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Elementary functions and special functions

Elementary functions and operations:
1 +,-,*,/
2 Polynomials
3 Trigonometric
4 Exponential and logarithm

Elementary functions (trigonometric functions, exponential, log):
algorithms based on polynomial approximation and/or table lookup;
Shift-and-Add algorithms.

Enough?
Of course, not.
There is "a bunch" of useful functions which do not fall inside this
narrow category. To mention few:
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Elementary functions and special functions

1 The error function: erf(x) = 2√
π

∫ x

0
e−t2

dt

2 The gamma function: Γ(α) =

∫ +∞

0
xαe−xdx

3 The Airy functions: solutions of y ′′(z)− zy(z) = 0
4 And many more, some of them depending on several parameters

(hypergeometric functions among them)

Are these elementary functions? Why not?
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Elementary functions and special functions A reference work: A & S and its revision

A & S: a best seller
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Elementary functions and special functions A reference work: A & S and its revision

A & S needs a revision
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Elementary functions and special functions A reference work: A & S and its revision

People involved in the project: 4 principal editors; 10 associate editors; 35
authors; 25 validators; 15 NIST staff.

On June 11, 2008, Dan Lozier (NIST) wrote:

A 5-chapter preview of the DLMF has been installed on the public web
site http://dlmf.nist.gov .

It contains all the intended functionality of the eventual full public
release, now scheduled for late this year or early next.

Visitors to the web site are invited to give feedback about the current
status.
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A case study: Airy functions

Airy functions

Airy functions are the solution of the ODE:

The Airy equation

y ′′(z)− zy(z) = 0

Ai(z) is the recessive solution as |z| → ∞, arg(z) < π/3.

Recent methods for computing this function in the complex plane are:
1 Fabijonas, Lozier, Olver (ACM TOMS 2004)
2 Gil, Segura, Temme (ACM TOMS 2002)

Next, we show how to compute the function for real z, <(z) > 0.
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A case study: Airy functions Convergent series

The goal: computing a numerically satisfactory pair of solutions of the
Airy equation for real z > 0. A numerically satisfactory pair should
comprise the recessive solution.
We try power series and get two independent solutions:

y1(z) =
∞∑

k=0

3k
(

1
3

)
k

z3k

(3k)!
, y2(z) =

∞∑
k=0

3k
(

2
3

)
k

z3k+1

(3k + 1)!

where 3k (α + 1/3)k = (3α + 1)(3α + 4) · · · (3α + 3k − 2)
The series converge in C. Good. Have we finished?

No, we haven’t: limz→+∞ y1(z) = +∞, limz→+∞ y2(z) = +∞, and we
need the solution Ai(z) such that limz→+∞ Ai(z) = 0.
Of course, we have some α, β such that

Ai(z) = αy1(z) + βy2(z)

But this is bad conditioned! Computing a small quantity from two
large quantities leads to disaster.
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A case study: Airy functions Divergent series

Now, we transform the equation y ′′ − zy = 0 by considering the
functions Y (z) = z1/4y(z), which, in the variable ζ = 2/3z3/2, satisfy
the ODE

Ÿ (ζ) +

[
−1 +

5
36ζ2

]
Y (ζ) = 0

This suggest that Y (ζ) ∼ e±ζ as ζ → +∞ (Liouville-Green
approximation).
This, in turn, tells us that Ai(z) ∼ Kz−1/4e−2/3z3/2

.
For a better approximation, write Y (ζ) = e−ζg(ζ). Now g(ζ) satisfies

d2g
dζ2 − 2

dg
dζ

+
λ

ζ2 g = 0, λ =
5
36
,

and using a formal series in powers of ζ−1, that is,
g(ζ) =

∑∞
k=0 amζ

−m, we get, equating term by term,

am+1 = −λ+ m(m + 1)

2(m + 1)
am, m = 0,1,2, . . . .

Therefore, we find the expansion
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A case study: Airy functions Divergent series

Ai(z) ∼ z−1/4e−ζ
∞∑

m=0

amζ
−m, ζ = 2

3z3/2 ,a0 = (2
√
π)−1

The series is divergent for any ζ, but has asymptotic nature.
It can be shown that this an asymptotic expansion for Ai(z) for large |z|
except when z is real and <(z) < 0.
A second independent solution is

Bi(z) ∼ 2z−1/4eζ
∞∑

m=0

(−1)mamζ
−m,
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A case study: Airy functions Divergent series

Asymptotic expansions

When we say that an expansion of the form

f (z) ∼
∞∑

n=0

anz−n, z →∞

is an asymptotic expansion, we assume that

zN

(
f (z)−

N−1∑
n=0

anz−n

)
, N = 0,1,2, . . . ,

where the sum is empty when N = 0, is a bounded function for large
values of z, with limit aN as z →∞, for any N. This can also be written
as

f (z) =
N−1∑
n=0

anz−n +O
(

z−N
)
, z →∞.

