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Gauss-quadratures and OPs: basic ideas

Gauss-quadratures: basic ideas

Given I(f ) =
∫ b

a
f (x)w(x)dx , with w(x) a weight function, the n-point

quadrature rule

Qn(f ) =
n∑

i=1
wi f (xi )

is a Gaussian quadrature if I(f ) = Qn(f ) for f any polynomial with
deg(f ) ≤ 2n − 1.

Gaussian quadrature rules are optimal in a very specific sense and they are one of
the more widely used methods of integration.

The difficulty is, of course, computing the nodes xi and weights wi .

As it is well known, the nodes xi , i = 1, . . . , n of the Gaussian quadrature rule are
the roots of the (for instance monic) orthogonal polynomial satisfying∫ b

a
x i pn(x)w(x)dx = 0, i = 0, . . . , n − 1.
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Gauss-quadratures and OPs: basic ideas

Gaussian quadrature is the result of approximating the function f by the
polynomial fn−1 (deg(fn−1) ≤ n − 1) of lowest degree such that
(f (xi ) = fn−1(xi ), i = 1, . . . n).

I(f ) =
∫ b

a
f (x)w(x)dx ≈ Q(f ) =

∫ b

a
fn−1(x)w(x)dx =

n∑
i=1

wi f (xi ),

fn−1(x) =
n∑

i=1
f (xi )Li (x), Li (xj) = δi,j , deg(Li ) = n − 1,

and then
wj =

∫ b

a
Li (x)w(x)dx =

∫ b

a

pn(x)
(x − xj)p′n(xj)

w(x)dx

And with the aid of the Christoffel-Darboux formula a more practical formula is
obtained in terms of monic polynomials

wj = −
||pn||2

p′n(xj )pn+1(xj )
, ||pn||2 =

∫ b

a
pn(x)2w(x)dx
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Gauss-quadratures and OPs: basic ideas

Classical Gaussian quadrature

This is the case for which the OPs are solutions of second order ODEs

C(x)y ′′n (x) + B(x)y ′n(x) + λny(x) = 0

with C and B polynomials.
Three cases:

1 Hermite: w(x) = e−x2
in (−∞,+∞)  Hn(x)

2 Laguerre: w(x) = x−αe−x , α > −1, in (0,+∞)  L(α)
n (x)

3 Jacobi: w(x) = (1− x)α(1 + x)β , α, β > −1, in (−1, 1)  P(α,β)
n (x)

Apart from being solution of a second order ODE, the coefficients of the
three-term recurrence relation are simple, as well as the coefficients in

y ′n(x) = an(x)yn(x) + bnyn−1(x)
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Computation of (classical) Gaussian quadratures: overview

Computation of Gauss quadratures: overview
Two mains ways

1 Compute wj = −||pn||2/(p′n(xi )pn+1(xi )), for which we need:

a) A method to compute the polynomials pn(x) and the first derivative.
b) A method to compute the roots of pn(x) (nodes xi ).

2 A second posibility is provided by the recurrence relation (for monic
polynomials):

pk+1(x) = (x − Bk)pk(x)− Akpk−1(x), k = 1, 2, . . . ,
where A0p−1 ≡ 0 and

Ak = ||pk ||2

||pk−1||2
, k ≥ 1, Bk = 〈xpk , pk〉

||pk ||2
, k ≥ 0.

< f , g >=

∫ b

a

f (x)g(x)w(x)dx, ||f || =< f , f >
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Computation of (classical) Gaussian quadratures: overview Golub-Welsch, iterative and asymptotic methods

The Golub-Welsch algorithm

Let

J =



β0 α1 0 . . . 0
α1 β1 α2

0 α2 β2
...

...
. . . αn−1

0 . . . αn−1 βn−1


αi =

√
Ai , βi = Bi . Then the n different eigenvalues of J are the nodes.

Furthermore, if ~Φ(j) is an eigenvector with eigenvalue the node xj :

wj = µ0
(Φ(j)

1 )2

||~Φ(j)||2E

where Φ(j)
1 is the first component of ~Φ(j) and µ0 =

∫ b

a
w(x)dx .
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Computation of (classical) Gaussian quadratures: overview Golub-Welsch, iterative and asymptotic methods

Several approaches to compute classical Gaussian quadratures:

1 Golub-Welsch: straightforward. We just need to diagonalize a tridiagonal
matrix with explicitly know entries. Not so good for large degree n.

