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Introduction and definitions

Cumulative distribution functions

F (x) =

∫ x

α

f (t)dt , f (t) > 0, F (β) = 1.

F (x): cumulative distribution function (CDF).
f (t): probability density function (PDF).

The CDF gives the probability that a random variable X with PDF f will be found to
have a value less than or equal to x

Given 0 < p < 1, the inverse of F (x) = p with respect to x is also an important funtion
in statistics (quantile function).

An example of application is random number generation:

If U is a random uniform variable in [0, 1] then X = F−1(U) is a random variable
distributed according to the probability density function f (t)
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Introduction and definitions

A simple and well studied example is the gaussian distribution

F (x) =
1

σ
√
π

∫ x

−∞
e−

(t−µ)2

2σ2 dt =
1
2

[
1 + erf

(
x − µ√

2σ

)]
where erf is the error function

erf(x) =
2√
π

∫ x

0
e−t2

dt

erf (x) is a "nearly elementary" function for which efficient methods of computation and
inversion exist.

Many other CDFs can be expressed, in some limit, in terms of error functions (at least
asymptotically).

The error function is a particular case of the central gamma distribution.
P1/2(y) = erf(

√
y).
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Introduction and definitions

Cumulative γ and β distributions

The cumulative central gamma distribution is given by

Pµ(y) =
1

Γ(µ)

∫ y

0
tµ−1e−tdt , y ≥ 0.

Observe that y plays the role of the variable previously denoted as x

The cumulative noncentral γ distribution can be defined as

Pµ(x , y) = e−x
∞∑

n=0

xn

n!
Pµ(y)

and it can also be written as

Pµ(x , y) = x
1
2 (1−µ)

∫ y

0
t

1
2 (µ−1)e−t−x Iµ−1

(
2
√

xt
)
.

The complementary distribution (also called upper tail distribution) is:
Qµ(x , y) = 1− Pµ(x , y).

Pµ(x , y) and Qµ(x , y) are also called Marcum functions.
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Introduction and definitions

Graph of Pµ(y) = 1
Γ(µ)

∫ y

0
tµ−1e−tdt , µ = 30
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Introduction and definitions

The cumulative central beta distribution is defined as

Ba,b(y) =
1

B(a, b)

∫ y

0
ta−1(1− t)b−1dt , B(a, b) =

Γ(a)Γ(b)

Γ(a + b)
, y ∈ [0, 1]

(the standard notation in the NIST Handbook is Ix (a, b))

The cumulative noncentral beta distribution can be defined as

Ba,b(x , y) = e−x/2
∞∑

n=0

(x/2)n

n!
Ba,b(y)

and it can also be written as

Ba,b(x , y) =
e−x/2

B(a, b)

∫ y

0
ta−1(1− t)b−1M

(
a + b, a,

xt
2

)
dt .
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Introduction and definitions

These functions are hard to compute or invert, particularly the noncentral distributions.

Recent references on the computation and inversion of gamma distributions:
◦ Algorithm 939: Computation of the Marcum Q-function. A. Gil, JS, N. M. Temme. ACM Trans. Math. Softw. (2014)

◦ The asymptotic and numerical inversion of the Marcum Q-function. A. Gil, JS, N.M. Temme. Stud. Appl. Math.(2014)

◦ GammaCHI: a package for the inversion and computation of the gamma and chi-square cumulative distribution functions

(central and noncentral). A. Gil, JS, N.M. Temme. Comput. Phys. Commun. (2015)

Less information and methods are available for the noncentral beta distribution. All
methods of computation appear to be based on the application of the definition in
terms of central distributions:

A note on the Noncentral Beta Distribution Function, R. Chattamvelly. Amer. Stat. 49 (1995) 231–234.

Information (sharp bounds) in terms of simpler functions is always useful, both for the
direct computation and the inversion.
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Introduction and definitions

Bounds and L’Hôpital’s rule
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Bounds for CDFs from L’Hôpital’s rule

Theorem

Let

Gi (x) =

∫ x

a
gi (t)dt , Gi (b) = 1, i = 1, 2,

g1(x) and g2(x) integrable in [a, b] and continuous in (a, b), and g1(x) 6= 0 in (a, b).

