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Topics of this talk

· What is a reflexive polytope?

· How many are there?

· What special properties do they have?

· What classification results exist?

· Bounds on invariants as the vertices or the volume?

· What can be said about the set of roots?



What is a reflexive polytope?



What is a reflexive polytope? (1/6) - Lattice polytopes

Lattice polytopes

Let M, N be dual lattices ∼= Zn, with 〈·, ·〉 the inner product.
We set MR := M ⊗Z R.

Def.: A lattice polytope P ⊆ MR is the convex hull of finitely
many lattice points in M .

Two lattice polytopes are isomorphic, if there is a lattice
isomorphism whose real extension maps the polytopes onto
each other.

V(P ) denotes the set of vertices of P .



What is a reflexive polytope? (2/6) - The dual polytope

The dual polytope

In this talk any lattice polytope P has full dimension n and

contains the origin of the lattice in its interior.

The dual polytope of P is defined as

P ∗ := {y ∈ NR : 〈x, y〉 ≥ −1 ∀x ∈ P}.

P ∗ is also fully-dimensional and contains the origin in its inte-
rior. We have

(P ∗)∗ = P.

There is an inclusion-reversing combinatorial correspondence
between the i-dimensional faces of P and the (n − 1 − i)-
dimensional faces of P ∗.



What is a reflexive polytope? (3/6) - Reflexive polytopes

Reflexive polytopes

Let P ⊆ MR be a lattice polytope (fully-dim., containing the
origin in the interior).

Def.: P is a reflexive polytope iff P ∗ is a lattice polytope.

Hence there is a built-in duality :

P is reflexive iff P ∗ is reflexive



What is a reflexive polytope? (4/6) - Reflexive polytopes

Reflexive:

P P*

Not reflexive:

P P*



What is a reflexive polytope? (5/6) - Relevance for related fields

Relevance for related fields

· Algebraic geometry:

Any reflexive polytope P defines a fan ΣP spanned by
the faces of P , and hence an associated toric variety
X(M,ΣP). By this construction reflexive polytopes are
in 1-1-correspondence (up to isomorphism) with Goren-
stein toric Fano varieties.

e.g. P2 = X(M,ΣP):

P ΣP

Here combinatorics can provide direct proofs in toric ge-
ometry and new conjectures on general Fano varieties
with mild singularities.



What is a reflexive polytope? (6/6) - Relevance for related fields

· Mirror symmetry:

Any dual pair P, P ∗ of reflexive polytopes corresponds to
a ”dual” pair of Gorenstein toric Fano varieties. Batyrev
observed that general anticanonical hypersurfaces of a
Gorenstein toric Fano variety are Calabi-Yau, and can be
resolved to be smooth in up to 4-dim. space. This yields
conjectural Mirror pairs.

Here invariants of these Calabi-Yau varieties can be com-
puted from the given reflexive polytope.



How many are there?



How many are there? (1/3) - There are only finitely many ...

There are only finitely many ...

Thm.: In fixed dimension there are only finitely many iso-
morphism classes of reflexive polytopes.

For this we need the first important property of reflexive poly-
topes:

Lemma: P is reflexive ⇐⇒ for any facet F of P there is no
lattice point lying between the affine hyperspace spanned by
F and its parallel through the origin.

F

Cor.: The origin is the only lattice point in the interior of a
reflexive polytope.



How many are there? (2/3) - There are only finitely many ...

So we can apply

Thm.:(Lagarias/Ziegler 91): There are up to lattice isomor-
phisms only a finite number of n-dimensional lattice polytopes
containing the origin as the only lattice point in the interior.

For n = 2 we find that any such lattice polytope is already
reflexive, however this is not true for n ≥ 3.



How many are there? (3/3) - ... but still a lot

... but still a lot

While many people already classified the 16 isomorphism classes
of reflexive polytopes for n = 2, in higher dimensions the use
of a computer seems to be compulsory:

Thm.:(Kreuzer/Skarke 97-): There exists an algorithm for
classifying reflexive polytopes. It yields a computer database
of 4319 isomorphism classes for n = 3, and 473800776 for
n = 4.

So there are many of them!

Thm.:(Haase/Melnikov 04): Any lattice polytope is isomor-
phic to the face of a reflexive polytope.



Basic properties



Basic properties (1/2) - A very special feature

A very special feature

Let P be a reflexive polytope.

Reflexive polytopes exhibit many special behaviors, here we
just present one fundamental property:

Prop. There is a partial addition on the set of lattice points
in P .

If x, y are lattice points on the boundary of P and not contained in a

common facet, then x+ y is a lattice point in P .

y

x

x+y

Cor.: One can ”walk” from any lattice point on the boundary
to any other by using at most three facets.



Basic properties (2/2) - A very special feature

This yields constraints on the combinatorics:

Thm.: Let P be simplicial.

1. The diameter of the edge-graph is at most three.

2. If x is a vertex, then there are at most three vertices not
lying in the star set of x, i.e., in a facet containing x.

x

y



A higher-dimensional

classification result



A higher-dimensional classification result (1/5) - Smooth Fano polytopes

Smooth Fano polytopes

Def.: P is called smooth Fano polytope, if P is simplicial
and the vertices of any facet form a lattice basis.