2 Iterative methods: either we use a globally convergent method or we need
previous estimations of the nodes (usually from asymptotic methods for
large degree). Better for large degree than GW.

3 Asymptotic methods?: can the initial estimations from asymptotics be
accurate enough? What about the weights? Best methods for large n

4 Other methods: numerical integration of the ODE by with a non-oscillatory
phase functions (Bremer). Maybe competitive for very large n, but
asymptotics will be better in that case.
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Computation of (classical) Gaussian quadratures: overview State of the art

Some references on the computation of classical Gauss quadrature
G. H. Golub, J. H. Welsch, Calculation of Gauss quadrature rules.
Math. Comp. (1969) ALL

W. Gautschi, Orthogonal polynomials: computation and approximation.
Oxford U. Press (2004) ALL

E. Yakimiw, Accurate computation of weights in classical Gauss-Christoffel quadrature rules.
J. Comput. Phys. (1996) A+I+RR Legendre (Hermite and Laguerre α = 0 to a lesser extent)

K. Petras, On the computation of the Gauss-Legendre quadrature formula with a given precision.
J. Comput. Appl. Math. (1999) A∗+I+? Legendre

P. N. Swarztrauber, On computing the points and weights for Gauss-Legendre quadrature.
SIAM J. Sci. Comput. (2002) A+I+FS Legendre

A. Glaser, X. Liu, V. Rokhlin, A fast algorithm for the calculation of the roots of special functions.
SIAM J. Sci. Comput. (2007) A/O+I+TS Hermite, Laguerre (α = 0), Legendre

J. Segura, Reliable computation of the zeros of solutions of second order linear ODEs using a fourth order method.
SIAM J. Numer. Anal. (2010) �+I+? Hermite, Laguerre, Jacobi (*)

I. Bogaert, B. Michiels, J. Fostier, J., O(1) computation of Legendre polynomials and Gauss-Legendre nodes and weights for
parallel computing.
SIAM J. Sci. Comput. (2012) A+I+V Legendre

N. Hale, A. Townsend, Fast and accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights.
SIAM J. Sci. Comput. (2013) A+I+A Jacobi
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Computation of (classical) Gaussian quadratures: overview State of the art

A. Townsend, The race to compute high-order Gauss-Legendre quadrature.
SIAM News (2015)

I. Bogaert, Iteration-free computation of Gauss-Legendre quadrature nodes and weights.
SIAM J. Sci. Comput. (2014) �+A+A Legendre

A. Townsend, T. Trogdon, S. Olver, Fast computation of Gauss quadrature nodes and weights on the whole real line.
IMA J. Numer. Anal (2016) A+I+A Hermite∗

J. Bremer, On the numerical calculation of the roots of special functions satisfying second order ordinary differential equations.
SIAM J. Sci. Comput (2017) O Laguerre, Jacobi. Very high degree.

A. Gil, J. Segura, N. M. Temme Asymptotic approximations to the nodes and weights of Gauss-Hermite and Gauss-Laguerre
quadratures.
Stud. Appl. Math. (2018) �+A+A Hermite, Laguerre

F. Johansson, M. Mezzarobba Fast and rigorous arbitrary-precision computation of Gauss-Legendre quadrature nodes and
weights.
SIAM J. Sci. Comput (2019) A∗+I+V Legendre

A. Gil, J. Segura, N. M. Temme Non-iterative computation of Gauss-Jacobi quadrature.
SIAM J. Sci. Comput. (2019) �+A+A Jacobi

A. Gil, J. Segura, N. M. Temme Fast, reliable and unrestricted iterative computation of Gauss–Hermite and Gauss–Laguerre
quadratures.
(submitted) �+I+TS/CF Hermite, Laguerre
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Computation of (classical) Gaussian quadratures: overview Iterative, asymptotic or both?

In the previous list, there are a number of methods which combine asymptotic and
convergent iterative methods. We prefer purely asymptotic methods and purely iterative
(convergent methods). We argue that these are the best (and complementary)
approaches:

1 Iterative-only methods with no asymptotic approximations lead to arbitrary
precision algorithms provided that the computations are based on finite or
convergent expansions.

2 Asymptotic-only methods can not be used for arbitary precision, but these are the
fastest methods, and they can be accurate (15-16 digits) for moderately large
degrees (as first proved for Gauss-Legendre in Bogaert’s paper).

