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Introduction

The problem: given a function with several zeros in an interval,
compute all the zeros reliably and efficiently.

Reliability: no zero is missed and the method is convergent without
accurate initial approximations.

Efficiency: the total count of iterations is small (and if the order of
convergence is high so much the better).

We solve the problem for a wide set of functions which includes many
important cases (like computing the zeros of orthogonal polynomials
for Gauss quadrature, computing the zeros of Bessel functions and of
their derivatives,...).
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Introduction

1 Special functions satisfy certain properties and equations (DDEs,
TTRRs, ODEs,...)

2 The zeros form regular patterns. Examples:
1 Zeros of classical orthogonal polynomials: real and in the interval of

orthogonality.
2 Even for non-classical cases, regular patterns occur:
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3 Interlacing of the zeros of neighbour functions (example: positive
zeros of the Bessel functions Jν(x) and Jν±1(x)).

3 In some cases, analytic approximations are available

J. Segura (Universidad de Cantabria) Ceros de funciones especiales RSME 2013 4 / 35



Introduction

1 Special functions satisfy certain properties and equations (DDEs,
TTRRs, ODEs,...)

2 The zeros form regular patterns. Examples:

1 Zeros of classical orthogonal polynomials: real and in the interval of
orthogonality.

2 Even for non-classical cases, regular patterns occur:

−12 −10 −8 −6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

2

4

6

8

10

3 Interlacing of the zeros of neighbour functions (example: positive
zeros of the Bessel functions Jν(x) and Jν±1(x)).

3 In some cases, analytic approximations are available

J. Segura (Universidad de Cantabria) Ceros de funciones especiales RSME 2013 4 / 35



Introduction

1 Special functions satisfy certain properties and equations (DDEs,
TTRRs, ODEs,...)

2 The zeros form regular patterns. Examples:
1 Zeros of classical orthogonal polynomials: real and in the interval of

orthogonality.
2 Even for non-classical cases, regular patterns occur:

−12 −10 −8 −6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

2

4

6

8

10

3 Interlacing of the zeros of neighbour functions (example: positive
zeros of the Bessel functions Jν(x) and Jν±1(x)).

3 In some cases, analytic approximations are available

J. Segura (Universidad de Cantabria) Ceros de funciones especiales RSME 2013 4 / 35



Introduction

1 Special functions satisfy certain properties and equations (DDEs,
TTRRs, ODEs,...)

2 The zeros form regular patterns. Examples:
1 Zeros of classical orthogonal polynomials: real and in the interval of

orthogonality.
2 Even for non-classical cases, regular patterns occur:

−12 −10 −8 −6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

2

4

6

8

10

3 Interlacing of the zeros of neighbour functions (example: positive
zeros of the Bessel functions Jν(x) and Jν±1(x)).

3 In some cases, analytic approximations are available

J. Segura (Universidad de Cantabria) Ceros de funciones especiales RSME 2013 4 / 35



Introduction

Most published algorithms rely on first approximations + Newton
method.

Reliable?: certainly not (no proof of convergence).

Efficient?: yes, but can be improved without additional computational
cost.

Additionally, one needs particular approximations for each different
function.
They become difficult to handle for functions depending on several
parameters (say Jacobi polynomials).
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Introduction

Not only the method matters, but also the function.
For computing zeros of solutions of

w ′′(x) + B(x)w ′(x) + C(x)w(x) = 0 (1)

using the Newton method we have order 2 generally, but if C(x) is
differentiable and B(x) = 0 the order is 3.
Assuming that B(x) is differentiable we can transform (1) by setting

y(x) = exp
(∫

1
2

B(x)dx
)

w(x)

Then, y ′′(x) + A(x)y(x) = 0, with A(x) = C(x)− 1
2

B′(x)− 1
4

B(x)2 and

y(x)
y ′(x)

=
w(x)

1
2

B′(x)w(x) + w(x)

The Newton method xn+1 = xn −
y(x)
y ′(x)

is now of third order.
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Introduction

If a function satisfies a differential equation it is a good idea to use their
coefficients.

We have used just one coefficient. But we still have another one...
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Fast and reliable computation of the real zeros of SFs

Construction of a fixed point method of order 4

Taking h(x) = y(x)/y ′(x), and because y ′′(x) + A(x)y(x) = 0:
h′(x) = 1 + A(x)h(x)2.

If y(α) = 0 and A(x) has slow variation:∫ x

α

h′(ζ)

1 + A(x)h(ζ)2 dζ ≈ x − α,

and assuming A(x) > 0

α ≈ x − 1
w(x)

arctan (w(x)h(x)) , w(x) =
√

A(x)
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Fast and reliable computation of the real zeros of SFs

Order of convergence

A classroom exercise:
Prove that the fixed point method xn+1 = g(xn),

g(x) = x − 1√
A(x)

arctan
(√

A(x)
y(x)
y ′(x)

)
with y ′′(x) + A(x)y(x) = 0 and A(x) differentiable has order four.