Equivalently: X(M,ΣP) is a nonsingular toric Fano variety.

Smooth Fano polytopes were classified by Batyrev et.al. for
n ≤ 4.

As a generalization in n = 3 we would like to mention:

Thm.: There are 100 isomorphism classes of reflexive polytopes in di-

mension three such that any lattice point on the boundary is a vertex.

Equivalently: X(M,ΣP) is a Gorenstein toric Fano variety with terminal

singularities.



A higher-dimensional classification result (2/5) - The theorem of Ewald

The theorem of Ewald

For this we need some notions:

Def.: Let e1, . . . , en a lattice basis of M .

· P is called centrally-symmetric, if −P = P .

· P is called del Pezzo polytope, if n is even and
P ∼= conv(±e1, . . . ,±en,±(e1 + · · ·+ en)).

e.g. n = 2:
e2

e1

e2e1

e2e1 −−

+

· P is called facet-symmetric, if there exists a pair of
facets F and −F of P .

· P is called pseudo del Pezzo polytope, if n is even and
P ∼= conv(±e1, . . . ,±en,−(e1 + · · ·+ en)).

e.g. n = 2:

e1

e2

e2e1 −−



A higher-dimensional classification result (3/5) - The theorem of Ewald

Def.: P splits into Q,Q′, if P ∼= conv(Q × {0}, {0} × Q′).

Now we can formulate the following classical result:

Thm.:(Ewald) Any facet-symmetric smooth Fano poly-

tope splits into copies of [−1,1], del Pezzo polytopes or
pseudo del Pezzo polytopes.

Recently Casagrande showed that it is enough to have n linearly indepen-

dent pairs of centrally-symmetric vertices.



A higher-dimensional classification result (4/5) - The main result

The main result

For simplicial reflexive polytopes with few vertices and many
symmetries some results had been proven by Ewald and his
students (Wirth, Grabert). Here we present an (independent)
generalization of the theorem of Ewald:

Thm.: Any facet-symmetric simplicial reflexive poly-
tope P splits uniquely into

· copies of [−1,1], del Pezzo polytopes, pseudo del
Pezzo polytopes,

· and a k-dimensional centrally-symmetric simplicial
reflexive polytope P ′ with 2k vertices.

(Wirth, N.) Any such reflexive crosspolytope P ′ can be
described by a suitable matrix normal form.



A higher-dimensional classification result (5/5) - The main result

Cor.: For facet-symmetry the combinatorics of simplicial re-
flexive polytopes and smooth Fano polytopes is the same!

Cor.: Let P ⊆ MR be a facet-symmetric simplicial reflexive
polytope.

· Any two facets of P are isomorphic as lattice polytopes.

· P can be embedded in [−1,1]n.

Remarks:

· There is a long-standing conjecture by Ewald that any smooth Fano

polytope can be embedded in [−1,1]n.

· Under very mild assumptions one can embed n-dimensional reflexive poly-

topes into n(w!)2 [−1,1]n, where w is the so-called width of P .



Bounds on invariants



Bounds on invariants (1/6) - Vertices

Vertices

Observations in the computer database on the maximal num-

ber of vertices of an n-dimensional reflexive polytope:

· n = 2: 6 vertices

H

· n = 3: 14 vertices

· n = 4: 36 vertices H×H



Bounds on invariants (2/6) - Vertices

Let P ⊆ MR a reflexive polytope.

Conj. A: |V(P ) | ≤ 6n/2; equ. iff n even and P ∼= Hn/2.

No proof known even for n = 3!

Only result known to be valid in any dimension:

Thm.: Conj. A holds for centrally-symmetric simple
reflexive polytopes.



Bounds on invariants (3/6) - Vertices

Observations in the computer database on the maximal num-

ber of vertices of an n-dimensional simplicial reflexive poly-

tope:

· n = 2: 6 vertices

H ∼= H∗

· n = 3: 8 vertices

· n = 4: 12 vertices (H×H)∗ ∼= conv(H× {0}, {0} ×H)

Let P ⊆ MR a simplicial reflexive polytope.

Conj. B: |V(P ) | ≤ 3n; equ. iff n even and P ∗ ∼= Hn/2.

This upper bound was originally conjectured by Batyrev
about 15(!) years ago for smooth Fano polytopes.



Bounds on invariants (4/6) - Vertices

Thm.:(N. 5/04) If P ∗ contains a centrally-symmetric pair of
vertices, then Conj. B holds.

Thm.:(Casagrande 11/04) Conj. B holds.

Open question for n odd:
Is the toric variety associated to a simplicial reflexive poly-
tope with the maximal number of 3n − 1 vertices necessarily
a (special) toric fibre bundle over P1?



Bounds on invariants (5/6) - Vertices

Analyzing and modifying Casagrande’s proof yields a general-
ization:

Cor.: Let P be a reflexive polytope.

