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Polyhedra and polytopes

Definition
A (convex) polyhedron P is the intersection of a finite family of
affine half-spaces in Rd .

The dimension of P is the dimension of its affine hull.
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Polyhedra and polytopes

Definition
A (convex) polytope P is the convex hull of a finite set of points
in Rd .

The dimension of P is the dimension of its affine hull.
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Polyhedra and polytopes

Polytope = bounded polyhedron.
Every polytope is a polyhedron, but not conversely.

The dimension of P is the dimension of its affine hull.
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Faces of P

Let P be a polytope (or polyhedron) and let

H = {x ∈ Rd : a1x1 + · · · adxd ≤ a0}

be an affine half-space.

If P ⊂ H we say that ∂H ∩ P is a face of P.
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Faces of P

The “empty face” of P.
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Faces of P

4



The conjecture Motivation: LP Why n − d? The construction (I) The construction(s) (II) Its limitations Conclusion

Faces of P

Faces of dimension 0 are called vertices.
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Faces of P

Faces of dimension 1 are called edges.
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Faces of P

Faces of dimension d − 1 (codimension 1) are called facets.
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The graph of a polytope

Vertices and edges of a polytope P form a (finite, undirected)
graph.

The distance d(u, v) between vertices u and v is the length
(number of edges) of the shortest path from u to v .

For example, d(u, v) = 2.
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The graph of a polytope

Vertices and edges of a polytope P form a (finite, undirected)
graph.

The diameter of G(P) (or of P) is the maximum distance among
its vertices:

δ(P) := max{d(u, v) : u, v ∈ V}.
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The Hirsch conjecture

Let δ(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d ,

δ(P) ≤ n − d .

6



The conjecture Motivation: LP Why n − d? The construction (I) The construction(s) (II) Its limitations Conclusion

The Hirsch conjecture

Let δ(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d ,

δ(P) ≤ n − d .

6



The conjecture Motivation: LP Why n − d? The construction (I) The construction(s) (II) Its limitations Conclusion

The Hirsch conjecture

Let δ(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d ,

δ(P) ≤ n − d .

6



The conjecture Motivation: LP Why n − d? The construction (I) The construction(s) (II) Its limitations Conclusion

The Hirsch conjecture

Let δ(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d ,

δ(P) ≤ n − d .

Fifty three years later...

6



The conjecture Motivation: LP Why n − d? The construction (I) The construction(s) (II) Its limitations Conclusion

The Hirsch conjecture

Let δ(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d ,

δ(P) ≤ n − d .

Fifty three years later...

Theorem (S. 2010+)
There is a 43-dim. polytope with 86 facets and diameter ≥ 44.
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The Hirsch conjecture

Let δ(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d ,

δ(P) ≤ n − d .

Fifty four years later...

Theorem (Matschke-S.-Weibel 2011+)
There is a 20-dim. polytope with 40 facets and diameter = 21.
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The Hirsch conjecture

Let δ(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d ,

δ(P) ≤ n − d .

Fifty four years later...

Theorem (Matschke-S.-Weibel 2011+)
There is a 20-dim. polytope with 40 facets and diameter = 21.

Corollary
There is an infinite family of non-Hirsch polytopes with diameter
∼ (1 + ε)n, even in fixed dimension. (Best so far: ε = 1/20).
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The Hirsch conjecture

Let δ(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d ,

δ(P) ≤ n − d .

Fifty four years later...

Theorem (Matschke-S.-Weibel 2011+)
There is a 20-dim. polytope with 40 facets and diameter = 21.

Remark
To this day, we do not know any polynomial upper bound for
δ(P), in terms of n and d (polynomial Hirsch Conjecture)
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A quasi-polynomial bound, and a bound in fixed
dimension

Theorem [Kalai-Kleitman 1992]
For every d-polytope with n facets:

δ(P) ≤ nlog2 d+2.