Direct computation shows that, if y(α) = 0, then

g′(α) = g′′(α) = g′′′(α) = 0, g(4)(α) = 2A′(α)
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Fast and reliable computation of the real zeros of SFs The global method as a consequence of Sturm comparison

Theorem (Sturm comparison)

Let y(x) and w(x) be solutions of y ′′(x) + Ay (x)y(x) = 0 and
w ′′(x) + Aw (x)w(x) = 0 respectively, with Ay (x) > Aw (x) > 0. If
y(x0)w ′(x0)− y ′(x0)w(x0) = 0 and xy and xw are the zeros of y(x) and w(x)
closest to x0 and larger (or smaller) than x0, then xy < xw (or xy > xw ).

Equations: y ′′(x) + y(x) = 0, y ′′(x) + 2.25y(x) = 0

Algorithm (Zeros of y ′′(x) + A(x)y(x) = 0, A(x) monotonic)

Given xn, the next iterate xn+1 is computed as follows: find a solution
of the equation w ′′(x) + A(xn)w(x) = 0 such that
y(xn)w ′(xn)− y ′(xn)w(xn) = 0. If A′(x) < 0 (A′(x) > 0) take as xn+1
the zero of w(x) closer to xn and larger (smaller) than xn.
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Fast and reliable computation of the real zeros of SFs The global method as a consequence of Sturm comparison

The method is equivalent to iterating xn+1 = T (xn) with the following
fixed point iteration.

Let j = sign(A′(x)), we define

T (x) = x − 1√
A(x)

arctanj(
√

A(x)h(x))

with

arctanj(ζ) =


arctan(ζ) if jz > 0,
arctan(ζ) + jπ if jz ≤ 0,
jπ/2 if z = ±∞

This method converges to α for any x0 in [α′, α) if A′(x) < 0, with α′ the
largest zero smaller than α (analogously for A′(x) > 0).
The method has fourth order convergence:

εn+1 =
A′(α)

12
ε4n +O(ε5n), εk = xk − α
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Fast and reliable computation of the real zeros of SFs The global method as a consequence of Sturm comparison

Computing the zeros in an interval where A(x) is monotonic.
Example: zeros of y(x) = x sin(1/x), satisfying y ′′(x) + x−4y(x) = 0 (4 digits of acc.).

1 T (x [1]) = x [2], T (x [2]) = x [3] (with four digits acc.)

2 x [4] = x [3] + π/A(x [3]) (smaller than the next zero by Sturm comparison)

3 T (x [4]) = x [5], T (x [5]) = x [6] (with four digits acc.)
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Fast and reliable computation of the real zeros of SFs The global method as a consequence of Sturm comparison

The algorithm

The basic algorithm is as simple as this:

Algorithm

Computing zeros for A′(x) < 0
1 Iterate T (x) starting from x0 until an accuracy target is reached. Let α be the

computed zero.
2 Take x0 = T (α) = α+ π/

√
A(α) and go to 1.

Repeat until the interval where the zeros are sought is swept.
For A′(x) > 0 the same ideas can be applied but the zeros are computed in
decreasing order.

See JS, SIAM J. Numer. Anal. (2010).
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Fast and reliable computation of the real zeros of SFs The global method as a consequence of Sturm comparison

Features of the method

1 Faster than Newton-Raphson (order 4), and globally convergent.
2 No initial guesses for the roots needed.
3 Computes with certainty all the roots in an interval, without

missing any one.
4 Good non-local behavior and low total count of iterations
5 For 100D accuracy, 3-4 iterations per root are enough.

Requirement: the monotonicity properties of A(x) should be known in
advance in order to compute zeros in subintervals where A(x) is
monotonic.
But we already did that job for Gauss and confluent hypergeometric
functions (A. Deaño, A. Gil, J. Segura, JAT (2004))
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Fast and reliable computation of the real zeros of SFs Examples

1 Confluent hypergeometric functions

1 Laguerre functions (including Laguerre polynomials)
2 Parabolic cylinder functions (including Hermite polynomials)
3 Bessel functions of real or imaginary order and variable.
4 Coulomb functions

2 Gauss hypergeometric functions

1 Jacobi functions (including Jacobi, Gegenbauer and Legendre polynomials)
2 Associated Legendre functions and conical functions.

The monotonicity of A(x) is obtained by simply solving quadratic equations
(with convenient Liouville transformations of the ODE)
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Fast and reliable computation of the real zeros of SFs Examples

In other cases, computing the regions of monotony may be not so
straightforward. An example is provided by the zeros of

xCν + γC′ν(x)

with Cν(x) solutions of the Bessel equation

x2y ′′(x) + xy ′(x) + (x2 − ν2)y(x) = 0.