Methods which combine both iterative and asymptotic methods, may be accurate and
efficient, but no so accurate as a purely iterative method and not as fast as a purely
asymptotic method.

The present talk is based on:
A. Gil, JS, N. M. Temme Asymptotic approximations to the nodes and weights of Gauss-Hermite and Gauss-Laguerre
quadratures. Stud. Appl. Math. (2018) �+A+A
A. Gil, JS, N. M. Temme Non-iterative computation of Gauss-Jacobi quadrature. SIAM J. Sci. Comput. (2019) �+A+A
A. Gil, JS, N. M. Temme Fast, reliable and unrestricted computation of Gauss-Hermite and Gauss Laguerre quadratures.
(submitted) �+I+TS/CF
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Iterative computation of classical Gauss quadratures Some general comments

Iterative computation of classical Gauss quadratures

Several remarks regarding iterative methods in the literature:
© Most papers use Newton’s method for computing the roots (order 2):

Newton’s method:

The NM, xn+1 = xn −
f (xn)
f ′(xn) , has order of convergence 2 because

εn+1

ε2
n

= f ′′(α)
2f ′(α) +O(εn) as n→∞, εn = xn − α.

© The only proof of convergence for Newton method is for the Legendre case
(Petras, 1999).

© The defining ODE can be used to speed up the method and also to improve
the convergence without increasing the complexity.
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Iterative computation of classical Gauss quadratures Some general comments

For computing zeros of solutions of

w ′′(x) + B(x)w ′(x) + C(x)w(x) = 0

Newton method gives order 2 generally. But the ODE can be used to speed-up the
method.
Assuming that B(x) is differentiable we can transform (13) by setting

y(x) = exp
(∫

1
2 B(x)dx

)
w(x)

Then, y ′′(x) + A(x)y(x) = 0, with A(x) = C(x)− 1
2 B′(x)− 1

4 B(x)2 and

y(x)
y ′(x)

= w(x)
1
2 B′(x)w(x) + w ′(x)

The Newton method xn+1 = xn −
y(xn)
y ′(xn)

is now of third order.

The reason: if α is such that y(α) = 0, then y ′′(α) = 0.
And we haven’t used A(x) so far...
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Iterative computation of classical Gauss quadratures Sturm comparison and the global fourth order method

Theorem (Sturm comparison)
Let y(x) and w(x) be solutions of y ′′(x) + Ay (x)y(x) = 0 and
w ′′(x) + Aw (x)w(x) = 0 respectively, with Ay (x) > Aw (x) > 0. If
y(x0)w ′(x0)− y ′(x0)w(x0) = 0 and xy and xw are the zeros of y(x) and
w(x) closest to x0 and larger (or smaller) than x0, then xy < xw (or
xy > xw ).

Equations: y ′′(x) + y(x) = 0, y ′′(x) + 2.25y(x) = 0

Algorithm (Zeros of y ′′(x) + A(x)y(x) = 0, A(x) monotonic)
Given xn, the next iterate xn+1 is computed as follows: find a solution of
the equation

w ′′(x) + A(xn)w(x) = 0

such that y(xn)w ′(xn)− y ′(xn)w(xn) = 0. If A′(x) < 0 (A′(x) > 0) take
as xn+1 the zero of w(x) closer to xn and larger (smaller) than xn.

Equations: y ′′(x) + A(x)y(x) = 0, w ′′(x) + A(xn)w(x) = 0, (A′(x) < 0)
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Iterative computation of classical Gauss quadratures Sturm comparison and the global fourth order method
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Iterative computation of classical Gauss quadratures Sturm comparison and the global fourth order method

The method is equivalent to iterating xn+1 = T (xn) with the following
fixed point iteration.

Let j = sign(A′(x)), we define

T (x) = x − 1√
A(x)

arctanj(
√

A(x)h(x))

with

arctanj(ζ) =


arctan(ζ) if jz > 0,
arctan(ζ) + jπ if jz ≤ 0,
jπ/2 if z = ±∞

This method converges to α for any x0 in [α′, α) if A′(x) < 0, with α′ the
largest zero smaller than α (analogously for A′(x) > 0).
The method has fourth order convergence:

εn+1 = A′(α)
12 ε4

n +O(ε5
n), εk = xk − α
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Iterative computation of classical Gauss quadratures Sturm comparison and the global fourth order method

Computing the zeros in an interval where A(x) is monotonic.
Example: zeros of y(x) = x sin(1/x), satisfying y ′′(x) + x−4y(x) = 0 (4 digits of acc.).