Theorem [Barnette 1967, Larman 1970]
For every d-polytope with n facets:

δ(P) ≤ n2d−3.
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Motivation: linear programming

A linear program is the problem of maximization (or
minimization) of a linear functional subject to linear inequality
constraints. That is: finding max{c · x : x ∈ Rd ,Mx ≤ b} for
given c ∈ Rd ,b ∈ Rn,M ∈ Rd×n.
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Motivation: linear programming

A linear program is the problem of maximization (or
minimization) of a linear functional subject to linear inequality
constraints. That is: finding max{c · x : x ∈ Rd ,Mx ≤ b} for
given c ∈ Rd ,b ∈ Rn,M ∈ Rd×n.

“If one would take statistics about which
mathematical problem is using up most of the
computer time in the world, then (not including
database handling problems like sorting and searching) the
answer would probably be linear programming.”

(László Lovász, 1980)
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Connection to the Hirsch conjecture

The set of feasible solutions P = {x ∈ Rd : Mx ≤ b} is a
polyhedron P with (at most) n facets and d dimensions.
The optimal solution (if it exists) is always attained at a
vertex.
The simplex method [Dantzig 1947] solves linear
programming by starting at any feasible vertex and moving
along the graph of P, in a monotone fashion, until the
optimum is attained.
In particular, the Hirsch conjecture is related to the
question of what is the worst-case complexity of the
simplex method.
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Complexity of linear programming

For most of the pivot rules devised so far there is an
analogue of the Klee-Minty cube, which makes the simplex
method take an exponential number of steps:
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Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But:
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Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But:

The number of pivot steps [that the simplex method
takes] to solve a problem with m equality constraints in
n nonnegative variables is almost always at most a
small multiple of m, say 3m.

(M. Todd, 2011)
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Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But:

The number of pivot steps [that the simplex method
takes] to solve a problem with m equality constraints in
n nonnegative variables is almost always at most a
small multiple of m, say 3m.

The simplex method has remained, if not the method
of choice, a method of choice, usually competitive
with, and on some classes of problems superior to, the
more modern approaches.

(M. Todd, 2011)
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Complexity of linear programming

Besides, the known polynomial algorithms for linear
programming known are not strongly polynomial: They are
polynomial in the bit model of complexity (Turing machine) but
not in the arithmetic model (real RAM machine).

Finding strongly polynomial algorithms for linear programming
is one of the “mathematical problems for the 21st century"
according to [Smale 2000]. A polynomial pivot rule would solve
this problem in the affirmative.
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Why was n − d a “reasonable” bound?

It holds with equality in simplices (n = d + 1, δ = 1) and
cubes (n = 2d , δ = d).
It holds for all 0-1 polytopes [Naddef 1989] and for
3-polytopes [Klee 1966].
If P and Q satisfy it, then so does P ×Q: δ(P ×Q) =
δ(P) + δ(Q). In particular:

For every n ≤ 2d , there are polytopes in which the
bound is tight (products of simplices).

For every n > d , it is easy to construct unbounded
polyhedra where the bound is tight.
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Hirsch conjecture has the following interpretations:

Assume n = 2d , P a simple polytope, and let u and v be two
complementary vertices of P (no common facet):
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Why was n − d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

Assume n = 2d , P a simple polytope, and let u and v be two
complementary vertices of P (no common facet):

d-step conjecture
It is possible to go from u to v so that at each step we abandon
a facet containing u and we enter a facet containing v .

d-step conjecture⇒ Hirsch for n = 2d .
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More generally, given any two vertices u and v of a polytope P:
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Why was n − d a “reasonable” bound?

d-step Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. Then, for any fixed k = n − d we have:

· · · ≤ H(2k − 1, k − 1) ≤ H(2k , k) = H(2k + 1, k + 1) = · · ·
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facets}. Then, for any fixed k = n − d we have:

· · · ≤ H(2k − 1, k − 1) ≤ H(2k , k) = H(2k + 1, k + 1) = · · ·

If n < 2d , then H(n − 1,d − 1) ≥ H(n,d):
Every pair of vertices lie in a common facet F , which is a
polytope with one less dimension and (at least) one less
facet Use induction on n and n − d .
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· · · ≤ H(2k − 1, k − 1) ≤ H(2k , k) = H(2k + 1, k + 1) = · · ·

For every n,d , H(n,d) ≤ H(n + 1,d + 1):
Let u and v be two vertices of P. Let P ′ be the wedge of
P over any facet F . Then, P ′ has vertices u′, v ′ such that

dP(u, v) ≤ dP′(u′, v ′).
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Wedging, a.k.a. one-point-suspension

P’

P

F f
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Wedging, a.k.a. one-point-suspension

v

d(u’, v’)=2

d(u, v)=2

u

F f

P’

P

u’

v’
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So, the d-step Theorem is based in the following lemma:

Lemma

Let P be a polytope of dimension d with and diameter λ. Then
there is another polytope P ′ of dimension d + 1, with n + 1
facets and diameter λ.