Then

|V(P ) | ≤ 2α+(α−n+1)β.

with
α the maximal number of vertices of all facets,
β the maximal number of facets of all facets.

If P is simplicial, then α = n = β, hence |V(P ) | ≤ 3n.



Bounds on invariants (6/6) - Volume and lattice points

Volume and lattice points

For any n there is a special reflexive simplex Sn defined using
the Euclid/Sylvester sequence 2,3,7,43, ... that is conjectured
to have for n ≥ 4 the largest volume and the most lattice

points solely among all reflexive polytopes.

The following affirmative results could be proven:

Thm.:

· Sn has for n ≥ 4 among all reflexive simplices solely the
largest volume.

· Sn has for n ≥ 2 among all reflexive simplices solely the
most lattice points on an edge.

The proof depends on number-theoretic results on n-tuples k0, . . . , kn with

1

k0

+ · · ·+
1

kn
= 1.



Roots



Roots (1/8) - The set of roots

The set of roots

Let P ⊆ MR a reflexive polytope.

Def.:

· The set R of lattice points in interior of facets of P is
called the set of roots of P .

· S := R∩ (−R) is the set of semisimple roots.

R is the set of Demazure roots of the projective toric variety

XP := X(N,ΣP ∗)

associated to the dual polytope. We have

dimAut(XP) = n+ |R|.



Roots (2/8) - Two questions with answers

Two questions with answers

1. What is the maximal number of facets contain-
ing roots?

Showing the existence of special ’orthogonal’ families of
roots yields:

Thm.:

There are at most 2n facets containing roots;
equality implies P ∼= [−1,1]n.

As an application (of calculating modulo 3) we can prove:

Thm.:

If P is centrally-symmetric, then |P ∩ M | ≤ 3n;
equality implies P ∼= [−1,1]n.



Roots (3/8) - Two questions with answers

2. What is the maximal number of semisimple roots?

Prop.: |S | ≤ n2 + n; equality implies XP
∼= Pn.

Moreover we can prove the following structure theorem
by
using extensively the partial addition on P :

Thm.: The intersection P ′ of P with the linear sub-
space generated by S is again a reflexive polytope s.t.
XP ′ is a product of projective spaces.

The convex hull of semisimple roots forms again a reflexive polytope,

e.g., for XP = P3:



Roots (4/8) - Semisimple reflexive polytopes

Semisimple reflexive polytopes

Def.: We say P is semisimple, if any root is semisimple.

Equivalently: Aut(XP) is a reductive algebraic group.

Here we are interested in the following two problems:

1. Finding constraints on the number of roots of a
semisimple polytope

2. Finding sufficient criteria for semisimplicity



Roots (5/8) - Semisimple reflexive polytopes

Semisimple reflexive polygons with roots:

There is no semisimple reflexive polygon with precisely 2 roots!

0 0

0 0 0 0

00 0 0

4 2 2 6

0 0

C T

(sqares=roots, white squares=semisimple roots)

XC
∼= P1 × P1 XT

∼= P2

(most facets with roots) (most semisimple roots)



Roots (6/8) - Semisimple reflexive polytopes

1. A sharp upper bound on the number of roots:

Thm.: Let XP be not a product of projective spaces . Then

P is semisimple ⇒ |R| ≤

{

0 , n = 2
n2 − 3n+4 , n ≥ 3

In particular a semisimple reflexive polygon P

· either has no roots (i.e., P is a smooth Fano polytope)

· or has 4 roots and is isomorphic to C (i.e., XP
∼= P1 × P1)

· or has 6 roots and is isomorphic to T (i.e., XP
∼= P2)

Note: These results have been generalized to complete toric varieties X

by using results of Cox et.al. on the homogeneous coordinate ring and

Aut(X).



Roots (7/8) - Semisimple reflexive polytopes

2. Sufficient criteria for semisimplicity

Let P ⊆ MR a reflexive polytope.

Thm.: Let XP be a nonsingular toric Fano variety.

XP is symmetric, i.e., AutM(P ) has no non-trivial fixpoints

⇒ (Batyrev/Selivanova 99)

XP admits an Einstein-Kähler metrics

⇐⇒ (Futaki 83, Mabuchi 87, Wang/Zhu 03)

the barycenter of P is the origin

⇒ (Matsushima 57)

Aut(XP) is reductive (i.e., P is semisimple)

Questions:

· Combinatorial proofs for combinatorial implications?
· Also true in the reflexive case in general?



Roots (8/8) - Semisimple reflexive polytopes

Thm.:

P is semisimple, if one of the following conditions holds:

· the barycenter of P is the origin,

· the barycenter of P ∗ is the origin,

· the sum over all lattice points of P is the origin,

· the sum over all lattice points of P ∗ is the origin,

· the sum over all vertices of P ∗ is the origin,

· all facets of P have the same number of lattice pts,

· all facets of P have the same volume.

The proof is purely convex-geometric.

Here is the basic idea for the proof of the first condition:

Prop. When projecting P along a lattice pt. x on the boundary it is enough
to consider the star set of x, i.e., the union of the facets containing x.

Hence for a root x we get the following picture:

x
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