1 T (x [1]) = x [2], T (x [2]) = x [3] (with four digits acc.)

2 x [4] = x [3] + π/

√
A(x [3]) (smaller than the next zero by Sturm comparison)

3 T (x [4]) = x [5], T (x [5]) = x [6] (with four digits acc.)
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Iterative computation of classical Gauss quadratures Sturm comparison and the global fourth order method

1 Guaranteed convergence. Does not require initial estimates.

2 Fourth order convergence (Newton has order 2)
3 Same computational cost per iteration as Newton!
4 And more: it will be asymptotically exact if a convenient variable is

chosen.
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Iterative computation of classical Gauss quadratures Gauss-Hermite quadrature

Gauss-Hermite quadrature

We have that yn(x) = Cne−x2/2Hn(x) satisfies

y ′′n (x) + A(x)yn(x) = 0, A(x) = 2n + 1− x2.

A(x) has its maximum at x = 0. The nodes are symmetric around the origin.

We compute the positive roots in the direction of decreasing A(x), starting at
x = 0 until we have computed bn/2c zeros.
The first step is

x = T−1(0) =


π√

2n + 1
, n odd

π

2
√

2n + 1
, n even

As n→ +∞ the coefficient A(x) is essentially constant for not too large x .
In this sense, the method will be asymptotically exact.

Methods are available for computing efficiently and reliably yn(x) (see A. Gil , JS,
N.M. Temme. ACM Trans. Math. Softw. (2006)), but here we prefer to avoid
asymptotics so that arbitary accuracy for any degree is available:
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Iterative computation of classical Gauss quadratures Gauss-Hermite quadrature

The three-term recurrence relation IS NOT a good idea, particularly for large degree:
the complexity is bad as for Golub-Welsch. A good alternative: use local Taylor series
(as done in Glaser, Liu, Rokhlin (2007)).

Given y(x) = Cne−x2/2Hn(x), and assuming that the derivatives at x0 are known:

y(x) =
∞∑

k=0

y (k)(x0)
k!

(x − x0)k .

and similarly for y ′(x), truncating the series for a given precision.
From y(x0) and y ′(x0), we compute the sucessive derivatives by differentiating
y ′′(x) + (2n + 1− x2)y(x) = 0:

y (k+2) + (2n + 1− x2)y (k) − 2kxy (k−1) − k(k − 1)y (k−2) = 0.

Perron-Kreuser theorem: all the solutions of the difference equation are such that
lim sup
k→+∞

(
|y (k)|/(k!)2/3)1/k = 1 (the series converges everywhere, as expected).

h = x − x0 will be always less than the maximal distance between zeros of Hn(x).
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Iterative computation of classical Gauss quadratures Gauss-Hermite quadrature

Algorithm for Gauss-Hermite based on local Taylor series.
Take y(x) = (2nn!)−1/2e−x2/2Hn(x).

1 With x = π/
√

2n + 1 for n odd and x = π/(2
√

2n + 1) for n even, compute
y(x) and y ′(x) by Taylor series starting from the known values y(0) and
y ′(0) (alternatively, we can take y(0) = 1 and y ′(0) = 0 for n even
and y(0) = 0 and y ′(0) = 1 for n odd, and rescale later). Let i = 1.

2 Iterate the fixed point method

T (x) = x − 1√
A(x)

arctan−1(
√

A(x)h(x))

until convergence is reached within a given accuracy. The values of y(x) and
y ′(x) are computed from Taylor series, starting with the values at the
previous point. Let xi be the resulting zero (node)

3 The corresponding weight is given by wi = 2e−x2
i /(y ′n(xi ))2.

4 Set x = xi + π/
√

A(xi ), i = i + 1, and if additional nodes have to be
computed then go to 2.

If rescaling is used, we just have to take into account that the sum of all
the weights is

√
π.
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Iterative computation of classical Gauss quadratures Gauss-Hermite quadrature

Some (nice) features of the algorithm
1 The cost of local Taylor series does not increase with the degree.
2 The cost of computing each zero decreases as n→∞ (asymptotic

exactness)
3 Because of the fourth order convergence and the error relation, when two

succesive iterates are such that |x (n+1) − x (n)| < 61/4 10−p/4 then we can
estimate that |xn+1/α− 1| < 10−p.