That is: we can increase the dimension and number of facets of
a polytope by one, preserving its diameter, until n = 2d .
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The counter-example(s)

Our construction of counter-examples has two ingredients:

1 A strong d-step theorem for spindles/prismatoids.
2 The construction of prismatoids of dimension 5 and “width”

6.
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Spindles and prismatoids

Definition
A spindle is a polytope P with two distinguished vertices u and
v such that every facet contains either u or v .

u u

vv

Definition
The length of a
spindle is the
graph distance
from u to v .
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Spindles and prismatoids

Definition
A prismatoid is a polytope Q with two facets Q+ and Q−

containing all vertices.

Q+

Q−

Q

Definition
The width of a
prismatoid is the
dual graph
distance from Q+

to Q−.
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The strong d-step Theorem

Theorem (Strong d-step, spindle version)

Let P be a spindle of dimension d, with n > 2d facets, and with
length δ. Then there is another spindle P ′ of dimension d + 1,
with n + 1 facets and with length δ + 1.

That is: we can increase the dimension, number of facets and
length of a spindle, all by one, until n = 2d .

Corollary
In particular, if a spindle P has length > d then there is another
spindle P ′ (of dimension n − d, with 2n − 2d facets, and length
≥ δ + n − 2d > n − d) that violates the Hirsch conjecture.
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The strong d-step Theorem

Theorem (Strong d-step, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices, and
with width δ. Then there is another prismatoid Q′ of dimension
d + 1, with n + 1 vertices and with width δ + 1.

That is: we can increase the dimension, width and number of
vertices of a prismatoid, all by one, until n = 2d .

Corollary
In particular, if a prismatoid Q has width > d then there is a
prismatoid Q′ (of dimension n − d, with 2n − 2d facets, and width
≥ δ + n − 2d > n − d), whose dual violates the Hirsch conjecture.
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The strong d-step Theorem

Proof.

Q ⊂ R2

Q+

Q−
Q̃−

Q̃ ⊂ R3

Q̃+

w

Q̃− := o. p. s.v(Q−)

Q+

w

o. p. s.v(Q) ⊂ R3

v

u

u
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A 5-pismatoid of width six

Let Q be the polytope having as vertices the 48 rows of the
following matrices:

0BBBBBBBBB@

x1 x2 x3 x4 x5
±18 0 0 0 1

0 ±18 0 0 1
0 0 ±45 0 1
0 0 0 ±45 1
±15 ±15 0 0 1

0 0 ±30 ±30 1
0 ±10 ±40 0 1
±10 0 0 ±40 1

1CCCCCCCCCA

0BBBBBBBBB@

x1 x2 x3 x4 x5
0 0 0 ±18 −1
0 0 ±18 0 −1
±45 0 0 0 −1

0 ±45 0 0 −1
0 0 ±15 ±15 −1
±30 ±30 0 0 −1
±40 0 ±10 0 −1

0 ±40 0 ±10 −1

1CCCCCCCCCA

24



The conjecture Motivation: LP Why n − d? The construction (I) The construction(s) (II) Its limitations Conclusion

A 5-pismatoid of width six

Let Q be the polytope having as vertices the 48 rows of the
following matrices:

0BBBBBBBBB@

x1 x2 x3 x4 x5
±18 0 0 0 1

0 ±18 0 0 1
0 0 ±45 0 1
0 0 0 ±45 1
±15 ±15 0 0 1

0 0 ±30 ±30 1
0 ±10 ±40 0 1
±10 0 0 ±40 1

1CCCCCCCCCA

0BBBBBBBBB@

x1 x2 x3 x4 x5
0 0 0 ±18 −1
0 0 ±18 0 −1
±45 0 0 0 −1

0 ±45 0 0 −1
0 0 ±15 ±15 −1
±30 ±30 0 0 −1
±40 0 ±10 0 −1

0 ±40 0 ±10 −1

1CCCCCCCCCA

24



The conjecture Motivation: LP Why n − d? The construction (I) The construction(s) (II) Its limitations Conclusion