The validity is usual restricted to a sector in the z−plane
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A case study: Airy functions A first algorithm

A first algorithm

We have two possible approximations: for z small and large. Can we
match them?

1 Small positive z Convergent series

2 Large positive z Divergent series

Indeed, we get 10−8 relative precision using convergent series for
z < 5.5 and divergent series for z > 5.5.
For more precision, we need something new.
Before this, let us stress some important points.
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A case study: Airy functions A first algorithm

1 For solving satisfactorily the equation we need to know whether
there is a recessive solution and to compute it, if it exists.

2 Also, it is convenient to determine the dominant factors
(exp(±2/3z3/2 for Airy functions).

3 When it is possible to factor out these dominant factors and we
can do it for a satisfactory pair of solutions, we can say that we
have given a totally satisfactory solution, particularly when the
scaled-out functions can be numerically computed for any z.

Some insight on the behaviour of the solutions is needed in order to
obtain a satisfactory solution.

We can not expect to compute a function numerically with a
single method unless the functions is quite elementary.
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A case study: Airy functions Methods for intermediate regions

For improving the computation of Airy functions, additional
approximations shoud be considered for intermediate z. Some
possibilities:

1 Chebyshev expansions (for real z only)
2 Numerical quadrature (for z ∈ C) [Gil, Segura, Temme 2002]
3 Numerical integration of the ODE (for z ∈ C) [Fabijonas, Olver,

Lozier 2004]

Let us describe the last two methods (ODE solving very briefly).

J. Segura (Universidad de Cantabria) Evaluation of functions 2009 15 / 28



A case study: Airy functions ODE integration

In Fabijonas, Lozier and Olver, the computation of Airy functions by
solving the initial value problem is considered (they use Taylor’s
method).
A crucial point is the conditioning of the integration.
Because limz→+∞ Ai(z)/Bi(z) = 0, one should never compute
numerically Ai(z) integrating from z = 0.
For Ai(z) the problem must be put this way:

Compute Ai(x) in [0,b] starting from the know values Ai(b) and Ai′(b).

For b large enough Ai(b) and Ai′(b) can be approximated with the
asymptotic expansions.
Again, it is necessary to have information on the behavior of the
solutions before trying any numerical method.
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A case study: Airy functions Numerical quadrature

Many (special functions) can be written using integral representations,
also Airy functions. Two representations are:

Ai(z) =
1
π

∫ +∞

0
cos(t3/3 + zt)dt

Ai(z) =
1

√
π(48)1/6Γ(5/6)

e−ζζ−1/6
∫ +∞

0

(
2 +

t
ζ

)−1/6

t−1/6e−tdt

Which one is the best for numerical purposes?

The second one does not have an oscillating integrand and shows
explictly the main factor
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A case study: Airy functions Numerical quadrature

Steepest descent as a tool for oscillatory
integrands

Consider the numerical computation of

G(λ) =

∫ +∞

−∞
e−t2+2iλt dt , λ > 0.

Straightforward computation by using any quadrature rule is very
unstable when λ is large.
Shift the path of integration upwards in the complex t−plane to make it
run through the point t = iλ, or write

−t2 + 2iλt = −(t − iλ)2 − λ2.
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A case study: Airy functions Numerical quadrature

This gives

G(λ) = e−λ
2
∫ +∞

−∞
e−(t−iλ)2

dt

or, by writing t = iλ+ s,

G(λ) = e−λ
2
∫ +∞

−∞
e−s2

ds =
√
πe−λ

2
.

In this simple example we deform the original contour of integration to
let it run through the saddle point.

This method can be used for many special functions defined by real or
contour integrals.
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A case study: Airy functions Numerical quadrature

Numerical quadrature: Airy functions

A complex contour integral for the Airy function:
We consider

Ai(z) =
1

2πi

∫
C

e
1
3 w3−zw dw ,

where ph z ∈ [0, 2
3π] and C is a contour starting at∞e−iπ/3 and terminating at

∞e+iπ/3 (in the valleys of the integrand).

J. Segura (Universidad de Cantabria) Evaluation of functions 2009 20 / 28



A case study: Airy functions Numerical quadrature

Numerical quadrature: Airy functions

Let
φ(w) = 1

3 w3 − zw.