4 The so-called scaled weights ωi = 1/y ′(xi )2 are well-conditioned as a
function of xi because ωi = W (xi ) with W ′(xi ) = 0.

5 The code is short (< 100 lines), reliable and efficient.

The method does not need initial estimations for the roots. It seems they don’t
improve significantly the performance (typical running time: 0.5 seconds for 106

nodes in my laptop).
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Iterative computation of classical Gauss quadratures Gauss-Hermite quadrature
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Iterative computation of classical Gauss quadratures Gauss-Hermite quadrature

Maximum relative error in the computation of the nodes as a function of
the degree n
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Iterative computation of classical Gauss quadratures Gauss-Hermite quadrature

Relative error in the computation of scaled weights (solid line) and
unscaled weights (dots) for the 5000-point Gauss Hermite formula as a
function of i , with i numbering the positive nodes in increasing order.
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Iterative computation of classical Gauss quadratures Gauss-Hermite quadrature

Unitary time spent (time per node and corresponding weight) in seconds
as a function of the degree
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Iterative computation of classical Gauss quadratures Gauss-Laguerre quadrature

Gauss-Laguerre quadrature

Take y(z) = zα+1/2e−z2/2L(α)
n (z2) which satisfies ÿ(z) + A(z)y(z) = 0 with

A(z(x)) = −x + 2(2n + α+ 1) +

1
4
− α2

x
, x = z2

A(x) for x > 0: decreasing if |α| ≤ 1/2.
with a maximum at xe =

√
α2 − 1/4 if |α| > 1/2.

Depence of A(x) on n → asymptotic exactness.

The Gauss-Laguerre weights are

wi = 4Γ(n + α + 1)
n!(ẏ(zi ))2 xα+ 1

2
i e−xi ≡ ωi x

α+ 1
2

i e−xi .

Scaled weights ωi : well conditioned as a function of the nodes
(ωi = W (zi ) with Ẇ (zi ) = 0)

Our algorithm computes the doubly scaled weights ω̂i = ωi/Γ(α + 1).
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Iterative computation of classical Gauss quadratures Gauss-Laguerre quadrature

The computation of y(z) for the Laguerre case is not so easy as for Hermite.

Taylor series must be supplemented with an additional starting method.
A good choice is the continued fraction which follows from iterating

r (α) = aα
bα + r (α+1) ,

where r (α) = L(α)
n (x)/L(α−1)

n (x), bα = −(1 + α/x), aα = −(n + α)/x .
Using the derivative rule

xL(α)
n
′(x) = −αL(α)

n (x) + (α + n)L(α−1)
n (x)

we get
ẏ(z)
y(z) = 1/2− α

z − z + 2(n + α)
zr (α)(z2)

.

with y(z) as defined before.

We only need this for initiating Taylor series (the ratio is enough, because we can
rescale with the moment of order zero).
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Iterative computation of classical Gauss quadratures Gauss-Laguerre quadrature

Taylor series

The function y(z) satisfies

P(z)y (2)(z) + Q(z)y(z) = 0,

with
P(z) = z2, Q(z) = −z4 + 2Lz2 + 1

4 − α
2

taking successive derivatives and using that P(n)(z) = 0, n > 2 and Q(n)(z) = 0,
n > 4, we obtain the following recursion formula for the derivatives with respect
to z :

2∑
m=0

(
j
m

)
P(m)(z)y (j+2−m)(z) +

4∑
m=0

(
j
m

)
Q(m)(z)y (j−m)(z) = 0,

where
(

j
m

)
are binomial coefficients.
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Iterative computation of classical Gauss quadratures Gauss-Laguerre quadrature

This is a seven-term recurrence relation and therefore the space of solutions has
dimension 6.

Perron-Kreuser theorem: the solutions of this difference equation lie in two
subspaces: a subspace of dimension two of solutions satisfying

lim sup
n→+∞

|y (n)/n!|1/n = |1/x |,

and a subspace of dimension four of solutions satisfying

lim sup
n→+∞

|y (n)/
√

n!|1/n = 1.