A 5-pismatoid of width six

Let Q be the polytope having as vertices the 48 rows of the
following matrices:

0BBBBBBBBB@

x1 x2 x3 x4 x5
±18 0 0 0 1

0 ±18 0 0 1
0 0 ±45 0 1
0 0 0 ±45 1
±15 ±15 0 0 1

0 0 ±30 ±30 1
0 ±10 ±40 0 1
±10 0 0 ±40 1

1CCCCCCCCCA

0BBBBBBBBB@

x1 x2 x3 x4 x5
0 0 0 ±18 −1
0 0 ±18 0 −1
±45 0 0 0 −1

0 ±45 0 0 −1
0 0 ±15 ±15 −1
±30 ±30 0 0 −1
±40 0 ±10 0 −1

0 ±40 0 ±10 −1

1CCCCCCCCCA

24



The conjecture Motivation: LP Why n − d? The construction (I) The construction(s) (II) Its limitations Conclusion

A 5-pismatoid of width six

Theorem

The prismatoid Q of the previous slide has width six.
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A 5-pismatoid of width six

Theorem

The prismatoid Q of the previous slide has width six.

Corollary
There is a 43-dimensional polytope with 86 facets and diameter
(at least) 44.
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A 5-pismatoid of width six

Theorem

The prismatoid Q of the previous slide has width six.

Proof 1 of the Theorem.
It has been verified with polymake that the dual graph of Q
has the following structure:

IC

D

F

E G J

H

BA K L
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Combinatorics of prismatoids

Proof 2 of the Theorem (idea).
Analyzing the combinatorics of a d-prismatoid Q can be done
via an intermediate slice . . .

Q+

Q−

Q ∩ H
H

Q
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Combinatorics of prismatoids

Proof 2 of the Theorem (idea).
. . . which equals the Minkowski sum Q+ + Q− of the two bases
Q+ and Q−.

+ 1
2

1
2 =

26



The conjecture Motivation: LP Why n − d? The construction (I) The construction(s) (II) Its limitations Conclusion

Combinatorics of prismatoids

Proof 2 of the Theorem (idea).
. . . which equals the Minkowski sum Q+ + Q− of the two bases
Q+ and Q−. The normal fan of Q+ + Q− equals the
“superposition” of those of Q+ and Q−.

+ 1
2

1
2 =

26
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Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of
the normal fans of Q+ and Q−.

Remark
The normal fan of a d − 1-polytope can be thought of as a
(geodesic, polytopal) cell decomposition (“map”) of the
d − 2-sphere.

Conclusion
4-prismatoids⇔ pairs of maps in the 2-sphere.

5-prismatoids⇔ pairs of “maps” in the 3-sphere.
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The normal fan of a d − 1-polytope can be thought of as a
(geodesic, polytopal) cell decomposition (“map”) of the
d − 2-sphere.
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Example: (part of) a 4-prismatoid
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Example: (part of) a 4-prismatoid

4-prismatoid of width > 4
m

pair of (geodesic, polytopal) maps in S2 so that two
steps do not let you go from a blue vertex to a red vertex.
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Example: (part of) a 4-prismatoid

5-prismatoid of width > 5
m

pair of (geodesic, polytopal) maps in S3 so that three
steps do not let you go from a blue vertex to a red vertex.
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A 4-dimensional prismatoid of width > 4?

Replicating the following basic structure we can get a “non-
Hirsch” periodic pair of maps in the plane:
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A 4-dimensional prismatoid of width > 4?

Replicating the following basic structure we can get a “non-
Hirsch” periodic pair of maps in the plane:

If this drawing was on a 2-sphere it would represent a 4-
prismatoid of width 5.
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A 4-dimensional prismatoid of width > 4?

Replicating the following basic structure we can get a “non-
Hirsch” periodic pair of maps in the plane:

If this drawing was on a 2-sphere it would represent a 4-
prismatoid of width 5.