If g2(x)/g1(x) is strictly monotonic in (a, b) then:
1 There exists one and only one x0 in (a, b) such that g1(x0) = g2(x0)

2 The following statements are equivalent in (a, b):

a) G2(x)/G1(x) < 1 (G2(x)/G1(x) > 1)
b) g2(x)/g1(x) is increasing (decreasing).
c) G2(x)/G1(x) < g2(x)/g1(x) (G2(x)/G1(x) > g2(x)/g1(x))
d) G2(x)/G1(x) is increasing (decreasing)
The same holds for Ḡ2(x)/Ḡ1(x) = (1−G2(x))/(1−G1(x)) but reversing the
inequalities in (a) and (c).

The implication b)⇒ d) is called L’Hôpital’s monotone rule [Anderson,
Vamanamurthy, Vuorinen (1993)]
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Bounds for CDFs from L’Hôpital’s rule

Representation of: G2(x)
G1(x)

=
P11(x)
P10(x)

, Ḡ2(x)

Ḡ1(x)
=

1− P11(x)
1− P10(x)

, g2(x)
g1(x)

= x
10 and 1
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Bounds for CDFs from L’Hôpital’s rule

The proof is elementary and is a consequence of Rolle’s theorem and Cauchy’s mean
value theorem.

For instance, the implication b)⇒ c) goes as follows.

We are assuming that g2(x)/g1(x) is strictly increasing (b)). We apply Cauchy’s mean
value theorem in [a, x ], x ≤ b; then, there exists c ∈ (a, x) such that

G2(x)

G1(x)
=

g2(c)

g1(c)
<

g2(x)

g1(x)
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Bounds for CDFs from L’Hôpital’s rule

Ratios of integrals can be bounded in terms of monotonic ratios of integrands.

And bounds for one of the integrals can be obtained when:

a. one of the integrals is known.

b. there is some other relation.

If the difference G1(x)−G2(x) is known (and assuming G2(x)/G1(x) < 1) we have:

G1(x) <
G1(x)−G2(x)

1− r(x)
≡ U1(x), G2 < U2(x) = r(x)U1(x), x < x0.

where r(x) = g2(x)/g1(x) and x0 is such that r(x0) = 1. These two bounds tend to be
sharper as x → a+.

In a similar way, for Ḡi (x) = 1−Gi (x) we obtain

Ḡ1(x) < −U1(x), Ḡ2(x) < −U2(x), x > x0,

and these two bounds tend to be sharper as x → b−.

J. Segura (Universidad de Cantabria) Bounds for CDFs OPSFA13, NIST 15 / 32



Bounds for CDFs from L’Hôpital’s rule

Application to gamma
distributions
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Application to gamma distributions Bounds using the recurrence

Bounds using the recurrence

Pµ(x , y) =

∫ y

0
gµ(x , t)dt , Qµ(x , y) = 1− Pµ(x , y)

with
gµ(x , y) =

(y
x

)(µ−1)/2
e−x−y Iµ−1(2

√
xy).

Recurrences: Pµ+1(x , y) = Pµ(x , y)− gµ+1(x , y), Qµ+1(x , y) = Qµ(x , y) + gµ+1(x , y)

Remark:The variable y plays the role of the variable x in the main theorem

Taking G2 = Pµ+1 and G1 = Pµ (same for Q), the difference G2 −G1 is known.

gµ+1(x , y)/gµ(x , y) is increasing as a function of y and we have

(1) Pµ+1(x , y)
Pµ(x , y)

<
gµ+1(x , y)
gµ(x , y)

=

√
y
x

Iµ(2
√

xy)

Iµ−1(2
√

xy)
,

Qµ+1(x , y)

Qµ(x , y)
>

gµ+1(x , y)

gµ(x , y)

From this, bounds for Pµ and Qµ become available [JS, Appl. Math. Comput. 2014]
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Application to gamma distributions Bounds in terms of error functions

Bounds in terms of error functions

Now we take G2(y) =
∫ y

0 gµ+α(x , t)dt and G1(y) =
∫ y

0 gµ(x , t)dt , α ∈ R+.

r(y) =
gµ+α(x , y)

gµ(x , y)
= C(a, x)(

√
y)α

Iµ−1+α(2
√

xy)

Iµ−1(2
√

xy)
.

with C(a, x) not depending on y .
r(y) is strictly monotonic (increasing) as a function of y for µ ≥ 1:

Lemma

The function f (t) = tα Iµ+α(t)
Iµ(t) is increasing as a function of t for α, µ > 0.