The solutions of the first subspace are dominant over the second subspace.
The derivatives of solutions of the ODE are in this dominant subspace because
the Taylor series centered at x has radius of convergence R = |x | (as corresponds
to a differential equation with a singularity at x = 0).
Because of the dominance of these solutions, the computation of the derivatives
in the forward direction is well conditioned.
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Iterative computation of classical Gauss quadratures Gauss-Laguerre quadrature

The ingredients for the method for Gauss-Laguerre are:
1 The fourth order fixed point method in the z variable
2 The continued fraction as a starting value (in some cases two values

are required)
3 Taylor series in the z variable

In our previous notation, this is �+I+TS/CF

Some numerical results follow
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Iterative computation of classical Gauss quadratures Gauss-Laguerre quadrature

Gauss-Laguerre weights as a function of the nodes xi , where the degree is
n = 1000. Two values of α are considered: α = 500 and α = 1000
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Iterative computation of classical Gauss quadratures Gauss-Laguerre quadrature

Gauss-Laguerre doubly-scaled weights as a function of the number i of the
nodes xi (x0 < x1 < · · · ), where the degree is n = 1000. Two values of α
are considered: α = 500 and α = 1000
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Iterative computation of classical Gauss quadratures Gauss-Laguerre quadrature

Maximum relative errors in the computation of the nodes for n-point
Gauss–Laguerre quadrature with α = 0 (dots). We also show the
maximum error when it is evaluated only for the nodes for which the
weights are larger than 10−30 (solid line); the error in this case is smaller.
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Iterative computation of classical Gauss quadratures Gauss-Laguerre quadrature

Same as the previous figure but for the scaled weights.
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Iterative computation of classical Gauss quadratures Gauss-Laguerre quadrature

Unitary CPU-time spent as a function of the degree n for Gauss-Laguerre
with α = 0 and α = 1000
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Iterative computation of classical Gauss quadratures Gauss-Jacobi quadrature (some ideas)

Gauss-Jacobi quadrature

We only mention few details.
The most appropriate starting point is the ODE satisfied by

y(θ) =
(

sin θ2

)α+1/2(
cos θ2

)β+1/2
Pn(cos θ):

d2y
dθ2 + 1

4

L2 +

1
4 − α

2

sin2(θ/2)
+

1
4 − β

2

cos2(θ/2)

 y = 0

L = 2n + α + β

The change x = cos θ is not the only possibility (see Deaño, Gil, Segura (2004))
but in this variable the method is asymptotically exact as n→ +∞, and
well-conditioned scaled weights are also available.
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Iterative computation of classical Gauss quadratures Gauss-Jacobi quadrature (some ideas)

With

u(θ) = M−1/2
n,α,β

(
sin θ2

)α+1/2(
cos θ2

)β+1/2
P(α,β)

n (cos θ),

which satisfies the previous ODE, we can write the Jacobi weights as

wi = |u̇(θi )|−2
(

sin θi
2

)2α+1(
cos θi

2

)2β+1
,

where
Mn,α,β = 2α+β+1 Γ(n + α + 1)Γ(n + β + 1)

n!Γ(n + α + β + 1) ,

and the scaled weights can be defined as

ωi = |u̇(θi )|−2,

which are well conditioned as a function of θi .
Taylor series in the θ variable are harder, because the derivatives do not satisfy a
recurrence relation with a fixed number of terms.
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Asymptotic methods for OPs and Gauss quadrature

Asymptotic methods

Until recently, only the Gauss-Legendre quadrature was available with 15− 16
accuracy and moderately large n with asymptotic methods(Bogaert’s paper).
We have used different expansions in terms of other functions and zeros for
computing accurately all the zeros and and weight for n ≥ 100:

1 Hermite, in terms of: elementary functions and Airy functions.
2 Laguerre: two approximations in terms of Bessel functions and one with Airy

functions.
3 Jacobi, in terms of: elementary functions and Bessel functions.

We only describe one of the simplest expansions (which is new): the elementary
expansion for the Jacobi case, which can be used for computing most of the
nodes and weights.

