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Introduction and definitions

Cumulative distribution functions

F (x) =

∫ x

α

f (t)dt , f (t) > 0, F (β) = 1.

F (x): cumulative distribution function (CDF).
f (x): probability density function (PDF).

The CDF gives the probability that a random variable X with PDF f will be found to
have a value less than or equal to x

Given 0 < p < 1, the inverse of F (x) = p with respect to x is an important funtion in
statistics (quantile function).

An example of application is random number generation:

If U is a random uniform variable in [0, 1] then Y = F−1(U) is a random variable
distributed according to probability density function f (t)
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Introduction and definitions

A simple and well studied example is the gaussian distribution

F (x) =
1

σ
√
π

∫ x

−∞
e−

(t−µ)2

2σ2 dt =
1
2

[
1 + erf

(
x − µ√

2σ

)]
where erf is the error function

erf(x) =
2√
π

∫ x

0
e−t2

dt

erf (x) is a "nearly elementary" function for which efficient methods of computation and
inversion exist.

Many other CDFs can be expressed, in some limit, in terms of error functions (at least
asymptotically).

The error function is a particular case of the central gamma distribution.
P1/2(x) = erfc(

√
x) = 1− erf(

√
x).
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Introduction and definitions

Cumulative γ and β distributions

The cumulative central gamma distribution is given by

Pa(x) =
1

Γ(a)

∫ x

0
ta−1e−tdt , x ≥ 0.

The cumulative central beta distribution is defined as

Ba,b(x) =
1

B(a, b)

∫ x

0
ta−1(1− t)b−1dt , B(a, b) =

Γ(a)Γ(b)

Γ(a + b)
, x ∈ [0, 1]

The cumulative noncentral γ distribution can be written

Pa(x , y) = y
1
2 (1−a)

∫ x

0
t

1
2 (a−1)e−t−y Ia−1

(
2
√

yt
)

dt , x ≥ 0

The cumulative noncentral beta distribution can be written as

Ba,b(x , y) =
e−y/2

B(a, b)

∫ x

0
ta−1(1− t)b−1M

(
a + b, a,

yt
2

)
dt , x ∈ [0, 1]
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Introduction and definitions

The problem is to invert these CDFs and to do this as efficiently as possible.

Of course, the problem of computing the functions comes first and without algorithms
for an accurate computation of Pa(x , y) and Ba,b(x , y) it is not possible to build
efficient algorithms for their inversion. Precisely the main cost in the inversion
algorithms is given by the computation of the functions. Derivatives are cheaper.

An analysis of the situation revealed that:
1 Algorithms existed both for the computation and inversion off the CDF for the

central case, but asymptotic approximations can improve both algorithms.
2 Secant, Newton and some third order methods were used for inversion starting

with some initial estimations (not always accurate). Convergence was checked
experimentally.

3 No reliable algorithms were available for the computation of the CDFs for the
noncentral case and the available software had a limited range of validity (and
also some inaccuracies).

4 Algorithms for the inversion (with respect to both x and y ) in the noncentral case
also had a limited range of validity and no published software was available.
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Introduction and definitions

Common characteristics of these (and other CDFs):

© Unimodal: the PDF has a single extremum, and it is a maximum; therefore
The CDF has only one inflection point.

© The graph of the CDF has flat ends (tails).

We consider as example the case of the central gamma distribution.
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Introduction and definitions

Graph of Pa(x) = 1
Γ(a)

∫ x

0
ta−1e−tdt , a = 30
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Introduction and definitions

Pa(x) =
1

Γ(a)

∫ x

0
ta−1e−tdt

The PDF has its maximum at x = a− 1 when a > 1, where the CDF has its inflection
point.
Therefore:

1 The inversion of Pa(x) = p by Newton method converges monotonically to the
solution if the starting value x0 is closer to a− 1 than the root.

2 With x0 = a− 1 we have convergence for any value of p ∈ (0, 1) and a > 1.
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Introduction and definitions

Pa(x) =
1

Γ(a)

∫ x

0
ta−1e−tdt

The PDF has its maximum at x = a− 1 when a > 1, where the CDF has its inflection
point.
Therefore:

1 The inversion of Pa(x) = p by Newton method converges monotonically to the
solution if the starting value x0 is closer to a− 1 than the root.