This does not work, but putting the drawing in (two tori embed-
ded in) S3 does, and gives a prismatoid with 48 vertices.
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A 5-prismatoid of width > 5
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A 5-prismatoid of width > 5
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Smaller counter-examples

There are two ways in which a smaller non-Hirsch polytope
could be obtained:

Find a smaller 5-prismatoid of width > 5, or
Find a 4-prismatoid of width > 4.

The latter is impossible:

Theorem (S.-Stephen-Thomas 2011)
Every prismatoid of dimension four has width ≤ 4.

31



The conjecture Motivation: LP Why n − d? The construction (I) The construction(s) (II) Its limitations Conclusion

Smaller counter-examples

There are two ways in which a smaller non-Hirsch polytope
could be obtained:

Find a smaller 5-prismatoid of width > 5, or
Find a 4-prismatoid of width > 4.

The latter is impossible:

Theorem (S.-Stephen-Thomas 2011)
Every prismatoid of dimension four has width ≤ 4.

31



The conjecture Motivation: LP Why n − d? The construction (I) The construction(s) (II) Its limitations Conclusion

Smaller counter-examples

There are two ways in which a smaller non-Hirsch polytope
could be obtained:

Find a smaller 5-prismatoid of width > 5, or
Find a 4-prismatoid of width > 4.

The latter is impossible:

Theorem (S.-Stephen-Thomas 2011)
Every prismatoid of dimension four has width ≤ 4.

31



The conjecture Motivation: LP Why n − d? The construction (I) The construction(s) (II) Its limitations Conclusion

Smaller counter-examples

There are two ways in which a smaller non-Hirsch polytope
could be obtained:

Find a smaller 5-prismatoid of width > 5, or
Find a 4-prismatoid of width > 4.

The latter is impossible:

Theorem (S.-Stephen-Thomas 2011)
Every prismatoid of dimension four has width ≤ 4.

31



The conjecture Motivation: LP Why n − d? The construction (I) The construction(s) (II) Its limitations Conclusion

Smaller counter-examples

Theorem (Matschke-S-Weibel, 2011+)
There is a prismatoid of dimension 5 with 25 vertices and width
6.

Corollary
There is a 20-polytope with 40 facets violating the Hirsch
conjecture.

This polytope has been explicitly computed. It has 36,442
vertices, and diameter 21.
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Asymptotic width in fixed dimension

If we fix the dimension d , the width of prismatoids is linear:

Theorem
The width of a d-dimensional prismatoid with n vertices cannot
exceed 2d−3n.

Proof.
This is a general result for the (dual) diameter of a polytope
[Barnette, Larman, ∼1970].
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Asymptotic width in dimension five

In dimension five we can get better upper bounds:

Theorem
The width of a 5-dimensional prismatoid with n vertices cannot
exceed n/2 + 3.

Corollary
Using the Strong d-step Theorem for 5-prismatoids it is
impossible to violate the Hirsch conjecture by more than 50%.
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Asymptotic width in dimension five

Theorem (Matschke-S.-Weibel 2011+)
There are 5-dimensional prismatoids with n vertices and width
Ω(
√

n).

Sketch of proof
Start with the following “simple” pair of maps in the torus.
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Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in
the 3-sphere.

Complete the tori maps to the whole
3-sphere (you need quadratically
many cells for that).

Between the two tori you basically get
the superposition of the two tori
maps.
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Conclusion

Via glueing and products, the counterexample can be
converted into an infinite family that violates the Hirsch
conjecture by (currently) about 5%.
This breaks a “psychological barrier”, but for applications it
is absolutely irrelevant.

Finding a counterexample will be merely a small first
step in the line of investigation related to the
conjecture.

(V. Klee and P. Kleinschmidt, 1987)
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Conclusion

A proposal for the “next step”:

Conjecture (Hähnle, 2010)
The diameter of a d-polytope with n-facets cannot exceed

d(n − d).

In fact, this conjecture is posed in a much more general setting
(connected layer families, in the sense of Eisenbrand-Hähnle-
Razborov-Rothvoss) which would include, for example, all
polyhedral manifolds.

Still, finding polytopes with diameter exceeding, say, 2(n − d)
would be a breakthrough.
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The end

T H A N K Y O U !
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