Notice: the Bogaert expansion for Gauss-Legendre is in terms of Bessel functions,
and our elementary expansion for the more general Jacobi case is simpler but
quite powerful.
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Asymptotic methods for OPs and Gauss quadrature An example for P(α,β)
n (x) and G-J quadrature

The starting point

P(α,β)
n (x) = (−1)n

2nn! w(x)
1

2πi

∫
C

e−κφ(z) w(z)(z − x)γ−1

(1− z2)γ dz,

where γ = 1
2 (α + β + 1), κ = n + γ, and φ(z) = ln(z − x)− ln(1− z2).

y(θ) = Gκ(α, β)√
πκ

(cosχU(x)− sinχV (x)), χ = κθ +
(
α + 1

2

)
π

2 , x = cos θ

with expansions

U(x) ∼
∞∑

m=0

u2m(x)
κ2m , V (x) ∼

∞∑
m=0

v2m+1(x)
κ2m+1 .

The first coefficients are

u0(x) = 1, v1(x) = 2α2 − 2β2 + (2α2 + 2β2 − 1)x
8 sin θ ,

u2(x) = 1
384 sin2 θ

(12(5− 2α2 − 2β2)(α2 − β2)x +

4(−3(α2 − β2)2 + 3(α2 + β2)− 6 + 4α(α2 − 1 + 3β2) +

(−12(α2 + β2)(α2 + β2 − 1)− 16α(α2 − 1 + 3β2)− 3)x2).
For computing the weights we also need ẏ(θ).
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Asymptotic methods for OPs and Gauss quadrature An example for P(α,β)
n (x) and G-J quadrature

Let see how to compute the nodes. Let W (θ) = cosχU(x)− sinχV (x),

U(x) ∼
∞∑

m=0

u2m(x)
κ2m , V (x) ∼

∞∑
m=0

v2m+1(x)
κ2m+1 .

A first approximation is cosχ = 0→ θ = θ0 =
(

n − k + 3
4 + α

2

)
π

κ
.

Now we write W (θ) = W (θ0 + ε) = W (θ0) + εẆ (θ0) + ε2

2 Ẅ (θ) + . . . = 0, we assume

the expansion ε = θ1

κ2 + θ2

κ3 + θ3

κ4 + . . ., and using the expansions of U and V and
comparing equal powers of κ we determine the coefficients θi , i ≥ 1, (depending on θ0).
The first two cofficients are:

θ1 = − 1
8 sin θ0

(
2β2x + 2α2x − x − 2β2 + 2α2) ,

θ2 = 1
384 sin3 θ0

(−33x − 36β2x2 + 36α2x2 + 24β4x2 − 24α4x2 + 2x3 +

84β2x − 60α4x − 60β4x + 84α2x + 4β4x3 + 4α4x3 − 8β2x3 +

40α2 − 8α2x3 − 40β2 + 32β4 − 32α4 + 24α2β2x3 − 24α2β2x),

where x = cos θ0.
With this we compute θ = θ0 + ε and then xk ∼ cos θ
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Asymptotic methods for OPs and Gauss quadrature An example for P(α,β)
n (x) and G-J quadrature
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Asymptotic methods for OPs and Gauss quadrature An example for P(α,β)
n (x) and G-J quadrature
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Asymptotic methods for OPs and Gauss quadrature An example for P(α,β)
n (x) and G-J quadrature

Asymptotic computation of Jacobi polynomials

Points in the (θ, n) plane for which 10−12 relative accuracy is not reached in the
computation of Jacobi polynomials for two pairs of values of α and β. The elementary
expansion is used.
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Asymptotic methods for OPs and Gauss quadrature An example for P(α,β)
n (x) and G-J quadrature

Points in the (θ, n) plane for which 10−12 relative accuracy is not reached in the
computation of Jacobi polynomials for two pairs of values of α and β. The Bessel-type
expansion is used.
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Asymptotic methods for OPs and Gauss quadrature An example for P(α,β)
n (x) and G-J quadrature

We finish with two more plots (now for Gauss-Laguerre).
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Asymptotic methods for OPs and Gauss quadrature An example for P(α,β)
n (x) and G-J quadrature

Relative accuracy for computing the zeros of L(1/4)
n (x) for n = 100 with

two different asymptotic expansions. The points not shown in the plot
correspond to values with all digits correct in double precision accuracy.
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Asymptotic methods for OPs and Gauss quadrature An example for P(α,β)
n (x) and G-J quadrature

Relative accuracy obtained for the computation of the Laguerre
doubly-scaled weights for n = 1000, 10000 (with α = 1/4) using an
asymptotic expansion in terms of Bessel functions.
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Asymptotic methods for OPs and Gauss quadrature An example for P(α,β)
n (x) and G-J quadrature

THANK YOU!
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