2 With x0 = a− 1 we have convergence for any value of p ∈ (0, 1) and a > 1. But
this is slow, particularly for the tails.

More accurate starting values are convenient. And because the derivatives are cheap
to compute an efficient algorithm could use:

1 Sufficiently accurate analytical starting values
2 High order Newton-like methods.
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Introduction and definitions

Algorithms based on initial
value estimations
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Algorithms based on initial value estimations

The computation of initial estimations has different difficulty depending on the
distribution to invert and very specifically on the number of parameters

For the inversion of the central gamma distribution w.r.t. x (P(a, x) = p = 1− q),
different type of starting values are chosen according to the next schematic figure.

Next we give two examples (small p and large a).
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Algorithms based on initial value estimations

For small p (therefore small x), we can try to invert approximatelly

Pa(x) =
xa

Γ(a)

∞∑
n=0

(−1)nxn

(a + n)n!
= p (1)

and then

x = r

(
1 +

∞∑
n=1

a(−1)nxn

(a + n)n!

)−1/a

, r = (pΓ(1 + a))1/a , (2)

We can iterate the resulting fixed point iteration (truncating the sum).
Alternatively, we write

x = r +
∞∑

n=2

ck r k ,

The first few coefficients are

c2 =
1

a + 1
, c3 =

3a + 5
2(a + 1)2(a + 2)

,

c4 =
8a2 + 33a + 31

3(a + 1)3(a + 2)(a + 3)
, c5 =

125a4 + 1179a3 + 3971a2 + 5661a + 2888
24(1 + a)4(a + 2)2(a + 3)(a + 4)

.

Large p (small q = 1− p) can be solved in a similar way (but using asymptotic
expansions).

Also the a large case uses asymptotics, but it is more involved (asymptotic expansions
in terms of the error function are needed).
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Algorithms based on initial value estimations

The approximate inversion of Pa(x) = p for large a (but not so large) starts from
(Temme, 1979)

Pa(x) = erfc(−η
√

a/2)− Ra(η),
1
2
η2 = λ− 1− logλ

λ = a/x and sign(η) = sign(λ− 1) and Ra(η) is an (asymptotic) series in inverse
powers of a (going to 0 as a→ +∞).

We treat the asymptotic series as a perturbation. A first approximation for η0 is
obtained by inverting

erfc(−η0

√
a/2) = p

Then we write η (the solution of Pa(x) = p) as an asymptotic series

η(p, a) = η0(p, a) + ε(η0, a), ε(η0, a) =
∑
j∈N

εj (η0, a)a−j

with coefficients that can be explicitly obtained in terms of η0. After the value η is
computed (aproximatelly), we obtain x (again by numerical inversion).

Although efficient, this is much more involved than the cases for p or 1− p small.

J. Segura (Universidad de Cantabria) Numerical inversion of CDFs RSME15, Granada 16 / 31



Algorithms based on initial value estimations

The final steps in the construction of the algorithm are:
1 Starting values: select carefully the different analytical inversion methods for the

different values of the parameters.
2 Test the convergence of the iterative method (we used a fifth order Newton-like

method for the central gamma case).
3 Find an alternative iterative method when convergence fails (rare, but it happens

sometimes, for instance for very small p). Normally, this involves using lower
order iterative methods.

Some references:

A. R. DiDonato, A. H. Morris. ACM Trans. Math. Software 12 (1986) 377–393. (Central gamma
distribution)

A. Gil, JS, N.M. Temme. SIAM J Sci Comput 34(6) (2012) A2965-A2981. (Central gamma distribution)

A. Gil, JS, N.M. Temme. Comput. Phys. Commun. (in press) (Algorithms for central and noncentral
gamma distributions)
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Algorithms based on initial value estimations

Iterative methods with
improved global properties
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Iterative methods with improved global properties

It would be desirable to consider methods with better non-local convergence
properties than higher order Newton, particularly for the more complex cases
(non-central).

Computing starting values is sometimes hard. It would be desirable that
accurate starting values are not needed (at least for the harder cases).