For computing these zeros, we first obtain the second order ODE
satisfied by ỹ(x) = y ′(x). Transform to normal form with a change of
function. Solve the monotonicity and then apply the fourth order
method.

Studying of the monotonicity of the resulting coefficient A(x) implies
solving cubic equations. (already done by Martin Muldoon, 1984)

The resulting method is fast and reliable, also for the computation of
double zeros (A. Gil, JS, Comput Math. Appl. (2012)).
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Fast computation of the complex zeros of special functions

Computing complex zeros of special functions

The complex zeros of solutions of ODEs

y ′′(z) + A(z)y(z) = 0,

with A(z) a complex meromorphic function lie over certain curves.

Zeros of the Bessel function Yν (z) of order ν = 40.35

Zeros of the Bessel function of order ν = 40.35 and with a zero at z = 30i .
Zeros of L(α)

n (z), n = 26.2, α = −83 + 20i
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Fast computation of the complex zeros of special functions

Which are those curves?
Consider that two independent solutions of the ODE in a domain D can be written as

y±(z) = q(z)−1/2 exp (±iw(z)) , w(z) =
∫ z

q(ζ)dζ

If y(z) is a solution such that y(z(0)) = 0 then

y(z) = Cq(z)−1/2 sin
(∫ z

z(0)
q(ζ)dζ

)
Considering the parametric curve z(λ), with z(0) = z(0) and satisfying

q(z(λ))
dz
dλ

= 1

then z(kπ) are zeros of y(z) because
∫ z(kπ)

z(0)
q(ζ)dζ = kπ, k ∈ Z.

Therefore, we have zeros over the integral curve (an exact anti-Stokes line)

dy
dx

= − tan(φ(x , y)), q(z) = |q(z)|eiφ(x,y) (2)

passing through z(0) = x(0) + iy(0)
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Fast computation of the complex zeros of special functions

Problem: for computing q(z) we need to solve

1
2

q(z)
d2q(z)

dz2 − 3
4

(
dq(z)

dz

)2

− q(z)4 − A(z)q(z)2 = 0

which seems worse than our original problem, which was solving

y ′′(z) + A(z)y(z) = 0.
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Fast computation of the complex zeros of special functions

A drastic simplification

If A(z) is constant the general solution of y ′′(z) + A(z)y(z) = 0 is

y(z) = C sin(
√

A(z)(z − ψ)),

and the zeros are over the line

z = ψ + e−i ϕ2 λ, λ ∈ R+, ϕ = arg A(z)

The zeros lie over the integral lines

dy
dx

= − tan(ϕ/2). (3)

Ansatz: the zeros are approximately over (3) even if A(z) is not a constant.
This approximation is equivalent to consider q(z) ≈

√
A(z). This is the WKB (or

Liouville-Green) approximation:

y(z) ≈ CA(z)−1/4 sin
(∫ z

z(0)
A(ζ)1/2dζ

)
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Fast computation of the complex zeros of special functions

A Sturm-like result for the WKB approximation

Let z(0), z(1) be consecutive zeros of the WKB approximation over an approximate
anti-Stokes line (ASL). Then ∫ z(1)

z(0)
A(ζ)1/2dζ = ±π

And if |A(z(0))| > |A(z)| over the ASL between both zeros

L >
π√
|A(z(0))|

with L the length of the ASL arc. This is a Sturm-like result for the WKB approx.
If A(z) has slow variation and <z(1) > <z(0)

z(1) ≈ z1 = z(0) +
π√

A(z(0))
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Fast computation of the complex zeros of special functions

First step towards an algorithm:
Let z(0) such that y(z(0)) = 0. If |A(z)| decreases for increasing <z the next zero can
be computed as follows:

1 z0 = H+(z(0)) = z(0) + π/
√

A(z(0))

2 Iterate zn+1 = T (zn) until |zn+1 − zn| < ε, with

T (z) = z − 1√
A(z)

arctan
(√

A(z)
y(z)
y ′(z)

)

a Step 1 depends on WKB and the fact that A(z) has slow variation.

b The straight line joining the points y z(0) y z0 is tangent to the ASL arc at z(0). It is a
step in the right direction and with an appropiate size if A(z) varies slowly enough.

c Step 2 is a fixed point method of order 4, independently of the WKB approx.
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Fast computation of the complex zeros of special functions

Numerical example for Y10.35(z).
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Fast computation of the complex zeros of special functions

Things to consider before constructing an algorithm:
1 Where to start the iterations for computing a first zero
2 How to choose the appropriate direction
3 When to stop
4 How many ASLs do we need to consider

It is important to determine the structure of anti-Stokes and Stokes
lines.
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Fast computation of the complex zeros of special functions

Stokes line through z0: the curve

<
∫ z

z0

√
A(ζ)dζ = 0,

Anti-Stokes line through z0: the curve

=
∫ z

z0

√
A(ζ)dζ = 0.