The saddle points are w0 =
√

z and−w0 and follow from solving φ′(w) = w2 − z = 0.
The saddle point contour (the path of steepest descent) that runs through the saddle point w0 is defined by

=[φ(w)] = =[φ(w0)].

We write
z = x + iy = reiθ

, w = u + iv, w0 = u0 + iv0.

Then
u0 =

√
r cos 1

2 θ, v0 =
√

r sin 1
2 θ, x = u2

0 − v2
0 , y = 2u0v0.

The path of steepest descent through w0 is given by the equation

u = u0 +
(v − v0)(v + 2v0)

3
»

u0 +
q

1
3 (v2 + 2v0v + 3u2

0 )

– , −∞ < v <∞.
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A case study: Airy functions Numerical quadrature

Numerical quadrature: Airy functions
Examples for r = 5 and a few θ−values are shown in the figure. The saddle
points are located on the circle with radius

√
r and are indicated by small dots.

u

v
5.0

5.0

−5.0

−5.0
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More examples and methods More "patchy" examples

A pair of additional examples

We have solved in a numerical satisfacory way some other problems,
like:

1 Solution of the Bessel equation x2y ′′ + xy + (x2 + a2)y = 0 (2004)
2 Solution of the parabolic cylinder equation y ′′ + (a− x2/4)y = 0

(2006)

This problems are harder because they involve the variable x and the
parameter a, and a completelly satisfactory solution must be so in the
(a, x) plane. A good number of methods are usually needed.
Just to have an idea of the difficulty, here are the regions where
different methods are used for the parabolic cylinder equation:

0 5 10 15 20
x

-80

-60

-40

-20

0

20

40

a

2

3 5
6

f

f f f

f

6

4

11

f

f12

11fA B

4

1

3

5

6

3

2

3

Now we are working on the harder case y ′′ + (x2/4− a)y = 0
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Just to have an idea of the difficulty, here are the regions where
different methods are used for the parabolic cylinder equation:
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Now we are working on the harder case y ′′ + (x2/4− a)y = 0
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More examples and methods Recurrence relations

Recurrence relations

In the previous figure, in one of the regions the following relation is
used:

U(a− 1, x) = xU(a, x) + (a + 1/2)U(a + 1, x)

This is a three-term recurrence relation (a difference equation of 2nd
order)

Recurrence relations are simple methods of computation when starting
values are known.

But they should be handled with care!
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More examples and methods Recurrence relations

Recurrence relations: a simple example

Consider
yn+1 − 2 cosh(x)yn + yn−1 = 0, x > 0

which has a solution yn = exp(−nx).
We start from y0 = 1, y1 = e−1 and compute numerically up to n = 40.

We should get y40/y39 = e−1, but we get

y40/y39 = 2.71828182845905

Why? Because yn = exp(nx) is also a solution, which dominates over
exp(−nx) (which is said to be minimal).
Again, a conditioning problem arises and we need to have information
on the solutions.
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More examples and methods Recurrence relations

Recurrence relations: not so simple results

In Gil, Segura and Temme, Math. Comput. (2007), the conditioning of
Gauss hypergeometric recursions was analyzed. A result

Around z = 0 the functions

yn = 2F1(a + ε1n,b + ε2n; c + ε3n; z)

are minimal solutions as n→ +∞ of the corresponding TTRR if and
only if ε3 > 0. The minimality holds in the open connected region
including z = 0 where the characteristic roots have different moduli.

In the same paper, all the cases with |εi | ≤ 1 are analyzed.

More recently (Segura, Temme, Num. Math. 2008) the problem for
confluent hypergeometric functions has been solved for any εi ∈ Z.
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More examples and methods Other topics

No time for:

1 High order methods for solving nonlinear equations
2 Qualitative properties of the zeros of special functions
3 Convergence and pseudoconvergence of continued fractions

associated to three-term recurrence relations.

Maybe some other day.
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Sources for numerical software

Numerical software

A wide survey of the available software: Lozier & Olver (1994); last
update: December 2000. [Needs a new update.]
http://math.nist.gov/mcsd/Reports/2001/nesf/paper.pdf

Interactive systems based on computer algebra:
Matlab, Maple, Mathematica.

Mathematical libraries:
CALGO, SLATEC, CERN, IMSL, NAG.

Books with software:
Baker, Moshier, Numerical Recipes, Thompson, Wong & Guo, Zhang &
Jin.
And now, also our book (see http://functions.unican.es)
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