As starting point we consider Halley’s method which, as we will see, has
generally good non-local properties for the problems we are considering.
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Iterative methods with improved global properties Halley’s method

Halley’s method (HM) is the following fixed point method:

xn+1 = g(xn), g(x) = x − f (x)

(
f ′(x)− f ′′(x)

2f ′(x)
f (x)

)−1

Theorem

Let f with f ′ 6= 0 and f ′′′ continuous in an interval J and let α ∈ J such that f (α) = 0.
Then, if {f , x} < 0 in J the HM converges monotonically to α for any starting value
x0 ∈ J.

{f , x} is the Schwarzian derivative of f with respect to x , that is:

{f , x} =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

.

For the case of f (x) = Pa(x)− p we have {f , x} = −1
2

(
1 + 21− a

x + a2 − 1
x2

)
,

which is smaller that zero for a > 1 and with a maximum at a + 1. Then:

The HM converges to the solution of Pa(x) = p for any x0 > 0 and p ∈ (0, 1) if a ≥ 1.

But it is not always faster than Newton’s if we don’t have sufficiently accurate starting
values, as we see next.
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Iterative methods with improved global properties Halley’s method

Halley’s method (HM) is exact for the functions

h(x) =
x + A

Bx + C
(3)

(gives the root x = −A in one iteration). From this follows the geometric interpretation:

Theorem

Let h(x) as in (3) and define y(x) = h(x − xn), the HM is obtained by
1 y(xn) = f (xn), y ′(xn) = f ′(xn), y ′′(xn) = f ′′(xn) and y ′′′(xn) = f ′′′(xn) (thus

determining the three constants)
2 Obtaining xn+1 from y(xn+1) = 0.

The three constants are given by

A =
2f (xn)f ′(xn)

D(xn)
, B = − f ′′(xn)

D(xn)
, C =

2f ′(xn)

D(xn)
(4)

where
D(xn) = 2f ′(xn)2 − f (xn)f ′′(xn) (5)

The HM is also known as the method of tangent hyperbolas
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Iterative methods with improved global properties Halley’s method
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Iterative methods with improved global properties The Schwarzian-Newton method

The Schwarzian Newton method.

First we reconsider the HM and some of its properties.
Let f be sufficiently differentiable. Our aim is to solve f (x) = 0. We write

f ′′(x) + B(x)f ′(x) = 0,B(x) = −f ′′(x)/f ′(x),

which is a second order ODE that we can transform to normal form by setting

Φ = exp
(

1
2

∫
B
)

f = f/
√
|f ′|

This leads to
Φ′′ + ΩΦ = 0, Ω =− 1

4
B2 − 1

2
B′ =

1
2
{f , x}. (6)

where {f , x} is the Schwarzian derivative of f with respect to x .
As is well know, the application of Newton’s method to the function Φ leads to the HM.
And considering (6) the global convergence of HM when {f , x} < 0 is explained.

The HM is a third order method (if Φ(α) = 0 then Φ′′(α) = 0⇒ g′(α) = g′′(α) = 0).
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Iterative methods with improved global properties The Schwarzian-Newton method

Now, we improve HM by integrating approximatelly the Riccati equation associated to
Φ′′ + ΩΦ = 0.

Φ′′ + ΩΦ = 0⇒ h′(x) = 1 + Ω(x)h(x)2, h = Φ/Φ′.

Now let α such that h(α) = 0 (then f (α) = 0). IF Ω(x) > 0, we have:

x − α =

∫ x

α

h′(t)
1 + Ω(t)h2(t)

dt ≈ 1√
Ω(x)

arctan(
√

Ω(x)h(x)). (7)

where the approximation consists in taking Ω(x) constant in the integration.
This suggests:

g(x) = x − 1√
Ω

arctan
(√

Ω
Φ

Φ′

)
, (8)

where
Φ

Φ′
=

f (x)

f ′(x)− f ′′(x)

2f ′(x)
f (x)

.
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Iterative methods with improved global properties The Schwarzian-Newton method