Proof:

f ′(t) = f (t)
(

Iµ+α−1(t)
Iµ+α(t)

− Iµ−1(t)
Iµ(t)

)
.

and Iν−1(t)/Iν(t) is increasing as a function of ν ≥ 0 [JS, AMC. 2014: Lemma 2] �

We conjecture that Iν−1(t)/Iν(t) is increasing as a function of ν ≥ −1/2
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Application to gamma distributions Bounds in terms of error functions

As a consequence of the monotonicity of r(y) we have that if ν > µ ≥ 1/2 then

(2) Pν(x, y) <
(y

x

) ν−µ
2 Iν−1(2

√
xy)

Iµ−1(2
√

xy)
Pµ(x, y)

and

(3) Qν(x, y) >
(y

x

) ν−µ
2 Iν−1(2

√
xy)

Iµ−1(2
√

xy)
Qµ(x, y)

Additionally, the trivial bounds Pν(x , y) < Pµ(x , y) and Qν(x , y) > Qµ(x , y) hold.
Using that P1/2(x , y) = 1

2
(
erf(
√

y +
√

x) + erf(
√

y −
√

x)
)

bounds in terms of a
Bessel function and two error functions are obtained.

In [A. Baricz, JMAA, 2009], similar bounds are given, for instance:

Q̃ν(a, b) ≥ Gν(a, b)

sinh(ab)

(
erfc

(
b − a√

2

)
− erfc

(
b + a√

2

))
Iν−1(ab), b ≥ a > 0 ν ≥ 1,

where Q̃ν(a, b) = Qν( a2

2 ,
b2

2 ) and Gν(a, b) =

√
πbν

23/2aν−1 .
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Application to gamma distributions Bounds in terms of error functions

Some of our bounds:

From the bound for Qν in the previous theorem we have, taking µ = 1/2:

(4)
Q̃ν(a, b) > B[1]

ν (a, b)

B[1]
ν (a, b) =

Gν(a, b)
cosh(ab)

(
erfc

(
b − a√

2

)
+ erfc

(
b + a√

2

))
Iν−1(ab),

and from the bound for Pν :

(5)
Q̃ν(a, b) > B[2]

ν (a, b)

B[2]
ν (a, b) = 1− Gν(a, b)

cosh(ab)

(
erf
(

b − a√
2

)
+ erf

(
b + a√

2

))
Iν−1(ab)

These bounds are valid for ν > 1/2, a, b > 0.
And taking µ = 3/2:

(6) Q̃ν(a, b) >
aB[1]

ν (a, b)
b tanh(ab)

+
(

b
a
)ν−1

e−(a2+b2)/2Iν−1(ab)

and

(7) Q̃ν(a, b) > 1− aB[2]
ν (a, b)

b tanh(ab)
+
(

b
a
)ν−1

e−(a2+b2)/2Iν−1(ab)

valid for ν > 3/2, a, b > 0.
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Application to gamma distributions Bounds in terms of the incomplete gamma functions

Bounds in terms of γν(y), Γν(y)

We take G2(y) =
∫ y

0 gν(ρ2x , t)dt and G1(y) =
∫ y

0 gν(x , t)dt , with ρ > 0, ρ 6= 1, then

r(y) =
gν(ρ2x , y)

gν(x , y)
= Cν(ρ, x)

Iν−1(2ρ
√

xy)

Iν−1(2
√

xy)

r(y) is decreasing if ρ < 1 and µ ≥ 0. Then, for ρ < 1:

(8)
Pν(x, y) < ρµ−1e−x(1−ρ2) Iν−1(2

√
xy)

Iν−1(2ρ
√

xy)
Pν(ρ2x, y),

Qν(x, y) > ρµ−1e−x(1−ρ2) Iν−1(2
√

xy)
Iν−1(2ρ

√
xy)

