shown before.

Zeros of the Bessel function Yν (z) of order ν = 40.35

Zeros of the Bessel function of order ν = 40.35 and with a zero at 30i .

Zeros of the Bessel function of order ν = 15.8 and with a zero at z = 10.
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Fast computation of the complex zeros of special functions
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Fast computation of the complex zeros of special functions

The strategy combines the use of H(±) = z ± π√
A(z)

and

T (z) = z +
1√
A(z)

arctan
(√

A(z)
y(z)
y ′(z)

)
, following these rules:

1 Divide the complex plane in disjoint domains separated by the principal ASLs
and SLs and compute separately in each domain.

2 In each domain, start away of the principal SLs, close to a principal ASL and/or
singularity (if any). Iterate T (z) until a first zero is found. If a value outside the
domain is reached, stop the search in that domain.

3 Proceed with the basic algorithm, choosing the displacements H(±)(z) in the
direction of approach to the principal SLs and/or singularity.

4 Stop when a value outside the domain is reached.

No exception has been found (so far tested for Bessel functions, PCFs and Bessel
polynomials). See JS, Numerische Mathematik, 2013.
The method has fourth order convergence.

Some graphical examples follow, with zeros computed using our algorithm in Maple.
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Fast computation of the complex zeros of special functions

Zeros of the Bessel function Yν (z) of order ν = 40.35
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Fast computation of the complex zeros of special functions

Stokes and anti-Stokes lines for the Bessel equation of order ν = 25 + 5i , together with the zeros of Yν (x) (+), Jν (x) (•) and

J−ν (x) (◦).
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Fast computation of the complex zeros of special functions

Zeros of the two Bessel functions y(k)
ν = eiφk αJν (z) + e−iφk βJ−ν (z), φk = 2νkπ, k = 0,−1, with α and β such that

y(0)
ν (−1 + 0+ i) = 0. ν = 25 + 5i .
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Fast computation of the complex zeros of special functions

Zeros of the Bessel polynomials L(1−2n−a)
n (2z) in the variable ζ = z/|γ|, |γ| =

√
(n + a/2)(n + a/2− 1). All the cases

shown share the same ASLs and SLs in the variable ζ. The symbols× and + correspond to the polynomial solutions n = 10,

a = 8 and n = 11, a = 8.572394... Triangles correspond to the non-polynomial case n = 10.6, a = 8.343446..
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Fast computation of the complex zeros of special functions

Currently, we are developing sofware for computing zeros of specific
functions. Particularly, the case of general Airy and Bessel functions is
being considered.
The algorithms can be improved in several ways:

1 Using asymptotic information, it is possible to determine a priori
how many ASLs containing zeros there exists.

2 Starting values for computing efficiently a first zero in each ASL
can be found.

3 The zeros of the first derivative can also be included in the
computation.

4 Use of local Taylor series
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Fast computation of the complex zeros of special functions

As example of this additional information, we mention some results we have
recently proved concerning the complex zeros of Bessel functions (A. Gil, JS
(2014)).

Theorem

Hankel functions H(1)(z) = Jν(z) + iYν(z) and H(2)(z) = Jν(z)− iYν(z) are
the only pair of independent solutions of the Bessel equation (up to constant
multiplicative factors) which do not have zeros for large and positive <z.

Theorem
The function Cν(α, z) = cosαJν(z)− sinαYν(z) with α ∈ [0, π) has a string of
zeros over the negative real axis and a conjugated string below this axis if
and only if one of these conditions is met:

1 α 6= 0 and ν ∈ Z,

2 ν ∈ (0,1/2) and α > {ν}π,

3 ν ∈ (1/2,1) and α > {ν}π,

where {ν} is the fractional part of ν.
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Fast computation of the complex zeros of special functions

Theorem
Let ν be real and positive and sufficiently large. The functions Jν(z),
H(1)
ν (z) and H(2)

ν (z) are, up to constant factors, the only three solutions
of the Bessel equation which do not have zeros for <z̃ ∈ (−1,1),
z̃ = z/ν, both for =z > 0 and =z < 0 simultaneously.

Theorem
The intersection of the eye-shaped curve containing zeros of Cν(α, z)
with the imaginary axis takes place approximatelly at jiνỹj , j = ±1, with
ỹj the (positive) solution of

g(ỹj) +
1

2ν
log |1− e2jiα| = 0, g(y) = log

1 +
√

1 + y2

y

−√1 + y2
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Fast computation of the complex zeros of special functions

Software plans:

1 Real cases for hypergeometric functions, including orthogonal
polinomials, Bessel functions, Airy functions, Parabolic Cylinder
functions, ... (Maple/Mathematica implementation).

2 Bessel functions, real and complex (Maple/Mathematica and
Fortran).

3 Other complex functions (Maple/Mathematica).
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Fast computation of the complex zeros of special functions

THANK YOU!
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