The Schwarzian-Newton method (SNM)

xn+1 = g(xn), g(x) = x − arctan

1
2
{f , x}, f

f ′ − f ′′

2f ′
f

 ,

(JS, 2015), where

arctan(λ, x) =


1√
λ

arctan(
√
λx) , λ > 0,

x , λ = 0
1√
−λ

arctanh(
√
−λx) , λ < 0

and we use a similar definition for tan(λ, x)
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Iterative methods with improved global properties Geometrical interpretation of the SNM

The method is exact for functions with constant Schwarzian derivative. The functions
with constant Schwarzian derivative are

h(x) =
tan(λ, x) + A

B tan(λ, x) + C
,

with {h, x} = 2λ.
As a particular case, the functions with zero Schwarzian derivative are

h(x) =
x + A

Bx + C
,

and the HM is exact for these functions (as well as the SNM, which coincides in this
case).

The SNM has a geometrical interpretation too.
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Iterative methods with improved global properties Geometrical interpretation of the SNM

Theorem

Let
h(x) =

tan(λ, x) + A
B tan(λ, x) + C

, y(x) = h(x − xn),

the SNM is obtained by
1 Setting y(xn) = f (xn), y ′(xn) = f ′(xn), y ′′(xn) = f ′′(xn) and y ′′′(xn) = f ′′′(xn)

(thus determining the four constants)
2 Obtaining xn+1 from y(xn+1) = 0

The constant λ is given by

λ = Ω(xn), Ω(x) =
1
2
{f , x} (9)

and the other three constants A, B and C have the same expression as for the HM.

Let us compare the osculating curves at x = a + 1 for the Newton method, the HM
and the SNM.
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Iterative methods with improved global properties Geometrical interpretation of the SNM

J. Segura (Universidad de Cantabria) Numerical inversion of CDFs RSME15, Granada 28 / 31



Iterative methods with improved global properties Geometrical interpretation of the SNM

The osculating curve for the SNM at x = a + 1 is much closer to the graph of Pa(x),
particularly at the tails. In addition, the SNM has good non-local properties if {f , x}
satisfies some monotonicity properties.

Theorem

Let f such that f ′ 6= 0 and f ′′′ continuous in an interval J and let α ∈ J such that
f (α = 0), then if {f , x} is decreasing in I = [a, α] ⊂ J and {f , x} < 0 in J the SNM
converges monotonically to α for any starting value x0 ∈ [a, α]. If {f , x} > 0 in part of
the interval, the same is true if, in addition, the SNM iteration satisfies g(a) > a.

(and a similar result can be given for {f , x} increasing).

Corollary

If {f , x} has one and only one extremum at xe ∈ J and it is a maximum, then
1 If {f , x} is negative the SNM converges monotonically to α starting from x0 = xe.
2 If (xe − α)(xe − g(xe)) > 0 the SNM converges monotonically to α starting from

x0 = xe.
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Iterative methods with improved global properties Applications

© For f (x) = Pa(x)− p, {f , x} is negative when a > 1 and with a maximum at
x = a + 1. Therefore, the starting value x0 = a + 1 ensures monotonic convergence.

©The convergence is fast if p is not too small or large and always better than NM or
HM. If 0.05 < p < 0.95 three iterations starting with x0 = a + 1 are enough for 15-16
digits accuracy.

©For 0 < a < 1 the change z(x) = log(x) enables monotonic convergence.

©For the central beta distribution the algorithm is equally efective.

©For the noncentral gamma distribution, the improvement over existing algorithms
(based on the secant method) will be considerable (the Bessel function I will be
needed). Same for the non-central beta.

© The applicability of the method is not restricted to CDFs or to functions with
negative Schwarzian derivative. Another example of application is the inversion of
elliptic integrals, like

f (x) =

∫ x

0

√
1−m2 sin2 tdt − p, 0 < m < 1

for which 10−25 relative accuracy is obtained in 2 iterations (and 10−40 if m < 0.8). A
previous method by Boyd (2012) gave 10−10 in 3 iterations.

J. Segura (Universidad de Cantabria) Numerical inversion of CDFs RSME15, Granada 30 / 31



Iterative methods with improved global properties Applications

THANK YOU FOR YOUR ATTENTION
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