Qν(ρ2x, y).
l

In addition we have the trivial bounds: Pν(x , y) < Pν(ρ2x , y), Qν(x , y) > Qν(ρ2x , y).
Taking the limit ρ→ 0:

(9) Pν(x, y) < e−x (
√

xy)1−ν Iν−1(2
√

xy)γν(y)

Qν(x, y) > e−x (
√

xy)1−ν Iν−1(2
√

xy)Γν(y)

The second bound implies: Iν−1(2
√

xy)Γν(y) < ex (
√

xy)ν−1
, ν ≥ 0, x, y > 0
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Application to gamma distributions Bounds in terms of the incomplete gamma functions

Application to beta
distributions
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Application to beta distributions

The cumulative noncentral beta distribution can be defined as

Ba,b(x , y) = e−x/2
∞∑
j=0

1
j!

(x
2

)j
Ba,b(0, y)

where Ba,b(0, y) (denoted as Iy (a, b) in the NIST Handbook) is the central beta
distribution

Ba,b(0, y) =
1

B(a, b)

∫ y

0
ta−1(1− t)b−1dt , B(a, b) =

Γ(a)Γ(b)

Γ(a + b)
.

A different notation in the literature is Ix (a, b, λ), where Ba,b(x , y) = Iy (a, b, x).
We have

Ba,b(x , y) =

∫ y

0
ga,b(x , t)dt

with

ga,b(x , y) =
e−x/2

B(a, b)
ya−1(1− y)b−1M

(
a + b, a,

xy
2

)
With the recurrences for the central beta distribution and using the definition we obtain:

Ba,b(x , y) = Ba+1,b(x , y) + e−x/2 ya(1− y)b

aB(a, b)
M(a + b, a + 1, xy/2).
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Application to beta distributions Bounds in terms of the incomplete beta function

Bounds in terms of the incomplete beta function
We have

ga,b(ρx , y)

ga,b(x , y)
= C(a, b, x)

M(a + b, a, ρz)

M(a + b, a, z)
, z = xy/2.

q(z) =
M(a + b, a, ρz)
M(a + b, a, z)

is decreasing if ρ < 1 because

q′(z) =
α

z
M(α, β, ρz)

M(α, β, z)

[
M(α + 1, β, ρz)

M(α, β, ρz)
− M(α + 1, β, z)

M(α, β, z)

]
.

and M(α + 1, β, z)
M(α, β, z)

is increasing as a function of z for α, β > 0. With this

(10)
Ba,b(ρx , y)

Ba,b(x , y)
>

ga,b(ρx , y)

ga,b(x , y)

and

(11) Ba,b(x, y) < ex(ρ−1)/2 M(a + b, a, xy/2)

M(a + b, a, ρxy/2)
Ba,b(ρx, y)

and in particular

(12) Ba,b(x, y) < e−x/2M(a + b, a, xy/2)Ba,b(0, y)
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Application to beta distributions Bounds using the recurrence

Bounds using the recurrence
We have

r(y) =
ga+1,b(x , y)

ga,b(x , y)
=

a + b
a

y
M(a + b + 1, a + 1, z)

M(a + b, a, z)
, z = xy/2

which is increasing as a function of y . Then, invoking the main theorem:

(13) Ba+1,b(x, y)
Ba,b(x, y)

<
ga+1,b(x, y)
ga,b(x, y)

= a + b
a y M(a + b + 1, a + 1, z)

M(a + b, a, z)
, z = xy/2

And using Ba,b(x , y) = Ba+1,b(x , y) + e−x/2 ya(1− y)b

aB(a, b)
M(a + b, a + 1, xy/2):

(14) Ba,b(x, y) <
Ca,b(x, y)M(a + b, a + 1, xy/2)

a
(

1− ga+1,b

ga,b

)
and particularizing for the central case x = 0 we have:

(15) Ba,b(0, y) <
ya(1− y)b

B(a, b)(a − (a + b)y)
, y <

a
a + b
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Application to beta distributions Bounds using the recurrence

Bounds using only the recurrence

We consider the recurrence again:

Ba,b(x , y) = Ba+1,b(x , y) + e−x/2 ya(1− y)b

aB(a, b)
M(a + b, a + 1, xy/2)