Some properties:
1 If z0 ∈ C is not a zero or a singularity of A(z) there is one and only one ASL

passing through that point. The same is true for the Stokes lines.
2 If z0 is not a zero or a singularity of A(z) the ASL and the SL passing through

that point intersect perpendicularly at z0.
3 If z0 is a zero of A(z) of multiplicity m, m + 2 ALSs (and SLs) emerge from z0

Studying the ASLs and SLs for

y ′′(z) + az−my(z) = 0,

we see that indeed m + 2 ASLs (and SLs) emerge from z = 0 if m 6= 2.

J. Segura (Universidad de Cantabria) Ceros de funciones especiales RSME 2013 25 / 35



Fast computation of the complex zeros of special functions

Example: Bessel functions

Principal (dashed line) and anti-Stokes (solid line) for the equation

d2y
dζ2 + (1− ζ−2)y = 0

(Bessel equation of orders |ν| > 1/2 with the change z = ζ
√
ν2 − 1/2).

Principal lines of y ′′(z) + A(z)y(z) = 0 are those emerging from the zeros of A(z).
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Fast computation of the complex zeros of special functions

This explains the different patterns of zeros shown before.

Zeros of the Bessel function Yν (z) of order ν = 40.35

Zeros of the Bessel function of order ν = 40.35 and with a zero at 30i .

Zeros of the Bessel function of order ν = 15.8 and with a zero at z = 10.
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Fast computation of the complex zeros of special functions
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Fast computation of the complex zeros of special functions

The stategy combines the use of H(±) = z ± π√
A(z)

and

T (z) = z +
1√
A(z)

arctan
(√

A(z)
y(z)
y ′(z)

)
, following these rules:

1 Divide the complex plane in disjoint domains separated by the principal ASLs
and SLs and compute separately in each domain.

2 In each domain, start away of the principal SLs, close to a principal ASL and/or
singularity (if any). Iterate T (z) until a first zero is found. If a value outside the
domain is reached, stop the search in that domain.

3 Proceed with the basic algorithm, choosing the displacements H(±)(z) in the
direction of approach to the principal SLs and/or singularity.

4 Stop when a value outside the domain is reached.

No exception has been found (so far tested for Bessel functions, PCFs and Bessel
polynomials).
The method has fourth order convergence.

J. Segura (Universidad de Cantabria) Ceros de funciones especiales RSME 2013 29 / 35



Fast computation of the complex zeros of special functions

Zeros of the Bessel function Yν (z) of order ν = 40.35
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Fast computation of the complex zeros of special functions

Stokes and anti-Stokes lines for the Bessel equation of order ν = 25 + 5i , together with the zeros of Yν (x) (+), Jν (x) (•) and

J−ν (x) (◦).
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Fast computation of the complex zeros of special functions

Zeros of the two Bessel functions y(k)
ν = eiφk αJν (z) + e−iφk βJ−ν (z), φk = 2νkπ, k = 0,−1, with α and β such that

y(0)
ν (−1 + 0+ i) = 0. ν = 25 + 5i .
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Fast computation of the complex zeros of special functions

Zeros of the Bessel polynomials L(1−2n−a)
n (2z) in the variable ζ = z/|γ|, |γ| =

√
(n + a/2)(n + a/2− 1). All the cases

shown share the same ASLs and SLs in the variable ζ. Black and white circles correspond to the polynomial solutions n = 10,

a = 8 and n = 11, a = 8.572394... Triangles correspond to the non-polynomial case n = 10.6, a = 8.343446..
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Fast computation of the complex zeros of special functions

For finishing:

Conjecture

The zeros of the generalized Bessel polynomials θn(z/γ, a) cluster over the curve

|p(z)| = 1,<(z) < cosφ,

p(z) = eV (z)
(

V (z)− z + cosφ
sinφ

)cosφ z sinφ
1− z cosφ+ V (z)

,

V (z) =
√

1− 2z cosφ+ z2

cosφ = (1− a/2)/γ, γ =
√

(n + a/2)(n + a/2− 1)

(4)

when n→∞, with a or a/n fixed.

The case a = 2 (cosφ = 0) gives a known result (Bruin, Saff & Varga 1981): a
n→ +∞ the zeros of θn(z/n; a) ≡ θn(z/n) cluster over the curve |q(z)| = 1, <z < 0,
where

q(z) = exp(
√

z2 + 1)
z

1 +
√

z2 + 1
(5)
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Fast computation of the complex zeros of special functions

THANK YOU!
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