Applying N times the recurrence we have

Ba,b(x , y) = Ba+N+1,b +
Ca,b(x , y)

a

N∑
j=0

(a + b)j

(a + 1)j
y jM(a + b + j, a + j + 1, xy/2)

which gives the bound

(16) Ba,b(x, y) >
Ca,b(x, y)

a

N∑
j=0

(a + b)j

(a + 1)j
y jM(a + b + j, a + j + 1, xy/2)

This gives a convergent sequence of bounds (because Ba,b(x , y) is minimal solution
of the recurrence as a→ +∞).
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Application to beta distributions Application: inversion of the central beta distribution

Application: inversion of the central distribution

The bounds, when they are sharp, can be used as estimations for starting inversion.
For instance, we have

ya(1− y)b

aB(a, b)

(
1 +

a + b
a + 1

y
)
< Ba,b(0, y) <

ya(1− y)b

aB(a, b)

(
1− a + b

a
y
)−1

And the bounds are sharp as y → 0+.

The upper and lower bounds can be used to estimate the solution of Ba,b(0, yβ) = β.

The solution of yl
a(1− yl )

b

aB(a, b)

(
1− a + b

a yl

)−1
= β gives a lower bound.

The solution of yu
a(1− yu)b

aB(a, b)

(
1 + a + b

a + 1 yu

)
= β gives an upper bound.

The seeked value yβ is such that yβ ∈ (yl , yu).

With this, either taking yl or yu as starting value, the Schwartzian-Newton method [JS,
2015, submitted] converges with certainty to yβ .
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Application to beta distributions Application: inversion of the central beta distribution

A short diversion from the main topic:
The Schwarzian-Newton method (SNM) for solving f (x) = 0 is a fourth order method with good non-local convergence properties
(JS, 2015, arXiv:1505.01983). It is defined by the following fixed-point iteration:

xn+1 = g(xn), g(x) = x − arctan

 1

2
{f , x},

f

f ′ −
f ′′

2f ′
f

 ,

where

arctan(λ, x) =


1√
λ

arctan(
√
λx) , λ > 0,

x , λ = 0
1√
−λ

arctanh(
√
−λx) , λ < 0

and {f , x} is the Schwarzian derivative of f with respect to x : {f , x} = f ′′′

f ′
− 3

2

(
f ′′

f ′

)2
.

The method is exact for functions with constant Schwarzian derivative. The functions with constant Schwarzian derivative are

h(x) =
tan(λ, x) + A

B tan(λ, x) + C
,

with {h, x} = 2λ.
The SNM has a geometrical interpretation similar to Newton’s method but in terms of osculatory functions different from straight
lines, and with higher order of osculation.

END of the diversion
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Application to beta distributions Application: inversion of the central beta distribution

For computing yl and yu we can iterate yn+1 = h(yn), y0 = 0, with
h(y) = (βB(a, b)(a− (a + b)y)(1− y)−b)1/a for yl , and

h(y) =
(

1 + a + b
a + 1 y

)−1/a
(aβB(a, b)(1− y)−b)1/a for yu

Some numerical examples
a b β yl yu yβ
5 10 10−1 0.174545 0.197809 0.185134
5 10 10−2 0.100007 0.103405 0.101928
5 10 10−4 0.0364679 0.0366690 0.0366313
5 10 10−6 0.0140692 0.0140938 0.0140905

10 10 10−1 0.343314 0.398764 0.357930
10 10 10−2 0.250254 0.262148 0.253953
10 10 10−4 0.143187 0.144979 0.143852
10 10 10−6 0.0859576 0.0863646 0.0861431
15 10 10−1 0.458509 0.541477 0.473588
15 10 10−2 0.366118 0.385811 0.370493
15 10 10−4 0.246761 0.250977 0.247770
15 10 10−6 0.172704 0.174033 0.173064
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Application to beta distributions Application: inversion of the central beta distribution

For more information and additional techniques for the inversion of cumulative
distribution functions, don’t miss tomorrow’s talk by Amparo Gil:

10:30-10:55 Computation and Inversion of Certain Cumulative Distribution Functions
(session MS36: Numerical Methods for Special Functions, Lecture Room B)

THANK YOU FOR YOUR ATTENTION
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